Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorEscobar Parra, Sebastian
dc.contributor.authorChica Barco, Vanessa
dc.date.accessioned2023-02-08T14:21:22Z
dc.date.available2023-02-08T14:21:22Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83378
dc.descriptionIlustraciones, fotografías, gráficas, tablas
dc.description.abstractLa operación de secado del cacao es de gran importancia para su valorización poscosecha, porque en esta etapa se logra estabilizar microbiológicamente el producto al disminuir su actividad de agua. Además, es posible influir en su calidad, especialmente mediante la retención de compuestos fenólicos los cuales poseen propiedades funcionales, la disminución de ácidos orgánicos y el alto contenido de azúcares como precursores del flavor, lo cual permite obtener granos de cacao finos y de aroma (especiales) representativos en el mercado, con múltiples beneficios para el productor. Los cacaocultores realizan el secado en sistemas artesanales que dependen de las condiciones climáticas, exponiendo los granos al ambiente bajo el contacto con la radiación solar como única fuente de energía térmica para favorecer el proceso. Bajo este contexto, con esta investigación se buscó evaluar las condiciones de secado para granos de cacao, variedad TCS01, bajo condiciones de operación controladas (tipo de secado y temperatura), que permitan potenciar la calidad de los granos. Para ello, se evaluaron dos tipos de metodologías secado: 1.- denominado estacionario, en el que las granos de cacao están en contacto permanente con el flujo de aire, y 2. -denominado transitorio, en el cual se definen tiempos de reposo bajo los cuales las granos de cacao no están en contacto con el flujo de aire caliente. Para el secado transitorio se empleó un periodo de reposo de 2 h. Para ambos tipos de secado se empleó aire caliente a tres temperaturas: 50°C, 60°C ,70°C, y un flujo de aire constante de 1 L/min. Evaluando como variables independientes el tipo de secado: estacionario y transitorio, y la temperatura. Como variables respuesta se evaluaron: la concentración de compuestos fenólicos totales usando un método espectrofotométrico, catequina, epicatequina y epigalocatequina, ácidos orgánicos (láctico, cítrico y acético) mediante métodos cromatográficos, y el potencial de capacidad antioxidante con el ensayo DPPH. Se realizaron las cinéticas de deshidratación y de degradación para cada temperatura y se usaron modelos matemáticos empíricos y un modelo teórico. Con la investigación se encontró que las condiciones para secado estacionario de los granos de cacao TCS01 en general presentaron mayor calidad, dado que retuvieron mayor cantidad de compuestos fenólicos y azúcares, y menor contenido de ácidos orgánicos, destacando el tratamiento SE60 con mayores resultados. Los granos sometidos a secado transitorio se secaron en menor tiempo y con mayores tasas de remoción de agua en comparación con el secado estacionario, esto genera potencial para disminuir costos energéticos durante el proceso de secado. Por lo anterior, se concluyó que el secado estacionario permite valorizar los granos secos de cacao con potencial a mercados de cacao especial. Esto potencia los usos en la industria con beneficios para el sector productor, manufacturero y la salud de los consumidores. (Texto tomado de la fuente)
dc.description.abstractThe cocoa drying operation is of great importance for its post-harvest recovery, because in this stage the product is microbiologically stabilized by reducing its water activity. In addition, it is possible to influence its quality, especially through the retention of phenolic compounds which have functional properties, the reduction of organic acids and the high content of sugars as flavor precursors, which allows obtaining fine aroma cocoa beans (special) representative in the market, with multiple benefits for the producer. The cocoa farmers carry out the drying in artisanal systems that depend on the climatic conditions, exposing the beans to the environment under contact with solar radiation as the only source of thermal energy to favor the process. In this context, this research sought to evaluate the drying conditions for cocoa beans, variety TCS01, under controlled operating conditions (type of drying and temperature), which allow enhancing the quality of the beans. For this, two types of drying methodologies were evaluated: 1. - called stationary, in which the cocoa beans are in permanent contact with the air flow, and 2. -called transitory, in which rest times are defined under which the cocoa beans are not in contact with the flow of hot air. For temporary drying, a rest period of 2 h was used. For both types of drying, hot air at three temperatures was used: 50°C, 60°C, 70°C, and a constant air flow of 1 L/min. Evaluating as independent variables the type of drying: stationary and transient, and temperature. As response variables, the following were evaluated: the concentration of total phenolic compounds using a spectrophotometric method, catechin, epicatechin and epigallocatechin, organic acids (lactic, citric and acetic) using chromatographic methods, and the potential antioxidant capacity with the DPPH assay. Dehydration and degradation kinetics were performed for each temperature and empirical mathematical models and a theoretical model were used. With the investigation, it was found that the conditions for stationary drying of the TCS01 cocoa beans in general presented higher quality, since they retained a greater amount of phenolic compounds and sugars, and lower content of organic acids, highlighting the SE60 treatment with better results. Grains subjected to transitory drying dried in less time and with higher rates of water removal compared to stationary drying, this generates the potential to reduce energy costs during the drying process. Due to the above, it was concluded that stationary drying allows the valorization of dry cocoa beans with potential for special cocoa markets. This enhances the uses in the industry with benefits for the production and manufacturing sectors and the health of consumers.
dc.format.extentxv, 115 páginas + anexos
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentos
dc.subject.otherVariedad TCS01
dc.subject.otherDrying Kinetics
dc.subject.otherDrying methods
dc.titleSecado de granos de cacao (variedad TCS01) y su efecto sobre la concentración de compuestos fenólicos, azúcares y ácidos orgánicos
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programPalmira - Ingeniería y Administración - Maestría en Ingeniería Agroindustrial
dc.contributor.educationalvalidatorMartínez Correa, Hugo Alexander
dc.contributor.refereeLiliana Serna Cock
dc.contributor.refereeJuan Carlos Gómez
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería Agroindustrial
dc.description.methodsLugar: El desarrollo de la investigación se llevó a cabo en el laboratorio de poscosecha y química analítica del Centro de Investigación Tibaitata (Mosquera, Bogotá) de la Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA) y en las instalaciones de la Universidad Nacional de Colombia sede Palmira. Material: Se trabajó con granos de cacao TCS01 fermentados homogéneamente (eliminar frase repetida). La masa de granos de cacao fermentadas tenía un pH promedio de 4.56±0.01 y un rendimiento de 65.8% masa de cacao fermentado/ masa de cacao en fresco. Desarrollo: La metodología se abordo por cada objetivo específico relacionados a continuación: 1. Determinar qué tipo de secado convectivo: estacionario o transitorio, a tres temperaturas: 50°C, 60°C y 70°C, que permite una mayor tasa de deshidratación y menor tiempo de proceso de granos de cacao de la variedad TCS01 2. Seleccionar un modelo que simule de manera óptima las cinéticas de deshidratación de los granos de cacao de la variedad TCS01, durante el secado convectivo estacionario y transitorio a tres temperaturas (50°C, 60°C y 70°C). 3.  Determinar las condiciones de temperatura (50°C, 60°C y 70°C) y tipo de secado (convectivo estacionario y transitorio) que favorezcan en mayor medida la retención de compuestos fenólicos, la capacidad antioxidante potencial, la concentración de azúcares y el menor contenido de ácidos orgánicos como parámetros de calidad de los granos de cacao de la variedad TCS01
dc.description.researchareaAgroindustria alimentaria
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería y Administración
dc.publisher.placePalmira Valle del Cauca, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmira
dc.relation.referencesAbhay, S. M., Hii, C. L., Law, C. L., Suzannah, S., & Djaeni, M. (2016). Effect of hot-air drying temperature on the polyphenol content and the sensory properties of cocoa beans. International Food Research Journal, 23(4), 1479–1484.
dc.relation.referencesAdeyemi, S. A., Obayopo, S. O., & Akharume, F. (2020). Evaluation of Intermittent Solar Drying with Seasonal Variation on the Quality of Dried Cocoa Beans. SDRP Journal of Food Science & Technology, 5(1), 27–39. https://doi.org/10.25177/jfst.5.1.ra.10612
dc.relation.referencesAfoakwa, E. O., Kongor, J., Budu, A., Mensah-Brown, H., & Takrama, J. (2015). Changes in Biochemical and Physico-chemical Qualities during Drying of Pulp Preconditioned and Fermented Cocoa (Theobroma cacao) Beans. African Journal of Food, Agriculture, Nutrition and Development, 15(1), 9651–9670. https://doi.org/10.15226/jnhfs.2014.00121
dc.relation.referencesAfoakwa, E. O., Kongor, J. E., Takrama, J., & Budu, A. S. (2013). Changes in nib acidification and biochemical composition during fermentation of pulp pre-conditioned cocoa (theobroma cacao) beans. International Food Research Journal, 20(4), 1843–1853.
dc.relation.referencesAfoakwa, E., Paterson, A., Fowler, M., & Ryan, A. (2008). Flavor formation and character in cocoa and chocolate: A critical review. Critical Reviews in Food Science and Nutrition, 48(9), 840–857. https://doi.org/10.1080/10408390701719272
dc.relation.referencesAhmed, S., Ahmed, N., Rungatscher, A., Linardi, D., Kulsoom, B., Innamorati, G., … Faggian, G. (2020). Cocoa flavonoids reduce inflammation and oxidative stress in a myocardial ischemia-reperfusion experimental model. Antioxidants, 9(2), 1–13. https://doi.org/10.3390/antiox9020167
dc.relation.referencesAkhilesh, S., Jahar, S., & Rashmi Rekha, S. (2022). Experimentation and Performance Analysis of Solar- Assisted Heat Pump Dryer for Intermittent Drying of Food Chips. Journal of Solar Energy Engineering, 144(2). https://doi.org/10.1115/1.4052549
dc.relation.referencesAlbertini, B., Schoubben, A., Guarnaccia, D., Pinelli, F., Della Vecchia, M., Ricci, M., … Blasi, P. (2015). Effect of Fermentation and Drying on Cocoa Polyphenols. Journal of Agricultural and Food Chemistry, 63(45), 9948–9953. https://doi.org/10.1021/acs.jafc.5b01062
dc.relation.referencesAlean, J., Chejne, F., Ramírez, S., Rincón, E., Alzate-, A. F., Rojano, B., … Ram, S. (2020). Proposal of a method to evaluate the in-situ oxidation of polyphenolic during the cocoa drying. Drying Technology, 0(0), 1–12. https://doi.org/10.1080/07373937.2020.1817933
dc.relation.referencesAlean, J., Chejne, F., & Rojano, B. (2016). Degradation of polyphenols during the cocoa drying process. Journal of Food Engineering, 189, 99–105. https://doi.org/10.1016/j.jfoodeng.2016.05.026
dc.relation.referencesAprotosoaie, A. C., Luca, S. V., & Miron, A. (2016). Flavor Chemistry of Cocoa and Cocoa Products-An Overview. Comprehensive Reviews in Food Science and Food Safety, 15(1), 73–91. https://doi.org/10.1111/1541-4337.12180
dc.relation.referencesAraujo, Q. R. De, Gattward, J. N., Almoosawi, S., Parada Costa Silva, M. das G. C., Dantas, P. A. D. S., & Araujo Júnior, Q. R. De. (2016). Cocoa and Human Health: From Head to Foot—A Review. Critical Reviews in Food Science and Nutrition, 56(1), 1–12. https://doi.org/10.1080/10408398.2012.657921
dc.relation.referencesArvelo Sánchez, M. A., González León, D., Maroto Arce, S., Delgado López, T., & Montoya López, P. (2017). Manual técnico del cultivo de cacao-Prácticas Latinoamericanas. Instituto Interamericano de Cooperación para la Agricultura (IICA).
dc.relation.referencesBadrie, N., Bekele, F., Sikora, E., & Sikora, M. (2015). Cocoa Agronomy, Quality, Nutritional, and Health Aspects. Critical Reviews in Food Science and Nutrition, 55(5), 620–659. https://doi.org/10.1080/10408398.2012.669428
dc.relation.referencesBaini, R., & Langrish, T. A. G. (2007). Choosing an appropriate drying model for intermittent and continuous drying of bananas. Journal of Food Engineering, 79(1), 330–343. https://doi.org/10.1016/j.jfoodeng.2006.01.068
dc.relation.referencesBarbosa de Lima, A. G., Delgado, J. M. P. Q., Neto, S. R. ., & C.M.R, F. (2016). Intermittent Drying: Fundamentals, Modeling and Applications. Drying and Energy Technologies, 1, 1–228. https://doi.org/10.1007/978-3-319-19767-8
dc.relation.referencesBatista, N. N., de Andrade, D. P., Ramos, C. L., Dias, D. R., & Schwan, R. F. (2016). Antioxidant capacity of cocoa beans and chocolate assessed by FTIR. Food Research International, 90, 313–319. https://doi.org/10.1016/j.foodres.2016.10.028
dc.relation.referencesBeaudry, C., Raghavan, G. S. V., & Rennie, T. J. (2003). Microwave finish drying of osmotically dehydrated cranberries. Drying Technology, 21(9), 1797–1810. https://doi.org/10.1081/DRT-120025509
dc.relation.referencesBesnier, M. (2019). Determinación De Difusividad Efectiva En La Impregnación De Pino Radiata Con Silicato De Sodio, 1–66.
dc.relation.referencesBorrero, F., & Hernandez, J. (2006). Determinacion de parametres y airnulacion matematlca del proceso de secado del cacao ( Theobroma cacao ), 12.
dc.relation.referencesCamu, N., De Winter, T., Verbrugghe, K., Cleenwerck, I., Vandamme, P., Takrama, J. S., … De Vuyst, L. (2007). Dynamics and biodiversity of populations of lactic acid bacteria and acetic acid bacteria involved in spontaneous heap fermentation of cocoa beans in Ghana. Applied and Environmental Microbiology, 73(6), 1809–1824. https://doi.org/10.1128/AEM.02189-06
dc.relation.referencesCao, X., Chen, J., Islam, M. N., Xu, W., & Zhong, S. (2019). Effect of Intermittent Microwave Volumetric Heating on Dehydration, Energy Consumption, Antioxidant Substances, and Sensory Qualities of Litchi Fruit during Vacuum Drying. Molecules (Basel, Switzerland), 24(23). https://doi.org/10.3390/molecules24234291
dc.relation.referencesChaisu, K., & Chiu, C. H. (2019). Antioxidant (flavonoid) in thai cocoa bean. PIM 9th National and 2nd International Conference 2019 and 2nd Smart Logistics Conferenc, (July), 1–44.
dc.relation.referencesChinè-polito, B. (2015). Modelación del proceso de secado de productos agroindustriales. Tecnologia En Marcha, 29(506), 62–73.
dc.relation.referencesChinenye, N. M. (2009). Effect of Drying Temperature and Drying Air Velocity on the Drying Rate and Drying Constant of Cocoa Bean. Agricultural Engineering International: CIGR Journal, 0(0).
dc.relation.referencesChou, S. K., Chua, K. J., Mujumdar, A. S., Hawlader, M. N. A., & Ho, J. C. (2000). On the intermittent drying of an agricultural product. Food and Bioproducts Processing: Transactions of the Institution of of Chemical Engineers, Part C, 78(4), 193–203. https://doi.org/10.1205/09603080051065296
dc.relation.referencesChua, K. J., Chou, S. K., Ho, J. C., Mujumdar, A. S., & Hawlader, M. N. A. (2000). Cyclic air temperature drying of guava pieces: Effects on moisture and ascorbic acid contents. Food and Bioproducts Processing: Transactions of the Institution of of Chemical Engineers, Part C, 78(2), 72–78. https://doi.org/10.1205/096030800532761
dc.relation.referencesChua, K. J., Mujumdar, A. S., Chou, S. K., Ho, J. C., & Crescent, K. R. (2000). CONVECTIVE DRYING OF BANANA , GUAVA AND POTATO PIECES : EFFECT OF CYCLICAL VARIATIONS OF AIR TEMPERATURE ON DRYING KINETICS AND COLOR CHANGE. Drying Technology, 18(4–5), 907–936.
dc.relation.referencesChua, K. J., Mujumdar, A. S., Chou, S. K., Ho, J. C., & Crescent, K. R. (2000). CONVECTIVE DRYING OF BANANA , GUAVA AND POTATO PIECES : EFFECT OF CYCLICAL VARIATIONS OF AIR TEMPERATURE ON DRYING KINETICS AND COLOR CHANGE. Drying Technology, 18(4–5), 907–936.
dc.relation.referencesCoșarcă, S., Tanase, C., & Muntean, D. L. (2019). Therapeutic Aspects of Catechin and Its Derivatives – An Update. Acta Biologica Marisiensis, 2(1), 21–29. https://doi.org/10.2478/abmj-2019-0003
dc.relation.referencesDai, J. W., Xiao, H. W., Zhang, L. H., Chu, M. Y., Qin, W., Wu, Z. J., … Yin, P. F. (2019). Drying characteristics and modeling of apple slices during microwave intermittent drying. Journal of Food Process Engineering, 42(6), 1–10. https://doi.org/10.1111/jfpe.13212
dc.relation.referencesDaud, W. R. W., Talib, M. Z. M., & Ibrahim, M. H. (1996). Characteristic drying curves of cocoa beans. Drying Technology, 14(10), 2387–2396. https://doi.org/10.1080/07373939608917211
dc.relation.referencesDaud, W. R. W., Talib, M. Z. M., & Kyi, T. M. (2007). Drying with chemical reaction in cocoa beans. Drying Technology, 25(5), 867–875. https://doi.org/10.1080/07373930701370241
dc.relation.referencesDe Brito, E. S., García, N. H. P., Gallão, M. I., Cortelazzo, A. L., Fevereiro, P. S., & Braga, M. R. (2001). Structural and chemical changes in cocoa (Theobroma cacao L) during fermentation, drying and roasting. Journal of the Science of Food and Agriculture, 81(2), 281–288. https://doi.org/10.1002/1097-0010(20010115)81:2<281::AID-JSFA808>3.0.CO;2-B
dc.relation.referencesde Melo Pereira, G. V., Magalhães, K. T., de Almeida, E. G., da Silva Coelho, I., & Schwan, R. F. (2013). Spontaneous cocoa bean fermentation carried out in a novel-design stainless steel tank: Influence on the dynamics of microbial populations and physical-chemical properties. International Journal of Food Microbiology, 161(2), 121–133. https://doi.org/10.1016/j.ijfoodmicro.2012.11.018
dc.relation.referencesDelgado-Ospina, J., Di Mattia, C. D., Paparella, A., Mastrocola, D., Martuscelli, M., & Chaves-Lopez, C. (2020). Effect of fermentation, drying and roasting on biogenic amines and other biocompounds in Colombian criollo cocoa beans and shells. Foods, 9(4). https://doi.org/10.3390/foods9040520
dc.relation.referencesDelgado, J. M. P. Q., & Barbosa de Lima, A. G. (2015). Drying and energy technologies. Drying and Energy Technologies, 1–228. https://doi.org/10.1007/978-3-319-19767-8
dc.relation.referencesDeus, V. L., de Cerqueira E Silva, M. B., Maciel, L. F., Miranda, L. C. R., Hirooka, E. Y., Soares, S. E., … da Silva Bispo, E. (2018). Influence of drying methods on cocoa (Theobroma cacao L.): Antioxidant activity and presence of ochratoxin A. Food Science and Technology, 38, 278–285. https://doi.org/10.1590/fst.09917
dc.relation.referencesDzelagha, B. F., Ngwa, N. M., & Bup, D. N. (2020). A Review of Cocoa Drying Technologies and the Effect on Bean Quality Parameters. International Journal of Food Science, 2020, 11. https://doi.org/10.1155/2020/8830127
dc.relation.referencesEfraim, P., Pezoa-garcía, N. H., Calil, D., Jardim, P., Nishikawa, A., Haddad, R., & Eberlin, M. N. (2010). Influência da fermentação e secagem de amêndoas de cacau no teor de compostos fenólicos e na aceitação sensorial Influence of cocoa beans fermentation and drying on the polyphenol content and sensory acceptance. Ciencia E Tecnologia De Alimentos, 30, 142–150.
dc.relation.referencesEscobar, S., Santander, M., Useche, P., Contreras, C., & Rodríguez, J. (2020). Aligning Strategic Objectives with Research and Development Activities in a Soft Commodity Sector: A Technological Plan for Colombian Cocoa Producers. Agriculture, 10(5), 141. https://doi.org/10.3390/agriculture10050141
dc.relation.referencesEscobar, S., Santander, M., Zuluaga, M., Chacón, I., Rodríguez, J., & Vaillant, F. (2021). Fine cocoa beans production: Tracking aroma precursors through a comprehensive analysis of flavor attributes formation. Food Chemistry, 365(July). https://doi.org/10.1016/j.foodchem.2021.130627
dc.relation.referencesEyamo Evina, V. J., De Taeye, C., Niemenak, N., Youmbi, E., & Collin, S. (2016). Influence of acetic and lactic acids on cocoa flavan-3-ol degradation through fermentation-like incubations. LWT - Food Science and Technology, 68, 514–522. https://doi.org/10.1016/j.lwt.2015.12.047
dc.relation.referencesFaborode, M. O., Favier, J. F., & Ajayi, O. A. (1995). On the effects of forced air drying on cocoa quality. Journal of Food Engineering, 25(4), 455–472. https://doi.org/10.1016/0260-8774(94)00018-5
dc.relation.referencesFatouh, M., Metwally, M. N., Helali, A. B., & Shedid, M. H. (2006). Herbs drying using a heat pump dryer. Energy Conversion and Management, 47(15–16), 2629–2643. https://doi.org/10.1016/j.enconman.2005.10.022
dc.relation.referencesFEDECACAO. (2005). Caracterización fisícoquímica y beneficio del grano de cacao (Theobroma cacao L.) en Colombia. Retrieved from http://www.fedecacao.com.co/site/images/recourses/pub_doctecnicos/fedecacao-pub-doc_09B.pdf
dc.relation.referencesFEDECACAO. (2019). Economía Nacional e Internacional. Retrieved May 18, 2020, from https://www.fedecacao.com.co/portal/index.php/es/2015-02-12-17-20-59/nacionales#
dc.relation.referencesFEDECACAO- Federación Nacional de Cacaoteros. (2021). PRODUCCIÓN ANUAL.
dc.relation.referencesFranco, C. M. R., de Lima, A. G. B., Farias, V. S. O., & da Silva, W. P. (2019). Modeling and experimentation of continuous and intermittent drying of rough rice grains. Heat and Mass Transfer/Waerme- Und Stoffuebertragung. https://doi.org/10.1007/s00231-019-02773-0
dc.relation.referencesGarcía-Alamilla, P., Salgado-Cervantes, M. A., Barel, M., Berthomieu, G., Rodríguez-Jimenes, G. C., & García-Alvarado, M. A. (2007). Moisture, acidity and temperature evolution during cacao drying. Journal of Food Engineering, 79(4), 1159–1165. https://doi.org/10.1016/j.jfoodeng.2006.04.005
dc.relation.referencesGarcía, I., & Macías, T. (2020). Cocoa drying system using ancestral sliding. International Journal of Life Sciences, 4(1), 42–49. https://doi.org/10.29332/ijls.v4n1.392
dc.relation.referencesGolmohammadi, M., Assar, M., Rajabi-Hamaneh, M., & Hashemi, S. J. (2015). Energy efficiency investigation of intermittent paddy rice dryer: Modeling and experimental study. Food and Bioproducts Processing, 94, 275–283. https://doi.org/10.1016/j.fbp.2014.03.004
dc.relation.referencesGuehi, T. S., Zahouli, I. B., Ban-Koffi, L., Fae, M. A., & Nemlin, J. G. (2010). Performance of different drying methods and their effects on the chemical quality attributes of raw cocoa material. International Journal of Food Science and Technology, 45(8), 1564–1571. https://doi.org/10.1111/j.1365-2621.2010.02302.x
dc.relation.referencesHerman, C., Spreutels, L., Turomzsa, N., Konagano, E. M., & Haut, B. (2018a). Convective drying of fermented Amazonian cocoa beans (Theobroma cacao var. Forasteiro). Experiments and mathematical modeling. Food and Bioproducts Processing, 108, 81–94. https://doi.org/10.1016/j.fbp.2018.01.002
dc.relation.referencesHerman, C., Spreutels, L., Turomzsa, N., Konagano, E. M., & Haut, B. (2018b). Convective drying of fermented Amazonian cocoa beans (Theobroma cacao var. Forasteiro). Experiments and mathematical modeling. Food and Bioproducts Processing, 108, 81–94. https://doi.org/10.1016/j.fbp.2018.01.002
dc.relation.referencesHernández Suarez, A. C., & Monroy Olmos, B. (2017). Análisis de la politica de sustitución de cultivos de coca por cacao como estrategia de desarrollo local: El caso del municipio de Pauna (Boyaca) años 2005 y 2015. 图书情报工作, (6), 67–72.
dc.relation.referencesHii, C. L., Law, C. L., Cloke, M., & Suzannah, S. (2009a). Thin layer drying kinetics of cocoa and dried product quality. Biosystems Engineering, 102(2), 153–161. https://doi.org/10.1016/j.biosystemseng.2008.10.007
dc.relation.referencesHii, C. L., Law, C. L., Cloke, M., & Suzannah, S. (2009b). Thin layer drying kinetics of cocoa and dried product quality. Biosystems Engineering, 102(2), 153–161. https://doi.org/10.1016/j.biosystemseng.2008.10.007
dc.relation.referencesHii, C. L., Law, C. L., & Suzannah, S. (2012). Drying kinetics of the individual layer of cocoa beans during heat pump drying. Journal of Food Engineering, 108(2), 276–282. https://doi.org/10.1016/j.jfoodeng.2011.08.017
dc.relation.referencesHii, C. L., Law, C. L., Suzannah, S., Misnawi, & Cloke, M. (2009). Polyphenols in cocoa (Theobroma cacao L.) C.L. Asian Journal of Food and Agro-Industry, 2(4), 702–722.
dc.relation.referencesHo, J. C., Chou, S. K., Chua, K. J., Mujumdar, A. S., & Hawlader, M. N. A. (2002). Analytical study of cyclic temperature drying: Effect on drying kinetics and product quality. Journal of Food Engineering, 51(1), 65–75. https://doi.org/10.1016/S0260-8774(01)00038-3
dc.relation.referencesHorta-Téllez, H. B., Sandoval-Aldana, A. P., Garcia-Muñoz, M. C., & Cerón-Salazar, I. X. (2019). Evaluation of the fermentation process and final quality of five cacao clones from the department of huila, colombia. DYNA (Colombia), 86(210), 233–239. https://doi.org/10.15446/dyna.v86n210.75814
dc.relation.referencesHoskin, J. C., & Dimick, P. S. (1994). Chemistry of flavour development in chocolate. Industrial Chocolate Manufacture and Use, (2696), 102–116. https://doi.org/10.1007/978-1-4615-2111-2_8
dc.relation.referencesICCO-INTERNATIONAL COCOA ORGANIZATION. (2022). Quartely Bulletin of Cocoa Statistics.
dc.relation.referencesInternational Cocoa Organization-ICCO. (2022). Fine or Flavour Cocoa.
dc.relation.referencesJinap, S., Thien, J., & Yap, T. N. (1994). Effect of drying on acidity and volatile fatty acids content of cocoa beans. Journal of the Science of Food and Agriculture, 65(1), 67–75. https://doi.org/10.1002/jsfa.2740650111
dc.relation.referencesJohn, W. A., Kumari, N., Böttcher, N. L., Koffi, K. J., Grimbs, S., Vrancken, G., … Ullrich, M. S. (2016). Aseptic artificial fermentation of cocoa beans can be fashioned to replicate the peptide profile of commercial cocoa bean fermentations. Food Research International, 89, 764–772. https://doi.org/10.1016/j.foodres.2016.10.011
dc.relation.referencesKadow, D., Niemenak, N., Rohn, S., & Lieberei, R. (2015). Fermentation-like incubation of cocoa seeds (Theobroma cacao L.) - Reconstruction and guidance of the fermentation process. LWT - Food Science and Technology, 62(1), 357–361. https://doi.org/10.1016/j.lwt.2015.01.015
dc.relation.referencesKim, H., & Keeney, P. G. (1983). Method of Analysis for (‐)‐Epicatechin in Cocoa Beans by High Performance Liquid Chromatography. Journal of Food Science, 48(2), 548–551. https://doi.org/10.1111/j.1365-2621.1983.tb10787.x
dc.relation.referencesKim, H., & Keeney, P. G. (1984). (-)-Epicatechin Content in Fermented and Unfermented Cocoa Beans. Journal of Food Science, 49, 1090–1092. https://doi.org/10.1111/J.1365-2621.1984.TB10400.X
dc.relation.referencesKongor, J. E., Hinneh, M., de Walle, D. Van, Afoakwa, E. O., Boeckx, P., & Dewettinck, K. (2016). Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile - A review. Food Research International, 82, 44–52. https://doi.org/10.1016/j.foodres.2016.01.012
dc.relation.referencesKowalski, S. J., & Pawłowski, A. (2011). Energy consumption and quality aspect by intermittent drying. Chemical Engineering and Processing: Process Intensification, 50(4), 384–390. https://doi.org/10.1016/j.cep.2011.02.012
dc.relation.referencesKowalski, S. J., Szadzińska, J., & Łechtańska, J. (2013). Non-stationary drying of carrot: Effect on product quality. Journal of Food Engineering, 118(4), 393–399. https://doi.org/10.1016/j.jfoodeng.2013.04.028
dc.relation.referencesKris-Etherton, P. M., Hecker, K. D., Bonanome, A., Coval, S. M., Binkoski, A. E., Hilpert, K. F., … Etherton, T. D. (2002). Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. American Journal of Medicine, 113(9 SUPPL. 2), 71–88. https://doi.org/10.1016/s0002-9343(01)00995-0
dc.relation.referencesKumar, C., Joardder, M. U. H., Farrell, T. W., Millar, G. J., & Karim, M. A. (2016). Mathematical model for intermittent microwave convective drying of food materials. Drying Technology, 34(8), 962–973. https://doi.org/10.1080/07373937.2015.1087408
dc.relation.referencesKumar, C., Karim, M. A., & Joardder, M. U. H. (2014). Intermittent drying of food products: A critical review. Journal of Food Engineering, 121(1), 48–57. https://doi.org/10.1016/j.jfoodeng.2013.08.014
dc.relation.referencesKyi, T. M., Daud, W. R. W., Mohamad, A. B., Samsudin, M. W., Kadhum, A. A. H., & Talib, M. Z. M. (2005). The kinetics of polyphenol degradation during the drying of Malaysian cocoa beans. International Journal of Food Science and Technology, 40(3), 323–331. https://doi.org/10.1111/j.1365-2621.2005.00959.x
dc.relation.referencesLasisi, D. (2014). A Comparative Study of Effects of Drying Methods on Quality of Cocoa Beans. International Journal of Engineering Research and Technology, 3(1), 991–996. Retrieved from https://www.ijert.org/research/a-comparative-study-of-effects-of-drying-methods-on-quality-of-cocoa-beans-IJERTV3IS10490.pdf
dc.relation.referencesLefeber, T., Gobert, W., Vrancken, G., Camu, N., & De Vuyst, L. (2011). Dynamics and species diversity of communities of lactic acid bacteria and acetic acid bacteria during spontaneous cocoa bean fermentation in vessels. Food Microbiology, 28(3), 457–464. https://doi.org/10.1016/j.fm.2010.10.010
dc.relation.referencesLeite, P. B., Maciel, L. F., Opretzka, L. C. F., Soares, S. E., & Bispo, E. da S. (2013). Phenolic compounds, methylxanthines and antioxidant activity in cocoa mass and chocolates produced from “witch broom disease” resistant and non resistant cocoa cultivars. Ciência E Agrotecnologia, 37(3), 244–250. https://doi.org/10.1590/s1413-70542013000300007
dc.relation.referencesLópez-Alarcón, C., & Denicola, A. (2013). Evaluating the antioxidant capacity of natural products: A review on chemical and cellular-based assays. Analytica Chimica Acta, 763, 1–10. https://doi.org/10.1016/j.aca.2012.11.051
dc.relation.referencesLópez, B. (2016). Evaluación aagronómica de una plantación de cacao tipo CCN-51 en la zona de Balao, provincia del Guayas. Retrieved from http://repositorio.ucsg.edu.ec/bitstream/3317/6930/1/T-UCSG-PRE-TEC-AGRO-99.pdf%0Ahttp://repositorio.ucsg.edu.ec/bitstream/3317/1608/1/T-UCSG-PRE-TEC-IECA-6.pdf
dc.relation.referencesMaldaner, V., Carteri, P., Trojahn, M., Müller, A., Oliveira, L., Eduardo, P., … Irineu, E. (2021). Effects of intermittent drying on physicochemical and morphological quality of rice and endosperm of milled brown rice. LWT, 152(August), 112334. https://doi.org/10.1016/j.lwt.2021.112334
dc.relation.referencesMartin, S., Silva, J., Donzeles, S., Zanatta, F., Cecon, P., & Galvarro, S. (2009). ESTUDO DO EFEITO DO PERÍODO DE REPOUSO NA QUALIDADE DO CAFÉ CEREJA, 4–6.
dc.relation.referencesMazor Jolić, S., Radojčic Redovnikovic, I., Marković, K., Ivanec Šipušić, D., & Delonga, K. (2011). Changes of phenolic compounds and antioxidant capacity in cocoa beans processing. International Journal of Food Science and Technology, 46(9), 1793–1800. https://doi.org/10.1111/j.1365-2621.2011.02670.x
dc.relation.referencesMcevily, A. J., Iyengar, R., & Gross, A. T. (1992). Inhibition of Polyphenol Oxidase by Phenolic Compounds. In Phenolic Compounds in Food and Their Effects on Health I (Vol. 506, pp. 318–325). American Chemical Society. https://doi.org/10.1021/bk-1992-0506.ch025
dc.relation.referencesMercado-Mercado, G., de la Rosa Carrillo, L., Wall-Medrano, A., López Díaz, J. A., & Álvarez-Parrilla, E. (2013). Compuestos polifenólicos y capacidad antioxidante de especies típicas consumidas en México. Nutrición Hospitalaría, 28(1), 36–46. https://doi.org/10.3305/nh.2013.28.1.6298
dc.relation.referencesMisnawi. (2008). Physico-chemical changes during cocoa fermentation and key enzymes involved. Review Penelitian Kopi Dan Kakao, 24(1), 47–64.
dc.relation.referencesMisnawi, A., Jinap, S., Jamilah, B., & Nazamid, S. (2004). Sensory properties of cocoa liquor as affected by polyphenol concentration and duration of roasting. Food Quality and Preference, 15(5), 403–409. https://doi.org/10.1016/S0950-3293(03)00097-1
dc.relation.referencesMotamayor, J. C., Risterucci, A. M., Heath, M., & Lanaud, C. (2003). Cacao domestication II: Progenitor germplasm of the Trinitario cacao cultivar. Heredity, 91(3), 322–330. https://doi.org/10.1038/sj.hdy.6800298
dc.relation.referencesMotamayor, J. C., Risterucci, A. M., Lopez, P. A., Ortiz, C. F., Moreno, A., & Lanaud, C. (2002). Cacao domestication I: The origin of the cacao cultivated by the Mayas. Heredity, 89(5), 380–386. https://doi.org/10.1038/sj.hdy.6800156
dc.relation.referencesNair, K. P. P. (2010). Cocoa (Theobroma cacao L.). The Agronomy and Economy of Important Tree Crops of the Developing World. https://doi.org/10.1016/b978-0-12-384677-8.00005-9
dc.relation.referencesNazaruddin, R., Seng, L. K., Hassan, O., & Said, M. (2006). Effect of pulp preconditioning on the content of polyphenols in cocoa beans (Theobroma Cacao) during fermentation. Industrial Crops and Products, 24(1), 87–94. https://doi.org/10.1016/j.indcrop.2006.03.013
dc.relation.referencesNganhou, J., Njomo, D., Benet, J. C., Augier, F., & Berthomieu, G. (2003). Perfecting a method of micro-analysis of water and acetic acid in a cocoa bean in the course of drying: Applying to determine transportation coefficients. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 39(8–9), 797–803. https://doi.org/10.1007/s00231-002-0395-7
dc.relation.referencesNoguera, L. (2014). CARACTERIZACIÓN DE MATERIALES REGIONALES PROMISORIOS DE CACAO COLOMBIANO: FÍSICA, QUÍMICA; FUNCIONAL Y ORGANOLÉPTICA. UNIVERSIDAD INDUSTRIAL DE SANTANDER. https://doi.org/10.1017/CBO9781107415324.004
dc.relation.referencesOke, D. O., & Omotayo, K. F. (2012). Effect of forced-air artificial intermittent drying on cocoa beans in South-Western Nigeria. Journal of Cereals and Oil Seeds, 3(1), 1–5. https://doi.org/10.5897/JCO11.037
dc.relation.referencesPallares, A., Estupiñán A, M. R., Perea Villamil, J. A., & López Giraldo, L. J. (2017). Impacto de la fermentación y secado sobre el contenido de polifenoles y capacidad antioxidante del clon de cacao CCN-51. Revista Ion, Investigación, Optimización Y Nuevos Procesos En Ingeniería, 29(2), 7–21. https://doi.org/10.18273/revion.v29n2-2016001
dc.relation.referencesPérez, E., & Cañas, I. (2017). Del cacao al chocolate: Una industria en Auge. (B. E. técnicas y Científicas, Ed.), Nesvida (1st ed., Vol. 6). España.
dc.relation.referencesPham, N. D., Khan, M. I. H., & Karim, M. A. (2020). A mathematical model for predicting the transport process and quality changes during intermittent microwave convective drying. Food Chemistry, 325, 126932. https://doi.org/10.1016/j.foodchem.2020.126932
dc.relation.referencesPorras-Barrientos, L. D., Torres-Oquendo, J. D., Gil-Garzón, M. A., & Martínez Álvarez, O. L. (2018). Effect of the solar drying process on the sensory and chemical quality of cocoa (Theobroma cacao L.) cultivated in Antioquia, Colombia. Food Research International. https://doi.org/10.1016/J.FOODRES.2018.08.084
dc.relation.referencesPutranto, A., Chen, X. D., Xiao, Z., & Webley, P. A. (2011). Mathematical modeling of intermittent and convective drying of rice and coffee using the reaction engineering approach (REA). Journal of Food Engineering, 105(4), 638–646. https://doi.org/10.1016/j.jfoodeng.2011.03.036
dc.relation.referencesRamli, N., Yatim, A. M., Said, M., & Hok, H. C. (2001). HPLC Determination of Methylxanthines and Polyphenols Levels In Cocoa and Chocolate Products, 7(2), 377–386.
dc.relation.referencesReineccius, G. (2005). Flavour Chemistry and Technology (segunda).
dc.relation.referencesRodriguez-Campos, J., Escalona-Buendía, H. B., Orozco-Avila, I., Lugo-Cervantes, E., & Jaramillo-Flores, M. E. (2011). Dynamics of volatile and non-volatile compounds in cocoa (Theobroma cacao L.) during fermentation and drying processes using principal components analysis. Food Research International, 44(1), 250–258. https://doi.org/10.1016/j.foodres.2010.10.028
dc.relation.referencesRodriguez, J., & Bon, J. (2009). OPTIMIZACIÓN DE LA APLICACIÓN DE LA TECNOLOGÍA DE SECADO INTERMITENTE AL SECADO CONVECTIVO DE PATATA: DESARROLLO DE UNA HERRAMIENTA DE GESTIÓN DE LA TOMA DE DECISIONES, 1–26.
dc.relation.referencesRodríguez, J., Clemente, G., Sanjuán, N., & Bon, J. (2014). Modelling drying kinetics of thyme (Thymus vulgaris L.): Theoretical and empirical models, and neural networks. Food Science and Technology International, 20(1), 13–22. https://doi.org/10.1177/1082013212469614
dc.relation.referencesRyan, C. M., Khoo, W., Stewart, A. C., O’Keefe, S. F., Lambert, J. D., & Neilson, A. P. (2017). Flavanol concentrations do not predict dipeptidyl peptidase-IV inhibitory activities of four cocoas with different processing histories. Food and Function, 8(2), 746–756. https://doi.org/10.1039/c6fo01730d
dc.relation.referencesSánchez, E. (2017). Efecto de tipos de secado del cacao (Theobroma cacao L) CCN-51 en la preservación de polifenoles totales y antocianinas. Universidad Nacional de San Martín-Tarapoto Perú. Retrieved from http://repositorio.unsm.edu.pe/handle/11458/2460
dc.relation.referencesSantander Muñoz, M., Rodríguez Cortina, J., Vaillant, F. E., & Escobar Parra, S. (2020a). An overview of the physical and biochemical transformation of cocoa seeds to beans and to chocolate: Flavor formation. Critical Reviews in Food Science and Nutrition. Taylor & Francis. https://doi.org/10.1080/10408398.2019.1581726
dc.relation.referencesSantander Muñoz, M., Rodríguez Cortina, J., Vaillant, F. E., & Escobar Parra, S. (2020b). An overview of the physical and biochemical transformation of cocoa seeds to beans and to chocolate: Flavor formation. Critical Reviews in Food Science and Nutrition, 60(10), 1593–1613. https://doi.org/10.1080/10408398.2019.1581726
dc.relation.referencesSanthanam Menon, A., Hii, C. L., Law, C. L., Shariff, S., & Djaeni, M. (2017a). Effects of drying on the production of polyphenol-rich cocoa beans. Drying Technology, 35(15), 1799–1806. https://doi.org/10.1080/07373937.2016.1276072
dc.relation.referencesSanthanam Menon, A., Hii, C. L., Law, C. L., Shariff, S., & Djaeni, M. (2017b). Effects of drying on the production of polyphenol-rich cocoa beans. Drying Technology, 35(15), 1799–1806. https://doi.org/10.1080/07373937.2016.1276072
dc.relation.referencesSchroeter, H., Heiss, C., Balzer, J., Kleinbongard, P., Keen, C. L., Hollenberg, N. K., … Kelm, M. (2006). (-)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proceedings of the National Academy of Sciences of the United States of America, 103(4), 1024–1029. https://doi.org/10.1073/pnas.0510168103
dc.relation.referencesSchwan, R. F., & Wheals, A. E. (2004). The microbiology of cocoa fermentation and its role in chocolate quality. Critical Reviews in Food Science and Nutrition, 44(4), 205–221. https://doi.org/10.1080/10408690490464104
dc.relation.referencesSingleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299(1974), 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1
dc.relation.referencesSrinivasan, D., Kirk, P., & Owen R, F. (2007). Fennema´s Food Chemistry (4th Editio). CRC Press. https://doi.org/https://doi.org/10.1201/9781420020526
dc.relation.referencesSzadzińska, J., Mierzwa, D., Pawłowski, A., Musielak, G., Pashminehazar, R., & Kharaghani, A. (2020). Ultrasound- and microwave-assisted intermittent drying of red beetroot. Drying Technology, 38(1–2), 93–107. https://doi.org/10.1080/07373937.2019.1624565
dc.relation.referencesTeh, Q. T. M., Tan, G. L. Y., Loo, S. M., Azhar, F. Z., Menon, A. S., & Hii, C. L. (2016). The Drying Kinetics and Polyphenol Degradation of Cocoa Beans. Journal of Food Process Engineering, 39(5), 484–491. https://doi.org/10.1111/jfpe.12239
dc.relation.referencesUrbańska, B., Derewiaka, D., Lenart, A., & Kowalska, J. (2019). Changes in the composition and content of polyphenols in chocolate resulting from pre-treatment method of cocoa beans and technological process. European Food Research and Technology. Springer Berlin Heidelberg. https://doi.org/10.1007/s00217-019-03333-w
dc.relation.referencesUtrilla-Vázquez, M., Rodríguez-Campos, J., Avendaño-Arazate, C. H., Gschaedler, A., & Lugo-Cervantes, E. (2019). Analysis of volatile compounds of five varieties of Maya cocoa during fermentation and drying processes by Venn diagram and PCA. Food Research International, 129, 108834. https://doi.org/10.1016/j.foodres.2019.108834
dc.relation.referencesVan Engeland, C., Spreutels, L., Legros, R., & Haut, B. (2022). Comprehensive analysis of intermittent drying . A theoretical approach. Food and Bioproducts Processing, 131, 86–101. https://doi.org/10.1016/j.fbp.2021.10.009
dc.relation.referencesVáquiro, H. A., Clemente, G., García-Pérez, J. V., Mulet, A., & Bon, J. (2009). Enthalpy-driven optimization of intermittent drying of Mangifera indica L. Chemical Engineering Research and Design, 87(7), 885–898. https://doi.org/10.1016/j.cherd.2008.12.002
dc.relation.referencesVega-Valencia, Y., Cruz Y Victoria, M. T., Vizcarra Mendoza, M. G., & Sosa, I. A. (2014). Intermittent drying of nopal (Opuntia Ficus Indica) in a fluidized bed pilot dryer adapted with revolving chambers. Journal of Food Process Engineering, 37(3), 211–219. https://doi.org/10.1111/jfpe.12072
dc.relation.referencesVera, J., Vallejo, C., Párraga, D., Morales, W., Macías, J., & Ramos, R. (2014). Atributos físicos-químicos y sensoriales de las almendras de quince clones de cacao Nacional (Theobroma cacao L.) en el Ecuador. Ciencia Y Tecnología, 7(2), 21–34. https://doi.org/10.1079/9780851996622.0639
dc.relation.referencesWollgast, J., & Anklam, E. (2000). Review on polyphenols in Theobroma cacao: Changes in composition during the manufacture of chocolate and methodology for identification and quantification. Food Research International, 33(6), 423–447. https://doi.org/10.1016/S0963-9969(00)00068-5
dc.relation.referencesYépez-Rivadeneira, J. L. (2017). CARACTERIZACIÓN DEL CONTENIDO DE POLIFENOLES: CATEQUINA, EPICATEQUINA Y PROCIANIDINAS B1, B2 Y C1; EN CACAO CCN-51 DE LAS PRINCIPALES ZONAS PRODUCTORAS DEL ECUADOR. UNIVERSIDAD CENTRAL DEL ECUADOR. https://doi.org/10.3975/cagsb.2017.02.15
dc.relation.referencesYoung, A. M. (2007). The Chocolate Tree: A Natural History of Cacao. (University Press of Florida, Ed.).
dc.relation.referencesZambrano, A., Gómez, Á., Ramos, G., Romero, C., Lacruz, C., & Rivas, E. (2010). Caracterización de parámetros físicos de calidad en almendras de cacao Criollo, Trinitario y Forastero durante el proceso de secado. Agronomía Tropical, 60(4), 389–396.
dc.relation.referencesBon, J., & Kudra, T. (2007). Enthalpy-Driven Optimization of Intermittent Drying. Drying Technology: An International Journal, 25, 523–532. https://doi.org/10.1080/07373930701226880
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocSecado
dc.subject.agrovocDrying
dc.subject.agrovocTheobroma cacao
dc.subject.agrovocCompuestos fenólicos
dc.subject.agrovocPhenolic compounds
dc.subject.agrovocCocoa
dc.subject.proposalModelación matemática
dc.subject.proposalLiberación ácidos orgánicos
dc.subject.proposalEpicatequina
dc.subject.proposalCatequina
dc.subject.proposalSecado transitorio o intermitente
dc.subject.proposalpolifenoles
dc.subject.proposalCinética de degradación
dc.subject.proposalCinética de secado
dc.subject.proposalCromatografía liquida de ultra rendimiento (UPLC)
dc.subject.proposalPolifenoles
dc.subject.proposalEpicatechin
dc.subject.proposalCatechin
dc.subject.proposalMathematical modeling
dc.subject.proposalDrying kinetics
dc.subject.proposalTransient drying
dc.title.translatedDrying of cocoa beans (variety TCS01) and its effect on the concentration of phenolic compounds, sugars and organic acids.
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleDesarrollo de alternativas de valorización poscosecha para mejorar la competitividad de los productores del sector cacao en Colombia: producción regular de cacaos con calidad diferenciada tipo especial
oaire.fundernameCorporación Colombiana de Investigación Agropecuaria (AGROSAVIA)
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantes
dcterms.audience.professionaldevelopmentPúblico general
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantes
dcterms.audience.professionaldevelopmentResponsables políticos
dc.description.curricularareaIngeniería.Sede Palmira
dc.contributor.orcidhttps://orcid.org/0000-0003-3250-5516


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito