Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorGuerrero Pabón, Mario Francisco
dc.contributor.authorMartínez Ramírez, Jhon Edison
dc.date.accessioned2023-02-08T20:41:56Z
dc.date.available2023-02-08T20:41:56Z
dc.date.issued2022-05
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83391
dc.descriptionilustraciones, fotografías acolor
dc.description.abstractEl veneno de las serpientes de coral, del género Micrurus, es conocido por generar un efecto neurotóxico. Este efecto es similar entre las diferentes especies de este género, sin embargo, aún no se conoce completamente la eficacia de la neutralización cruzada de los antivenenos. En el presente estudio evaluamos los efectos de los venenos de tres serpientes de coral colombianas, de las especies M. lemniscatus, M, medemi y M, sangilensis. Determinando la capacidad de inhibir la neurotransmisión, en una preparación de nervio frénico y diafragma de ratas Wistar. Se evaluaron los efectos del veneno a dosis de 1, 10 y 50 µg/ml y se evaluó la capacidad neutralizante del antiveneno anticoral polivalente (AAP) del Instituto Nacional de Salud (INS), frente a la dosis de 10 µg/ml de cada especie. Los 3 venenos generaron bloqueos neuromusculares dependientes de las dosis en comparación con los controles. Siendo el veneno de M. lemniscatus el que tuvo una actividad neurotóxica más rápida, seguido de M. sangilensis y finalmente de M. medemi. Así mismo los 3 venenos fueron neutralizados con éxito por el AAP del INS. Siendo el veneno de M. medemi el que más porcentaje de neutralización tuvo, seguido del veneno de M, sangilensis y finalmente del veneno de M, lemniscatus. Demostrando así que el AAP del INS tiene una capacidad neutralizante y polivalente. A pesar de ser fabricado con venenos de serpientes de coral distintas a las involucradas en este estudio. (Texto tomado de la fuente)
dc.description.abstractCoral snake’s venoms of the genus Micrurus are characterized by peripheral paralysis neurotoxicity. A similar neurotoxic effect is induced by the venom of most members of this genus, yet the efficaciousness of cross species venom/anti-venom treatment has not been thoroughly investigated. In this study we evaluated the effects of the venom of three Colombian coral snakes, species M. lemniscatus, M. medemi, and M. sangilensis, and its ability to inhibit neurotransmission in the phrenic nerve and diaphragm of Wistar rats. Venom effects were evaluated in doses of 1, 10, and 50 µg / ml. Further, the neutralizing capacity of the polyvalent anticoral antivenom (PAA) of the National Institute of Health (NIH) was evaluated against a venom dose of 10 µg / ml of each species. All 3 venoms generated a significant, dose-dependent, neuromuscular block compared to controls with M. lemniscatus exhibiting the fastest neurotoxic response followed by M. sangilensis, and M. medemi. Finally, the NIH PAA was able to completely neutralize M. medemi and partially neutralize both M. sangilensis and M. lemniscatus. Thus, we have demonstrated that the INS AAP has neutralizing and polyvalent capacity despite being manufactured with venoms from coral snakes not involved in this study.
dc.description.sponsorshipEl Departamento Administrativo de Ciencia, Tecnología e Innovación Minciencias, es la entidad encargada de promover las políticas públicas para fomentar la ciencia, la tecnología y la innovación en Colombia por medio del Proyecto 2104777-58348, Contrato 686 de 2018 COLCIENCIAS-INS: “Caracterización bioquímica y biológica del veneno de las corales colombianas Micrurus medemi, Micrurus sangilensis y Micrurus lenmiscatus y su neutralización con el antiveneno anticoral polivalente producido por el INS” que permitió el desarrollo y culminación de este proyecto de tesis.
dc.description.sponsorshipInstituto Nacional de Salud, permitió el uso de instalaciones, reactivos, animales de laboratorio y uso de salas del bioterio de barrera ABSL2 para el entrenamiento y desarrollo de pruebas preliminares para el desarrollo y culminación de este proyecto de tesis.
dc.description.sponsorshipLa Universidad Nacional de Colombia, permitió el uso de instalaciones, reactivos, animales de laboratorio y uso de salas del bioterio para el entrenamiento y desarrollo de pruebas preliminares para el desarrollo y culminación de este proyecto de tesis.
dc.format.extent88 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéutica
dc.titleEvaluación de la capacidad neutralizante de un antiveneno anticoral polivalente en una preparación neuromuscular
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Farmacología
dc.contributor.educationalvalidatorFrancisco Javier Ruiz Gómez
dc.contributor.researchgroupGrupo de Investigaciones en Farmacología Molecular (Farmol)
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ciencias – Farmacología
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesBarber, C. M., Isbister, G. K., & Hodgson, W. C. (2013). Alpha neurotoxins. Toxicon, 66, 47–58.
dc.relation.referencesBedoya-Medina, J., Mendivil-Perez, M., Rey-Suarez, P., Jimenez-Del-Rio, M., Núñez, V., & Velez-Pardo, C. (2019). L-amino acid oxidase isolated from Micrurus mipartitus snake venom (MipLAAO) specifically induces apoptosis in acute lymphoblastic leukemia cells mostly via oxidative stress-dependent signaling mechanism. International Journal of Biological Macromolecules, 134, 1052–1062.
dc.relation.referencesBolívar-Barbosa, J. A., & Rodríguez-Vargas, A. L. (2020). Neurotoxical activity of micrurus snake venom and methods for its analysis. A literature review. Revista Facultad de Medicina, 68(3), 453–462.
dc.relation.referencesBucaretchi, F., De Capitani, E. M., Vieira, R. J., Rodrigues, C. K., Zannin, M., Da Silva, N. J., Casais-E-Silva, L. L., & Hyslop, S. (2016). Coral snake bites (Micrurus spp.) in Brazil: A review of literature reports. Clinical Toxicology, 54(3), 222–234.
dc.relation.referencesBulbring, E. (1946). Observations on the isolated phrenic nerve diaphragm preparation of the rat. British Journal of Pharmacology and Chemotherapy, 1, 38–61.
dc.relation.referencesCamargo, T. M., de Roodt, A. R., da Cruz-Höfling, M. A., & Rodrigues-Simioni, L. (2011). The neuromuscular activity of Micrurus pyrrhocryptus venom and its neutralization by commercial and specific coral snake antivenoms. Journal of Venom Research, 2, 24–31.
dc.relation.referencesCampbell, J. A., Lamar, W. W. (2004). The Venomous Reptiles of the Western Hemisphere. In Wilderness & Environmental Medicine ((Vol. 1, N, Vol. 1).
dc.relation.referencesCastillo-Beltrán, M. C., Hurtado-Gómez, J. P., Corredor-Espinel, V., & Ruiz-Gómez, F. J. (2018). A polyvalent coral snake antivenom with broad neutralization capacity. PLoS Neglected Tropical Diseases, 13(3), 1–14.
dc.relation.referencesChippaux, J. P. (2017). Snakebite envenomation turns again into a neglected tropical disease! Journal of Venomous Animals and Toxins Including Tropical Diseases, 23(1), 1–2.
dc.relation.referencesCiscotto, P. H. C., Rates, B., Silva, D. A. F., Richardson, M., Silva, L. P., Andrade, H., Donato, M. F., Cotta, G. A., Maria, W. S., Rodrigues, R. J., Sanchez, E., De Lima, M. E., & Pimenta, A. M. C. (2011). Venomic analysis and evaluation of antivenom cross-reactivity of South American Micrurus species. Journal of Proteomics, 74(9), 1810–1825.
dc.relation.referencesCrachi, M. T., Hammer, L. W., & Hodgson, W. C. (1999). A pharmacological examination of venom from the Papuan taipan (Oxyuranus scutellatus canni). Toxicon, 37(12), 1721–1734.
dc.relation.referencesDe Abreu, V. A., Leite, G. B., Oliveira, C. B., Hyslop, S., Furtado, M. D. F. D., & Simioni, L. R. (2008). Neurotoxicity of Micrurus altirostris (Uruguayan coral snake) venom and its neutralization by commercial coral snake antivenom and specific antiserum raised in rabbits. Clinical Toxicology, 46(6), 519–527.
dc.relation.referencesDurban, J., Sasa, M., & Calvete, J. J. (2018). Venom gland transcriptomics and microRNA profiling of juvenile and adult yellow-bellied sea snake, Hydrophis platurus, from Playa del Coco (Guanacaste, Costa Rica). Toxicon, 153(August), 96–105.
dc.relation.referencesDutertre, S., Nicke, A., & Tsetlin, V. I. (2017). Nicotinic acetylcholine receptor inhibitors derived from snake and snail venoms. Neuropharmacology, 127, 196–223.
dc.relation.referencesFloriano, R. S., Schezaro-Ramos, R., Silva, N. J., Bucaretchi, F., Rowan, E. G., & Hyslop, S. (2019). Neurotoxicity of Micrurus lemniscatus lemniscatus (South American coral snake) venom in vertebrate neuromuscular preparations in vitro and neutralization by antivenom. Archives of Toxicology, 93(7), 2065–2086.
dc.relation.referencesFloriano, R. S., Torres-Bonilla, K. A., Rojas-Moscoso, J. A., Dias, L., Rocha, T., Silva, N. J., Hyslop, S., & Rowan, E. G. (2020a). Cardiovascular activity of Micrurus lemniscatus lemniscatus (South American coral snake) venom. Toxicon, 186(August), 58–66.
dc.relation.referencesGanguly, D. K., Nath, D. N., Ross, H. ‐G, & Vedasiromoni, J. R. (1978). Rat Isolated Phrenic Nerve‐Diaphragm Preparation for Pharmacological Study of Muscle Spindle Afferent Activity: Effect of Oxotremorine. British Journal of Pharmacology, 64(1), 47–52.
dc.relation.referencesGinsborg, B. L., & Warriner, J. (1960). the Isolated Chick Biventer Cervicis Nerve‐Muscle Preparation. British Journal of Pharmacology and Chemotherapy, 15(3), 410–411.
dc.relation.referencesGómez-Betancur, I., Gogineni, V., Salazar-Ospina, A., & León, F. (2019). Perspective on the therapeutics of anti-snake venom. Molecules, 24(18), 1–29.
dc.relation.referencesGopalakrishnakone, P., Inagaki, H., Vogel, C., Mukherjee, A. K., & Rahmy, T. R. (2017). Snake Venoms.
dc.relation.referencesGoularte, F. C., Cruz-Höfling, M. A., Cogo, J. C., Gutiérrez, J. M., & Rodrigues-Simioni, L. (1995). The ability of specific antivenom and low temperature to inhibit the myotoxicity and neuromuscular block induced by Micrurus nigrocinctus venom. Toxicon, 33(5), 679–689.
dc.relation.referencesGutiérrez, J. M. (2018). Antivenoms: Life-saving drugs for envenomings by animal bites and stings. Toxicon, 150(May), 11–12.
dc.relation.referencesGutiérrez, J. M., Solano, G., Pla, D., Herrera, M., Segura, Á., Vargas, M., Villalta, M., Sánchez, A., Sanz, L., Lomonte, B., León, G., & Calvete, J. J. (2017). Preclinical evaluation of the efficacy of antivenoms for snakebite envenoming: State-of-the-art and challenges ahead. Toxins, 9(5), 1–22.
dc.relation.referencesHarris, R. J., Youngman, N. J., Zdenek, C. N., Huynh, T. M., Nouwens, A., Hodgson, W. C., Harrich, D., Dunstan, N., Portes-Junior, J. A., & Fry, B. G. (2020). Assessing the binding of venoms from aquatic elapids to the nicotinic acetylcholine receptor orthosteric site of different prey models. International Journal of Molecular Sciences, 21(19), 1–13.
dc.relation.referencesHarvey, A. L., Harvey, A. L., Barfaraz, A., Thomson, E., Faiz, A., Preston, S., & Venoms, R. (1994). Screening of Snake Venoms for Neurotoxic and Myotoxic Effects Using Simple in Vitro Preparations From Rodents and Chicks. Toxicon, 32(3), 257–265.
dc.relation.referencesHerrera, M., Cássia, R. De, Collaço, D. O., Villalta, M., Segura, Á., Vargas, M., Wright, C. E., Paiva, O. K., Matainaho, T., Jensen, S. D., León, G., Williams, D. J., Rodrigues-simioni, L., & María, J. (2016). Neutralization of the neuromuscular inhibition of venom and taipoxin from the taipan ( Oxyuranus scutellatus ) by F ( ab 0 ) 2 and whole IgG antivenoms. Toxicology Letters, 241, 175–183.
dc.relation.referencesHodgson, Wayne C., Wickramaratna, J. C. (2002). Animal Toxins of Asia and Australia: In Vitro Neuromuscular Activity Of Snake Venoms. Clinical and Experimental Pharmacology and Physiology, 29, 807–814.
dc.relation.referencesJorge Da Silva, N., & D. Aird, S. (2001). Prey specificity, comparative lethality and compositional differences of coral snake venoms. In Comparative Biochemistry and Physiology - C Toxicology and Pharmacology (Vol. 128, Issue 3).
dc.relation.referencesKasturiratne, A., Wickremasinghe, A. R., De Silva, N., Gunawardena, N. K., Pathmeswaran, A., Premaratna, R., Savioli, L., Lalloo, D. G., & De Silva, H. J. (2008). The global burden of snakebite: A literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Medicine, 5(11), 1591–1604.
dc.relation.referencesKini, R. M. (2011). Evolution of three-finger toxins - A versatile mini protein scaffold. Acta Chimica Slovenica, 58(4), 693–701.
dc.relation.referencesKopper, R. A., Harper, G. R., Zimmerman, S., & Hook, J. (2013). Comparison of total protein and phospholipase A2 levels in individual coral snake venoms. Toxicon, 76, 59–62.
dc.relation.referencesLeón, G., Sánchez, L., Hernández, A., Villalta, M., Herrera, M., Segura, Á., Estrada, R., & Gutiérrez, J. M. (2011). Immune response towards snake venoms. Inflammation and Allergy - Drug Targets, 10(5), 381–398.
dc.relation.referencesLomonte, B., Rey-Suárez, P., Fernández, J., Sasa, M., Pla, D., Vargas, N., Bénard-Valle, M., Sanz, L., Corrêa-Netto, C., Núñez, V., Alape-Girón, A., Alagón, A., Gutiérrez, J. M., & Calvete, J. J. (2016). Venoms of Micrurus coral snakes: Evolutionary trends in compositional patterns emerging from proteomic analyses. Toxicon, 122, 7–25.
dc.relation.referencesMendes, G. F., Stuginski, D. R., Loibel, S. M. C., Morais-Zani, K. De, Da Rocha, M. M. T., Fernandes, W., Sant’anna, S. S., & Grego, K. F. (2019). Factors that can influence the survival rates of coral snakes (Micrurus corallinus) for antivenom production. Journal of Animal Science, 97(2), 972–980.
dc.relation.referencesMoraes, F. V., Sousa-e-Silva, M. C. C., Barbaro, K. C., Leitão, M. A., & Furtado, M. F. D. (2003). Biological and immunochemical characterization of Micrurus altirostris venom and serum neutralization of its toxic activities. Toxicon, 41(1), 71–79.
dc.relation.referencesNirthanan, S., & Gwee, M. C. E. (2004). Three-Finger α-Neurotoxins and the Nicotinic Acetylcholine Receptor, Forty Years On. Journal of Pharmacological Sciences, 94(1), 1–17.
dc.relation.referencesRenjifo, C., Smith, E. N., Hodgson, W. C., Renjifo, J. M., Sanchez, A., Acosta, R., Maldonado, J. H., & Riveros, A. (2012a). Neuromuscular activity of the venoms of the Colombian coral snakes Micrurus dissoleucus and Micrurus mipartitus: An evolutionary perspective. Toxicon, 59(1), 132–142.
dc.relation.referencesRey-Suárez, P., Núñez, V., Fernández, J., & Lomonte, B. (2016). Integrative characterization of the venom of the coral snake Micrurus dumerilii (Elapidae) from Colombia: Proteome, toxicity, and cross-neutralization by antivenom. Journal of Proteomics, 136, 262–273.
dc.relation.referencesRey-Suárez, P., Saldarriaga-Córdoba, M., Torres, U., Marin-Villa, M., Lomonte, B., & Núñez, V. (2019). Novel three-finger toxins from Micrurus dumerilii and Micrurus mipartitus coral snake venoms: Phylogenetic relationships and characterization of Clarkitoxin-I-Mdum. Toxicon, 170(July), 85–93.
dc.relation.referencesRojas Bárcenas, A. M. (2018). Accidente ofídico en Colombia. Informes de Evento, 1(1), 33.
dc.relation.referencesRossan, A., Da Silva, B. P., Yamagushi, I. K., Morais, J. F., Higashi, H. G., Raw, I., Ho, P. L., & Silveira de Oliveira, J. (2001). Cross reactivity of different specific Micrurus antivenom sera with homologous and heterologous snake venoms. Toxicon, 39(7), 949–953.
dc.relation.referencesSilva, A., Kuruppu, S., Othman, I., Goode, R. J. A., Hodgson, W. C., & Isbister, G. K. (2017). Neurotoxicity in Sri Lankan Russell’s Viper (Daboia russelii) Envenoming is Primarily due to U1-viperitoxin-Dr1a, a Pre-Synaptic Neurotoxin. Neurotoxicity Research, 31(1), 11–19.
dc.relation.referencesSmith, C. M. (1963). Neuromuscular Pharmacology: Drugs and Muscle Spindles. Annual Review of Pharmacology, 3(1), 223–242.
dc.relation.referencesSouza, J. De, Oshima-franco, Y., & Freitas, N. P. De. (2020). A preparação nervo frênico-diafragma ( camundongos / ratos ) e a técnica miográfica como ferramenta farmacológica.
dc.relation.referencesSu, M. J., Coulter, A. R., Sutherland, S. K., & Chang, C. C. (1983). The presynaptic neuromuscular blocking effect and phospholipase A2 activity of textilotoxin, a potent toxin isolated from the venom of the Australian brown snake, Pseudonaja textilis. Toxicon, 21(1), 143–151.
dc.relation.referencesTanaka, G. D., Furtado, M. D. F. D., Portaro, F. C. V., Sant’Anna, O. A., & Tambourgi, D. V. (2010). Diversity of Micrurus snake species related to their venom toxic effects and the prospective of antivenom neutralization. PLoS Neglected Tropical Diseases, 4(3), 1–12.
dc.relation.referencesTaylor, P., Salazar, E., Barrios, M., Salazar, A. M., Abad, M. J., Urdanibia, I., Shealy, D., Arocha-Piñango, C. L., & Guerrero, B. (2016). Role of the inflammatory response in the hemorrhagic syndrome induced by the hemolymph of the caterpillar Lonomia achelous. Toxicon, 121, 77–85.
dc.relation.referencesUrdaneta, A. H., Bolaños, F., & Gutiérrez, J. M. (2004). Feeding behavior and venom toxicity of coral snake Micrurus nigrocinctus (Serpentes: Elapidae) on its natural prey in captivity. Comparative Biochemistry and Physiology - C Toxicology and Pharmacology, 138(4), 485–492.
dc.relation.referencesWarrell, D. A. (2010). Snake bite. The Lancet, 375(9708), 77–88.
dc.relation.referencesWhaler, B. C. (1978). Venoms: Chemistry and Molecular Biology. Biochemical Society Transactions, 6(2), 474–476.
dc.relation.referencesWHO. (2017). Annex 5. Guidelines for the production, control and regulation of snake antivenom immunoglobulins Replacement of Annex 2 of WHO Technical Report Series. World Health Organization Technical Report Series, No. 964, 197–388.
dc.relation.referencesWHO. (1981). Progress in the characterization of venoms and standardization of antivenoms.
dc.relation.referencesWHO. (2016). Guidelines for the Production, Control and Regulation of Snake Antivenom Immunoglobulins. October, 89.
dc.relation.referencesWilliams, D., Gutiérrez, J. M., Harrison, R., Warrell, D. A., White, J., Winkel, K. D., & Gopalakrishnakone, P. (2010). The Global Snake Bite Initiative: an antidote for snake bite. The Lancet, 375(9708), 89–91.
dc.relation.referencesZanetti, G., Negro, S., Pirazzini, M., & Caccin, P. (2018). Mouse Phrenic Nerve Hemidiaphragm Assay (MPN). Bio-Protocol, 8(5), 1–12.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsAntídotos
dc.subject.decsVeneno de víboras
dc.subject.decsViper Venoms
dc.subject.lembAntidotes
dc.subject.proposalMicrurus
dc.subject.proposalMicrurus
dc.subject.proposalbloqueo neuromuscular
dc.subject.proposalVeneno
dc.subject.proposalPreparación neuromuscular
dc.subject.proposalPlaca neuromotora
dc.subject.proposalUnión neuromuscular
dc.subject.proposalNeuromuscular blockade
dc.subject.proposalVenom
dc.subject.proposalNeuromuscular preparations
dc.subject.proposalNeuromuscular junction
dc.title.translatedEvaluation of the neutralizing capacity of a polyvalent anticoral antivenom in a neuromuscular preparation
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameMinisterio de Ciencia Tecnología e Innovación
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPersonal de apoyo escolar
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantes
dcterms.audience.professionaldevelopmentPúblico general
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantes
dcterms.audience.professionaldevelopmentResponsables políticos


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito