Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorRodríguez Baracaldo, Rodolfo
dc.contributor.advisorMujica Roncery, Lais
dc.contributor.authorAvendaño Rodríguez, Diego Fernando
dc.date.accessioned2023-02-09T15:01:43Z
dc.date.available2023-02-09T15:01:43Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83400
dc.descriptionilustraciones, graficas
dc.description.abstractEsta investigación tiene como objetivo evaluar la evolución del daño y los mecanismos de fractura microestructurales asociados a ensayos de tracción uniaxial (UTT), uniaxial cíclica (CTT), propagación de grietas y energía de fractura, relacionados con la fracción en volumen y la distribución de martensita en un acero comercial de fase dual (DP). En primer lugar, mediante la implementación de tratamientos térmicos intercríticos se crearon diferentes fracciones en volumen de martensita (MVF) en el material en estado de entrega. Se realizaron nanoindentaciones para evaluar las propiedades mecánicas de la ferrita y la martensita. A continuación, se caracterizaron los mecanismos de daño utilizando micrografías SEM obtenidas de muestras UTT y CCT. Se determinó la resistencia de los materiales a la propagación de grietas y la energía asociada a la formación de las superficies de fractura. Finalmente, se determinó de forma cualitativa el efecto de la deformación y la propagación de grietas en la microestructura empleando SEM-EBSD. Se observó que el tipo de carga aplicada influye en el comportamiento mecánico de los aceros DP. Bajo la condición de carga CCT, los aceros exhiben una menor ductilidad y resistencia que bajo carga UTT. Además, una tasa más rápida de progresión del daño dúctil a tensión se encuentra correlaciona con un mayor MVF. Por otra parte, el MVF y la orientación de los granos de martensita con respecto a la dirección de la carga afectan significativamente el flujo de plástico de ferrita. La decohesión de las interfaces ferrita-ferrita y ferrita-martensita son los principales mecanismos de nucleación de micro vacíos. Los mapas de Kernel muestran que la densidad de dislocaciones es relativamente alta en los límites de grano, particularmente cerca de los granos de martensita. Por lo tanto, el desarrollo de mecanismos de fractura se atribuye a la energía de deformación de la microestructura. Finalmente, se observó que la energía necesaria para producir superficies de fractura y la tortuosidad de grieta aumenta a medida que aumenta el MVF. Por el contrario, la tasa de crecimiento de grietas se reduce con el aumento del contenido de martensita. (Texto tomado de la fuente)
dc.description.abstractThis research aims to study the evolution of damage and microstructural fracture mechanisms related to uniaxial tensile (UTT), cyclic uniaxial tensile test (CTT), crack growth, and fracture energy associated with martensite distribution and volume fraction in commercial dual-phase steel (DP). Steels with different martensite volume fractions (MVF) were produced in the as-received material using intercritical heat treatments. In addition, nanoindentations were performed to evaluate the mechanical properties of ferrite and martensite. Damage mechanisms were identified using UTT and CCT samples SEM images. The material resistance to crack growth and the associated surface fracture formation energy were determined. Finally, the deformation and crack growth effect on microstructure were qualitatively determined using SEM-EBSD. It was found that the type of applied load influences the mechanical behavior of DP steels. Steels exhibit less ductility and strength when subjected to CCT loading than when subjected to UTT loading. In addition, a faster rate of ductile damage progression in tension is correlated with a greater MVF. MVF and martensite grains orientation concerning the load direction significantly affects the ferrite plastic flow. The ferrite-ferrite and ferrite-martensite interface decohesion are the primary mechanisms of void nucleation. According to Kernel maps, dislocation density is relatively high at grain boundaries, particularly close to martensite grains. Therefore, the development of fracture mechanisms is attributed to the microstructure strain energy. Finally, it was observed that the energy needed to produce fracture surfaces and crack tortuosity rises as MVF increases. In contrast, the crack growth rate reduces with the increase of MVF.
dc.format.extentxxviii, 299 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc660 - Ingeniería química::669 - Metalurgia
dc.subject.ddc670 - Manufactura::672 - Hierro, acero, otras aleaciones ferrosas
dc.titleEfecto de la microestructura en la deformación y fractura de aceros de fase dual
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales
dc.contributor.researchgroupInnovación en Procesos de Manufactura E Ingeniería de Materiales (Ipmim)
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ingeniería
dc.description.researchareaIngeniería de Materiales y Proceso de Manufactura
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesR. Rana and S. B. Singh, “Dual-phase steels,” in Automotive steels: design, metallurgy, processing, and applications, Duxford, United Kingdom: Woodhead Publishing, 2017, pp. 169–209.
dc.relation.referencesD. Llewellyn and R. C. Hudd, “Low-carbon strip steels,” in Steels metallurgy and applications, Oxford, England: Butterworth-Heinemann, 1998, pp. 71–76.
dc.relation.referencesE. W. Williams and L. K. Davies, “Recent Developments in annealing,” ISI Special Report, vol. 79, 1963.
dc.relation.referencesY. Weng, H. Dong, and Y. Gan, “Innovative Steels for Low Carbon Economy,” in Advanced Steels, Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 9–10.
dc.relation.referencesB. Cantor, P. Grant, and C. Johnston, “Impact Loading,” in Automotive engineering: lightweight, functional, and novel materials, New York: Taylor & Francis, 2008, pp. 63–70.
dc.relation.referencesS. Hayami and T. Furukawa, “A family of high-strength, cold rolled steels,” in Proceedings of Micro Alloying 75’, Union Carbide Corp., 1977, pp. 311–321.
dc.relation.referencesN. Fonstein, “Effect of Structure on Mechanical Properties of Dual-Phase Steels,” in Advanced High Strength Sheet Steels, East Chicago, IN, USA: Springer, 2015, pp. 67–181.
dc.relation.referencesC. Nikhare, P. D. Hodgson, and M. Weiss, “Necking and fracture of advanced high strength steels,” Materials Science and Engineering: A, vol. 528, no. 6, pp. 3010–3013, Mar. 2011.
dc.relation.referencesZ. Jiang, Z. Guan, and J. Lian, “Effects of microstructural variables on the deformation behaviour of dual-phase steel,” Materials Science and Engineering: A, vol. 190, no. 1–2, pp. 55–64, Jan. 1995.
dc.relation.referencesR. Song, D. Ponge, and D. Raabe, “Mechanical properties of an ultrafine grained C–Mn steel processed by warm deformation and annealing,” Acta Mater, vol. 53, no. 18, pp. 4881–4892, Oct. 2005.
dc.relation.referencesM. Calcagnotto, D. Ponge, and D. Raabe, “Effect of grain refinement to 1μm on strength and toughness of dual-phase steels,” Materials Science and Engineering: A, vol. 527, no. 29–30, pp. 7832–7840, Nov. 2010.
dc.relation.referencesC. C. Tasan et al., “An Overview of Dual-Phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Guided Design,” Annu Rev Mater Res, vol. 45, pp. 391–431, Jul. 2015.
dc.relation.referencesG. Avramovic-Cingara, Y. Ososkov, M. K. Jain, and D. S. Wilkinson, “Effect of martensite distribution on damage behaviour in DP600 dual phase steels,” Materials Science and Engineering A, vol. 516, no. 1–2, pp. 7–16, Aug. 2009.
dc.relation.referencesR. G. Davies, “Influence of martensite composition and content on the properties of dual phase steels,” Metallurgical Transactions A, vol. 9, no. 5, pp. 671–679, May 1978.
dc.relation.referencesR. Idris and Y. Prawoto, “Influence of ferrite fraction within martensite matrix on fatigue crack propagation: An experimental verification with dual phase steel,” Materials Science and Engineering: A, vol. 552, pp. 547–554, Aug. 2012.
dc.relation.referencesA. Kumar, S. B. Singh, and K. K. Ray, “Influence of bainite/martensite-content on the tensile properties of low carbon dual-phase steels,” Materials Science and Engineering: A, vol. 474, no. 1–2, pp. 270–282, Feb. 2008.
dc.relation.referencesM. Tayanç, A. Aytaç, and A. Bayram, “The effect of carbon content on fatigue strength of dual-phase steels,” Mater Des, vol. 28, no. 6, pp. 1827–1835, Jan. 2007.
dc.relation.referencesM. Calcagnotto, D. Ponge, and D. Raabe, “On the effect of manganese on grain size stability and hardenability in ultrafine-grained ferrite/martensite dual-phase steels,” Metall Mater Trans A Phys Metall Mater Sci, vol. 43, no. 1, pp. 37–46, 2012.
dc.relation.referencesL. Zhou, D. Zhang, and Y. Liu, “Influence of silicon on the microstructures, mechanical properties and stretch-flangeability of dual phase steels,” International Journal of Minerals, Metallurgy, and Materials, vol. 21, no. 8, pp. 755–765, Aug. 2014.
dc.relation.referencesI. Tamura, H. Sekine, T. Tanaka, and C. Ouchi, “Properties of controlled-rolled steels,” in Thermomechanical processing of high-strength low-alloy steels, London; Boston: Butterworths, 1988, pp. 98–99, 186–193.
dc.relation.referencesA. Haldar, “Effects of Microalloying in Multi Phase Steels for Car Body Manufacture,” in Microstructure and Texture in Steels and Other Materials, London: Springer London, 2009, pp. 146, 150–162.
dc.relation.referencesV. Ginzburg, “Multiphase Steels,” in Metallurgical design of flat rolled steels, New York: Marcel Dekker, 2005, pp. 601–614.
dc.relation.referencesM. Chiaberge, “High Mn TWIP Steels for Automotive Applications,” in New trends and developments in automotive system engineering, Rijeka: Intech, 2011, pp. 101–128.
dc.relation.referencesG. Krauss, “Low-Carbon Steels,” in Steels processing, structure, and performance, 2nd ed., Materials Park, Ohio: ASM International, 2015, pp. 250–256.
dc.relation.referencesM. S. Rashid, “Dual Phase Steels,” Annual Review of Materials Science, vol. 11, no. 1, pp. 245–266, 1981.
dc.relation.referencesE. Pereloma and D. Edmonds, “Phase transformations in high strength steels,” in Phase transformations in steel. Diffusionless transformations, high strength steels, modelling and advances analytical techniques, vol. 2, Cambridge: Woodhead, 2012, pp. 151–212.
dc.relation.referencesH. Bhadeshia and Robert Honeycombe, “Thermomechanical Treatment of Steels,” in Steels: microstructure and properties, 4th ed., Oxford, United Kingdom: Butterworth-Heinemann, 2017, pp. 287–288.
dc.relation.referencesT. Nanda, V. Singh, V. Singh, A. Chakraborty, and S. Sharma, “Third generation of advanced high-strength steels: Processing routes and properties,” Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, vol. 233, no. 2, pp. 209–238, Feb. 2019.
dc.relation.referencesM. Y. Demeri, “Dual-Phase Steels,” in Advanced high-strength steels: science, technology, and applications, Materials Park, Ohio: ASM International, 2013, pp. 95–106.
dc.relation.referencesM. Calcagnotto, D. Ponge, and D. Raabe, “Microstructure Control during Fabrication of Ultrafine Grained Dual-phase Steel: Characterization and Effect of Intercritical Annealing Parameters,” ISIJ International, vol. 52, no. 5, pp. 874–883, May 2012.
dc.relation.referencesJ. Zhang, H. Di, Y. Deng, and R. D. K. Misra, “Effect of martensite morphology and volume fraction on strain hardening and fracture behavior of martensite–ferrite dual phase steel,” Materials Science and Engineering: A, vol. 627, pp. 230–240, Mar. 2015.
dc.relation.referencesF. Zhang, A. Ruimi, P. C. Wo, and D. P. Field, “Morphology and distribution of martensite in dual phase (DP980) steel and its relation to the multiscale mechanical behavior,” Materials Science and Engineering A, vol. 659, pp. 93–103, Apr. 2016.
dc.relation.referencesJ. Kadkhodapour, S. Schmauder, D. Raabe, S. Ziaei-Rad, U. Weber, and M. Calcagnotto, “Experimental and numerical study on geometrically necessary dislocations and non-homogeneous mechanical properties of the ferrite phase in dual phase steels,” Acta Mater, vol. 59, no. 11, pp. 4387–4394, Jun. 2011.
dc.relation.referencesA. Ramazani, K. Mukherjee, U. Prahl, and W. Bleck, “Transformation-Induced, Geometrically Necessary, Dislocation-Based Flow Curve Modeling of Dual-Phase Steels: Effect of Grain Size,” Metallurgical and Materials Transactions A, vol. 43, no. 10, pp. 3850–3869, May 2012.
dc.relation.referencesA. Ramazani, K. Mukherjee, A. Schwedt, P. Goravanchi, U. Prahl, and W. Bleck, “Quantification of the effect of transformation-induced geometrically necessary dislocations on the flow-curve modelling of dual-phase steels,” Int J Plast, vol. 43, pp. 128–152, Apr. 2013.
dc.relation.referencesV. Tarigopula, O. S. Hopperstad, M. Langseth, and A. H. Clausen, “Elastic-plastic behaviour of dual-phase, high-strength steel under strain-path changes,” European Journal of Mechanics - A/Solids, vol. 27, no. 5, pp. 764–782, Sep. 2008.
dc.relation.referencesJ. B. Seol, J. E. Jung, Y. W. Jang, and C. G. Park, “Influence of carbon content on the microstructure, martensitic transformation and mechanical properties in austenite/-martensite dual-phase Fe-Mn-C steels,” Acta Mater, vol. 61, no. 2, pp. 558–578, Jan. 2013.
dc.relation.referencesS. A. Etesami, M. H. Enayati, and A. G. Kalashami, “Austenite formation and mechanical properties of a cold rolled ferrite-martensite structure during intercritical annealing,” Materials Science and Engineering A, vol. 682, pp. 296–303, 2017, doi: 10.1016/j.msea.2016.09.112.
dc.relation.referencesV. L. de la Concepción, H. N. Lorusso, and H. G. Svoboda, “Effect of Carbon Content on Microstructure and Mechanical Properties of Dual Phase Steels,” Procedia Materials Science, vol. 8, pp. 1047–1056, 2015.
dc.relation.referencesN. Terao and B. Cauwe, “Influence of additional elements (Mo, Nb, Ta and B) on the mechanical properties of high-manganese dual-phase steels,” J Mater Sci, vol. 23, no. 5, pp. 1769–1778, 1988.
dc.relation.referencesS. A. Etesami, M. H. Enayati, A. Taherizadeh, and B. Sadeghian, “The Influence of Volume Fraction of Martensite and Ferrite Grain Size on Ultimate Tensile Strength and Maximum Uniform True Strain of Dual Phase Steel,” Transactions of the Indian Institute of Metals, vol. 69, no. 8, pp. 1605–1612, 2016.
dc.relation.referencesJ. Drumond, O. Girina, J. F. da Silva Filho, N. Fonstein, and C. A. S. de Oliveira, “Effect of Silicon Content on the Microstructure and Mechanical Properties of Dual-Phase Steels,” Metallography, Microstructure, and Analysis, vol. 1, no. 5, pp. 217–223, 2012.
dc.relation.referencesC. Philippot et al., “Influence of Heating Rate on Ferrite Recrystallization and Austenite Formation in Cold-Rolled Microalloyed Dual-Phase Steels,” Metall Mater Trans A Phys Metall Mater Sci, vol. 49, no. 1, pp. 66–77, Jan. 2018.
dc.relation.referencesP. Tsipouridis, E. Werner, C. Krempaszky, and E. Tragl, “Formability of high strength dual-phase steels,” Steel Res Int, vol. 77, no. 9–10, pp. 654–667, 2006, doi: 10.1002/srin.200606444.
dc.relation.referencesJ. F. da Silva Filho et al., “Effect of Cr additions on ferrite recrystallization and austenite formation in dual-phase steels heat treated in the intercritical temperature range,” Materials Research, vol. 19, no. 1, pp. 258–266, Jan. 2016.
dc.relation.referencesS. Goto, C. Kami, and S. Kawamura, “Effect of alloying elements and hot-rolling conditions on microstructure of bainitic-ferrite/martensite dual phase steel with high toughness,” Materials Science and Engineering: A, vol. 648, pp. 436–442, Nov. 2015.
dc.relation.referencesA. Ghatei Kalashami, A. Kermanpur, A. Najafizadeh, and Y. Mazaheri, “Effect of Nb on Microstructures and Mechanical Properties of an Ultrafine-Grained Dual Phase Steel,” J Mater Eng Perform, vol. 24, no. 8, pp. 3008–3017, 2015.
dc.relation.referencesB. Verlinden, J. Driver, I. Samajdar, and R. D. Doherty, “Thermo-Mechanical Processing of Steel,” in Thermo-mechanical processing of metallic materials, Amsterdam: The Netherlands: Elsevier, 2007, pp. 417–419.
dc.relation.referencesN. Gorain, M. G. Walunj, M. K. Soni, and B. R. Kumar, “Effect of continuous annealing process on various structure parameters of martensite of dual-phase steels,” Archives of Civil and Mechanical Engineering, vol. 20, no. 1, Mar. 2020.
dc.relation.referencesJ. Zhao and Z. Jiang, “Thermomechanical processing of advanced high strength steels,” Prog Mater Sci, vol. 94, pp. 174–242, 2018.
dc.relation.referencesE. Pereloma and D. Edmonds, “Fundamentals of ferrite formation in steels,” in Phase transformations in steel. Fundamentals and diffusion-controlled transformations, vol. 1, Cambridge: Woodhead Pub., 2012, pp. 187–224.
dc.relation.referencesS. Nikkhah, H. Mirzadeh, and M. Zamani, “Fine tuning the mechanical properties of dual phase steel via thermomechanical processing of cold rolling and intercritical annealing,” Mater Chem Phys, vol. 230, pp. 1–8, May 2019.
dc.relation.referencesH. Farivar, S. Richter, M. Hans, A. Schwedt, U. Prahl, and W. Bleck, “Experimental quantification of carbon gradients in martensite and its multi-scale effects in a DP steel,” Materials Science and Engineering A, vol. 718, no. January, pp. 250–259, 2018.
dc.relation.referencesY. Mazaheri, A. Kermanpur, A. Najafizadeh, and A. G. Kalashami, “Kinetics of Ferrite Recrystallization and Austenite Formation During Intercritical Annealing of the Cold-Rolled Ferrite/Martensite Duplex Structures,” Metall Mater Trans A Phys Metall Mater Sci, vol. 47, no. 3, pp. 1040–1051, Mar. 2016.
dc.relation.referencesD. Z. Yang, E. L. Brown, D. K. Matlock, and G. Krauss, “Ferrite Recrystallization and Austenite Formation in Cold-Rolled Intercritically Annealed Steel,” Metallurgical Transactions A, vol. 16, no. 8, pp. 1385–1392, 1985.
dc.relation.referencesH. K. Zeytin, C. Kubilay, and H. Aydin, “Investigation of dual phase transformation of commercial low alloy steels: Effect of holding time at low inter-critical annealing temperatures,” Mater Lett, vol. 62, no. 17–18, pp. 2651–2653, Jun. 2008.
dc.relation.referencesS. M. C. van Bohemen and J. Sietsma, “Martensite formation in partially and fully austenitic plain carbon steels,” Metall Mater Trans A Phys Metall Mater Sci, vol. 40, no. 5, pp. 1059–1068, 2009.
dc.relation.referencesE. Ahmad, T. Manzoor, K. L. Ali, and J. I. Akhter, “Effect of Microvoid Formation on the Tensile Properties of Dual-Phase Steel,” J Mater Eng Perform, vol. 9, no. 3, pp. 306–310, 2000.
dc.relation.referencesA. Govik, R. Rentmeester, and L. Nilsson, “A study of the unloading behaviour of dual phase steel,” Materials Science and Engineering: A, vol. 602, pp. 119–126, Apr. 2014.
dc.relation.referencesG. F. van der Voort, “Etching isothermally treated steels,” Heat Treating Progress, vol. 1, no. 2, pp. 25–32, 2001.
dc.relation.referencesD. Terada, G. Ikeda, M. H. Park, A. Shibata, and N. Tsuji, “Reason for high strength and good ductility in dual phase steels composed of soft ferrite and hard martensite,” IOP Conf Ser Mater Sci Eng, vol. 219, no. 1, p. 012008, Aug. 2017.
dc.relation.referencesH. R. Pakzaman and S. S. G. Banadkouki, “Effect of Ferrite and Martensite Hardening Variation on Mechanism of Void Formation in Low-Alloy Dual-Phase Steel,” Metallography, Microstructure, and Analysis, vol. 10, no. 5, pp. 610–626, Oct. 2021.
dc.relation.referencesB. Anbarlooie, J. Kadkhodapour, H. Hosseini Toudeshky, and S. Schmauder, “Micromechanics of Dual-Phase Steels: Deformation, Damage, and Fatigue,” in Handbook of Mechanics of Materials, Springer Singapore, 2018, pp. 1–30. doi: 10.1007/978-981-10-6855-3_70-1.
dc.relation.referencesN. Saeidi, F. Ashrafizadeh, B. Niroumand, and F. Barlat, “Evaluation of fracture micromechanisms in a fine-grained dual phase steel during uniaxial tensile deformation,” Steel Res Int, vol. 85, no. 9, pp. 1386–1392, 2014.
dc.relation.referencesG. Avramovic-Cingara, Ch. A. R. Saleh, M. K. Jain, and D. S. Wilkinson, “Void Nucleation and Growth in Dual-Phase Steel 600 during Uniaxial Tensile Testing,” Metallurgical and Materials Transactions A, vol. 40, no. 13, pp. 3117–3127, Dec. 2009.
dc.relation.referencesD. L. Steinbrunner, D. K. Matlock, and G. Krauss, “Void formation during tensile testing of dual phase steels,” Metallurgical Transactions A, vol. 19, no. 3, pp. 579–589, Mar. 1988.
dc.relation.referencesH. Ashrafi, M. Shamanian, R. Emadi, and E. Ghassemali, “Void Formation and Plastic Deformation Mechanism of a Cold-Rolled Dual-Phase Steel During Tension,” Acta Metallurgica Sinica (English Letters), vol. 33, no. 2, pp. 299–306, Feb. 2020.
dc.relation.referencesM. Jafari, S. Ziaei-Rad, N. Saeidi, and M. Jamshidian, “Micromechanical analysis of martensite distribution on strain localization in dual phase steels by scanning electron microscopy and crystal plasticity simulation,” Materials Science and Engineering A, vol. 670, pp. 57–67, Jul. 2016.
dc.relation.referencesE. E. Aşık, E. S. Perdahcıoğlu, and A. H. van den Boogaard, “Microscopic investigation of damage mechanisms and anisotropic evolution of damage in DP600,” Materials Science and Engineering A, vol. 739, pp. 348–356, Jan. 2019.
dc.relation.referencesC. Du, J. P. M. Hoefnagels, R. Vaes, and M. G. D. Geers, “Plasticity of lath martensite by sliding of substructure boundaries,” Scr Mater, vol. 120, pp. 37–40, Jul. 2016.
dc.relation.referencesY. Mazaheri, A. H. Jahanara, M. Sheikhi, and A. G. Kalashami, “High strength-elongation balance in ultrafine grained ferrite-martensite dual phase steels developed by thermomechanical processing,” Materials Science and Engineering A, vol. 761, Jul. 2019.
dc.relation.referencesM. Mazinani and W. J. Poole, “Effect of Martensite Plasticity on the Deformation Behavior of a Low-Carbon Dual-Phase Steel,” Metallurgical and Materials Transactions A, vol. 38, no. 2, pp. 328–339, Mar. 2007.
dc.relation.referencesC. F. Kusche et al., “Efficient characterization tools for deformation-induced damage at different scales,” Production Engineering, vol. 14, no. 1, pp. 95–104, Feb. 2020.
dc.relation.referencesK. Isik, G. Gerstein, T. Clausmeyer, F. Nürnberger, A. E. Tekkaya, and H. J. Maier, “Evaluation of Void Nucleation and Development during Plastic Deformation of Dual-Phase Steel DP600,” Steel Res Int, vol. 87, no. 12, pp. 1583–1591, Dec. 2016.
dc.relation.referencesH. Toda et al., “Damage micromechanisms in dual-phase steel investigated with combined phase- and absorption-contrast tomography,” Acta Mater, vol. 126, pp. 401–412, Mar. 2017.
dc.relation.referencesH. Toda et al., “Corrigendum to ‘Damage micromechanisms in dual-phase steel investigated with combined phase- and absorption-contrast tomography,’” Acta Mater, vol. 133, p. 441, 2017.
dc.relation.referencesJ. Lemaitre and J. Dufailly, “Damage measurements,” Eng Fract Mech, vol. 28, no. 5–6, pp. 643–661, 1987.
dc.relation.referencesP. Zhao, Y. Sun, J. Jiao, and G. Fang, “Correlation between acoustic emission detection and microstructural characterization for damage evolution,” Eng Fract Mech, vol. 230, May 2020.
dc.relation.referencesN. Bonora, A. Ruggiero, D. Gentile, and S. de Meo, “Practical Applicability and Limitations of the Elastic Modulus Degradation Technique for Damage Measurements in Ductile Metals,” Strain, vol. 47, no. 3, pp. 241–254, Jun. 2011.
dc.relation.referencesC. C. Tasan, J. P. M. Hoefnagels, and M. G. D. Geers, “A critical assessment of indentation-based ductile damage quantification,” Acta Mater, vol. 57, no. 17, pp. 4957–4966, 2009.
dc.relation.referencesC. C. Tasan, J. P. M. Hoefnagels, and M. G. D. Geers, “Indentation-based damage quantification revisited,” Scr Mater, vol. 63, no. 3, pp. 316–319, 2010.
dc.relation.referencesC. C. Tasan, J. P. M. Hoefnagels, and M. G. D. Geers, “Identification of the continuum damage parameter: An experimental challenge in modeling damage evolution,” Acta Mater, vol. 60, no. 8, pp. 3581–3589, 2012.
dc.relation.referencesM. Alves, J. Yu, and N. Jones, “On the elastic modulus degradation in continuum damage mechanics,” Comput. Struct., vol. 76, no. 6, pp. 703–712, 2000.
dc.relation.referencesL. Sun and R. H. Wagoner, “Complex unloading behavior: Nature of the deformation and its consistent constitutive representation,” Int J Plast, vol. 27, no. 7, pp. 1126–1144, 2011.
dc.relation.referencesS. P. Tsiloufas and R. L. Plaut, “Ductile Fracture Characterization for Medium Carbon Steel Using Continuum Damage Mechanics,” Materials Sciences and Applications, vol. 03, no. 11, pp. 745–755, Nov. 2012.
dc.relation.referencesK. Ichinose, K. Fukuda, K. Gomi, K. Taniuchi, and M. Sano, “Yield Strength in Relation to Cyclic Loading,” J Test Eval, vol. 29, no. 6, pp. 529–534, 2001.
dc.relation.referencesJ. Lemaitre, “A Continuous Damage Mechanics Model for Ductile Fracture,” J Eng Mater Technol, vol. 107, no. January 1985, pp. 83–89, 1985.
dc.relation.referencesW. Zhang and Y. Cai, “Basis of Isotropic Damage Mechanics,” in Continuum Damage Mechanics and Numerical Applications, Berlin, Heidelberg: Springer, 2010, pp. 59–134.
dc.relation.referencesM. Yang, Y. Akiyama, and T. Sasaki, “Evaluation of change in material properties due to plastic deformation,” J Mater Process Technol, vol. 151, no. 1–3, pp. 232–236, Sep. 2004.
dc.relation.referencesT. Altan and A. E. Tekkaya, “Forming of Advanced High-Strength Steels (AHSS),” in Sheet metal forming: Process and applications, Materials Park, Ohio: ASM International, 2012, pp. 108–132.
dc.relation.referencesY. X. Zhu, Y. L. Liu, H. Yang, and H. P. Li, “Development and application of the material constitutive model in springback prediction of cold-bending,” Mater Des, vol. 42, pp. 245–258, 2012.
dc.relation.referencesH. Kim, C. Kim, F. Barlat, E. Pavlina, and M. G. Lee, “Nonlinear elastic behaviors of low and high strength steels in unloading and reloading,” Materials Science and Engineering A, vol. 562, pp. 161–171, Feb. 2013.
dc.relation.referencesH. Ghadbeigi, C. Pinna, S. Celotto, and J. R. Yates, “Local plastic strain evolution in a high strength dual-phase steel,” Mater. Sci. Eng. A, vol. 527, no. 18–19, pp. 5026–5032, 2010, doi: 10.1016/j.msea.2010.04.052.
dc.relation.referencesM. Erdogan and S. Tekeli, “The effect of martensite particle size on tensile fracture of surface-carburised AISI 8620 steel with dual phase core microstructure,” Mater Des, vol. 23, no. 7, pp. 597–604, 2002.
dc.relation.referencesJ. Kadkhodapour, A. Butz, and S. Ziaei Rad, “Mechanisms of void formation during tensile testing in a commercial, dual-phase steel,” Acta Mater, vol. 59, no. 7, pp. 2575–2588, Apr. 2011.
dc.relation.referencesC. Landron, E. Maire, O. Bouaziz, J. Adrien, L. Lecarme, and A. Bareggi, “Validation of void growth models using X-ray microtomography characterization of damage in dual phase steels,” Acta Mater, vol. 59, no. 20, pp. 7564–7573, Dec. 2011.
dc.relation.referencesE. Plancher, K. Qu, N. H. Vonk, M. B. Gorji, T. Tancogne-Dejean, and C. C. Tasan, “Tracking Microstructure Evolution in Complex Biaxial Strain Paths: A Bulge Test Methodology for the Scanning Electron Microscope,” Exp Mech, vol. 60, no. 1, pp. 35–50, Jan. 2020.
dc.relation.referencesF. Abbassi, S. Mistou, and A. Zghal, “Failure analysis based on microvoid growth for sheet metal during uniaxial and biaxial tensile tests,” Mater Des, vol. 49, pp. 638–646, 2013, doi: 10.1016/j.matdes.2013.02.020.
dc.relation.referencesP. J. Zhao, Z. H. Chen, and C. F. Dong, “Experimental and numerical analysis of micromechanical damage for DP600 steel in fine-blanking process,” J Mater Process Technol, vol. 236, pp. 16–25, 2016, doi: 10.1016/j.jmatprotec.2016.05.002.
dc.relation.referencesJ. H. Kim, M. G. Lee, D. Kim, D. K. Matlock, and R. H. Wagoner, “Hole-expansion formability of dual-phase steels using representative volume element approach with boundary-smoothing technique,” Materials Science and Engineering A, vol. 527, no. 27–28, pp. 7353–7363, 2010.
dc.relation.referencesF. Hisker, R. Thiessen, and T. Heller, “Influence of microstructure on damage in Advanced High Strength Steels,” in Materials Science Forum, 2012, vol. 706–709, pp. 925–930.
dc.relation.referencesM. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe, “Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging,” Acta Mater, vol. 59, no. 2, pp. 658–670, Jan. 2011.
dc.relation.referencesE. Hug, M. Martinez, and J. Chottin, “Temperature and stress state influence on void evolution in a high-strength dual-phase steel,” Materials Science and Engineering A, vol. 626, pp. 286–295, 2015.
dc.relation.referencesN. Saeidi, F. Ashrafizadeh, B. Niroumand, M. R. Forouzan, and F. Barlat, “Damage mechanism and modeling of void nucleation process in a ferrite–martensite dual phase steel,” Eng Fract Mech, vol. 127, pp. 97–103, Sep. 2014.
dc.relation.referencesE. Maire, O. Bouaziz, M. di Michiel, and C. Verdu, “Initiation and growth of damage in a dual-phase steel observed by X-ray microtomography,” Acta Mater, vol. 56, no. 18, pp. 4954–4964, Oct. 2008.
dc.relation.referencesN. K. Balliger, “Advances in the physical metallurgy and applications of steels,” The Metals Society, pp. 73–83, 1982.
dc.relation.referencesN. Saeidi, F. Ashrafizadeh, B. Niroumand, M. R. Forouzan, S. Mohseni mofidi, and F. Barlat, “Examination and modeling of void growth kinetics in modern high strength dual phase steels during uniaxial tensile deformation,” Mater Chem Phys, vol. 172, pp. 54–61, Apr. 2016.
dc.relation.referencesE. Ahmad, T. Manzoor, M. M. A. Ziai, and N. Hussain, “Effect of martensite morphology on tensile deformation of dual-phase steel,” J Mater Eng Perform, vol. 21, no. 3, pp. 382–387, 2012.
dc.relation.referencesC. C. Tasan, J. P. M. Hoefnagels, and M. G. D. Geers, “Microstructural banding effects clarified through micrographic digital image correlation,” Scr Mater, vol. 62, no. 11, pp. 835–838, Jun. 2010.
dc.relation.referencesO. R. Jardim, W. P. Longo, and K. K. Chawla, “Fracture behavior of a tempered dual phase steel,” Metallography, vol. 17, no. 2, pp. 123–130, May 1984.
dc.relation.referencesS. Kim and S. Lee, “Effects of martensite morphology and volume fraction on quasi-static and dynamic deformation behavior of dual-phase steels,” Metallurgical and Materials Transactions A, vol. 31, no. 7, pp. 1753–1760, Jul. 2000.
dc.relation.referencesK. Perzyński, Ł. Madej, J. Wang, R. Kuziak, and P. D. Hodgson, “Numerical Investigation of Influence of the Martensite Volume Fraction on DP Steels Fracture Behavior on the Basis of Digital Material Representation Model,” Metallurgical and Materials Transactions A, vol. 45, no. 13, pp. 5852–5865, Oct. 2014.
dc.relation.referencesA. Saai, O. S. Hopperstad, Y. Granbom, and O.-G. Lademo, “Influence of Volume Fraction and Distribution of Martensite Phase on the Strain Localization in Dual Phase Steels,” Procedia Materials Science, vol. 3, pp. 900–905, 2014.
dc.relation.referencesT. L. Anderson, “Elastic–Plastic Fracture Mechanics,” in Fracture Mechanics: Fundamental and Applications, 4 ed., Boca Raton, FL: CRC Press/Taylor & Francis Group, 2017, pp. 109–180.
dc.relation.referencesH. Hernández and E. Espejo, “Mecánica de fractura,” in Mecánica de fractura y análisis de falla, Bogotá: Universidad Nacional de Colombia, 2002, pp. 14–62.
dc.relation.referencesX. K. Zhu and J. A. Joyce, “Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization,” Eng Fract Mech, vol. 85, pp. 1–46, 2012.
dc.relation.referencesJ. R. Rice, “A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks,” J Appl Mech, pp. 379–386, 1968.
dc.relation.referencesGonzález-Velázquez Jorge Luis, “Mecánica de fractura elastoplástica,” in Mecánica de fractura, 2nd ed., México: Limusa S. A., 2004, pp. 83–111.
dc.relation.referencesASTM-E1820, Standard Test Method for Measurement of Fracture Toughness. ASTM International, 2017.
dc.relation.referencesA. N. Tkach, N. M. Fonshteln, V. N. Simin’kovich, A. N. Bortsov, and Y. N. Lenets, “Fatigue crack growth in a dual-phase ferritic-martensitic steel,” Khimicheskaya Mekhanika Materialov, vol. 20, no. 5, pp. 448–453, 1985.
dc.relation.referencesW. Mosselman, “The influence of the martensite content on the fatigue crack growth rate in TRIP and Dual Phase steels,” Master of Science Thesis, Delft University of Technology, 2007.
dc.relation.referencesM. Mochizuki, M. Kohara, H. Shimanuki, Y. Hagiwara, and M. Toyoda, “Crack Initiation and Propagation in Ferrite/Martensite Dual-Phase Steel with Microscopic Heterogeneity by Fracture Toughness Tests,” Zairyo, vol. 52, no. 8, pp. 932–938, 2003.
dc.relation.referencesG. Lúcio de Faria, L. B. Godefroid, I. P. Nunes, and J. Carlos de Lacerda, “Effect of martensite volume fraction on the mechanical behavior of an UNS S41003 dual-phase stainless steel,” Materials Science and Engineering A, vol. 797, Oct. 2020.
dc.relation.referencesX. Qi et al., “Fracture toughness behavior of low-C medium-Mn high-strength steel with submicron-scale laminated microstructure of tempered martensite and reversed austenite,” J Mater Sci, vol. 54, no. 18, pp. 12095–12105, Sep. 2019.
dc.relation.referencesS. Suresh, “Fatigue crack growth in ductile solids,” in Fatigue of materials, Cambridge, New York: Cambridge University Press, 1998, pp. 331–382.
dc.relation.referencesPook L., “The Cracked Situation,” in Metal Fatigue: What It Is, Why It Matters, Dordrecht, The Netherlands: Springer, 2007, pp. 101–133.
dc.relation.referencesArana J. L. and González J. J., “Fatiga de Materiales. Aplicación de la Mecánica de Fractura,” in Mecánica de Fractura, Bilbao: Universidad del País Vasco, 2002, pp. 181–192.
dc.relation.referencesPerez N., “Fatigue Crack Growth,” in Fracture Mechanics, 2nd ed., AG Switzerland: Springer, 2017, pp. 327–361.
dc.relation.referencesM. Sarwar and R. Priestner, “Fatigue Crack Propagation Behavior in Dual-Phase Steel,” J Mater Eng Perform, vol. 8, no. 2, pp. 245–251, Apr. 1999.
dc.relation.referencesM. Sarwar, E. Ahmad, N. Hussain, B. Ahmad, and T. Manzoor, “Crack Path Morphology in Dual-Phase Steel,” J Mater Eng Perform, vol. 15, no. 3, pp. 352–354, Jun. 2006.
dc.relation.referencesV. B. Dutta, S. Suresh, and R. O. Ritchie, “Fatigue crack propagation in dual-phase steels: Effects of ferritic-martensitic microstructures on crack path morphology,” Metallurgical Transactions A, vol. 15, no. 6, pp. 1193–1207, Jun. 1984.
dc.relation.referencesI. Bartz, A. M. Bernshtein, and K. Dietrich, “Qualitative explanation of failure low-alloy steels,” 1987.
dc.relation.referencesS. Li, Y. Kang, and S. Kuang, “Effects of microstructure on fatigue crack growth behavior in cold-rolled dual phase steels,” Materials Science and Engineering: A, vol. 612, pp. 153–161, Aug. 2014.
dc.relation.referencesK. Sudhakar and E. Dwarakadasa, “A study on fatigue crack growth in dual phase martensitic steel in air environment,” Bulletin of Materials Science, vol. 23, no. 3, pp. 193–199, 2000.
dc.relation.referencesA. Bag, K. K. Ray, and E. S. Dwarakadasa, “Influence of martensite content and morphology on tensile and impact properties of high-martensite dual-phase steels,” Metallurgical and Materials Transactions A, vol. 30, no. 5, pp. 1193–1202, 1999.
dc.relation.referencesD. Avendaño-Rodríguez, J. D. Granados, E. Espejo-Mora, L. Mujica-Roncery, and R. Rodríguez-Baracaldo, “Fracture mechanisms in dual-phase steel: Influence of martensite volume fraction and ferrite grain size,” Journal of Engineering Science and Technology Review, vol. 11, no. 6, pp. 174–181, 2018.
dc.relation.referencesA. Bag, K. K. Ray, and E. S. Dwarakadasa, “Influence of Martensite Content and Morphology on the Toughness and Fatigue Behavior of High-Martensite Dual-Phase Steels,” Metallurgical and Materials Transactions A, vol. 32, no. 9, pp. 2207–2217, 2001.
dc.relation.referencesS. Kumar and W. A. Curtin, “Crack interaction with microstructure,” Materials Today, vol. 10, no. 9, pp. 34–44, 2007.
dc.relation.referencesJ. Shi and M. A. Zikry, “Grain-boundary interactions and orientation effects on crack behavior in polycrystalline aggregates,” Int J Solids Struct, vol. 46, no. 21, pp. 3914–3925, 2009.
dc.relation.referencesJ. Schijve, “Fatigue as a Phenomenon in the Material,” in Fatigue of structures and materials, Dordrecht, Netherlands: Springer, 2009, pp. 13–59.
dc.relation.referencesLothar Engel and Hermann Klingele, “Mechanical fracture,” in An atlas of metal damage: Surface examination by scanning electron microscope, Holland: Wolfe Science, 1981, pp. 84–97.
dc.relation.referencesD. Montgomery, “Experiments with a single factor: the analysis of variance,” in Design and analysis of experiments, 10th ed., Hoboken (New Jersey): Wiley, 2021, pp. 55–114.
dc.relation.referencesASTM-E8/E8M − 16aϵ1, Standard Test Methods for Tension Testing of Metallic Materials. ASTM International, 2016.
dc.relation.referencesASTM-E466, Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials. ASTM International, 2015.
dc.relation.referencesASTM-E647, Standard Test Method for Measurement of Fatigue Crack Growth Rates. ASTM International, 2015.
dc.relation.referencesY. Lu, H. Yu, X. Cai, Y. Rong, and R. D. Sisson, “Martensite lattice parameter measured by modern X-ray diffraction in Fe-C alloy,” in 23rd International Federation of Heat Treatment and Surface Engineering Congress, IFHTSE 2016, 2016, no. April.
dc.relation.referencesJuan José Murillo-Barraza, Diego Fernando Avendaño-Rodríguez, and William Alfonso Suárez-Ortiz, “Identificación automática de fases de la microestructura de aceros de fase dual a partir del procesamiento digital de imágenes,” Trabajo de grado, Fundación Universidad de América, Bogotá D.C., 2020. Accessed: May 05, 2022. [Online]. Available: https://hdl.handle.net/20.500.11839/8217
dc.relation.referencesASTM-E112, Standard Test Methods for Determining Average Grain Size. ASTM International, 2013. doi: 10.1520/E0112-13.
dc.relation.referencesASTM-E1382, Standard Test Methods for Determining Average Grain Size Using Semiautomatic and Automatic Image Analysis. ASTM International, 2015.
dc.relation.referencesW. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J Mater Res, vol. 7, no. 06, pp. 1564–1583, 1992.
dc.relation.referencesW. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,” J Mater Res, vol. 19, no. 01, pp. 3–20, 2004, doi: 10.1557/jmr.2004.19.1.3.
dc.relation.referencesK. K. Alaneme, “Fracture Toughness (K1C) evaluation for dual phase medium carbon low alloy steels using circumferential notched tensile (CNT) specimens,” Materials Research, vol. 14, no. 2, pp. 155–160, 2011.
dc.relation.referencesE. Lucon, “Spreadsheet-Based Software for the Analysis of Unloading Compliance Fracture Toughness Tests in Accordance with ASTM E1820,” 2022.
dc.relation.referencesDavid Parks and Lallit Anand, “Fracture Toughness Testing and Residual Load-Carrying Capacity of a Structure,” 2004.
dc.relation.referencesL. M. Plaza, “Manual of Codes of Practice for the Determination of Uncertainties in Mechanical Tests on Metallic Materials The Determination of Uncertainties in Plane Strain Fracture Toughness (KIC ) Testing,” 2000.
dc.relation.referencesJ. A. Ávila, V. Lima, C. O. F. T. Ruchert, P. R. Mei, and A. J. Ramirez, “Guide for recommended practices to perform crack tip opening displacement tests in high strength low alloy steels,” Soldagem e Inspecao, vol. 21, no. 3, pp. 290–302, Jul. 2016.
dc.relation.referencesM. R. Spiegel, R. A. Srinivasan, and J. J. Schiller, “Analysis of Variance,” in Schaum’s outline of probability and statistics, 4 ed., New York: McGraw-Hill - Schaum, 2013, pp. 314–347.
dc.relation.referencesS. S. Shapiro and M. B. Wilk, “An Analysis of Variance Test for Normality (Complete Samples),” Biometrika, vol. 52, no. 3, pp. 591–611, 1965.
dc.relation.referencesBartlett M. S., “Properties of Sufficiency and Statistical Tests,” Proc R Soc Lond A Math Phys Sci, vol. 160, no. 901, pp. 268–282, 1937.
dc.relation.referencesG. W. Snedecor and W. G. Cochran, “Analysis of Variance: The Random Effects Model,” in Statistical methods, 8th ed., Ames, Iowa: Iowa State Univ. Press., 1989, pp. 251–253.
dc.relation.referencesK. K. Yuen, “The two-sample trimmed t for unequal population variances,” Biometrika, vol. 61, no. 1, pp. 165–170, 1974.
dc.relation.referencesRand R. Wilcox, “Comparing Two Groups,” in Introduction to robust estimation and hypothesis testing, 4th ed., London, United Kingdom: Academic Press, 2022, pp. 166–187.
dc.relation.referencesH. J. Keselman, A. R. Othman, R. R. Wilcox, and K. Fradette, “The New and Improved Two-Sample t Test,” Psychol Sci, vol. 15, no. 1, pp. 47–51, 2004.
dc.relation.referencesASTM-E1245, Standard Practice for Determining the Inclusion or Second-Phase Constituent Content of Metals by Automatic Image Analysis. ASTM International, 2003.
dc.relation.referencesT. K. Roy, B. Bhattacharya, C. Ghosh, and S. K. Ajmani, “Microstructure Engineering of High-Performance Steels,” in Advanced High Strength Steel: Processing and Applications, 1 ed., Singapore: Springer Nature, 2018, pp. 11–19.
dc.relation.referencesH. Ashrafi, M. Shamanian, R. Emadi, and N. Saeidi, “Correlation of Tensile Properties and Strain Hardening Behavior with Martensite Volume Fraction in Dual-Phase Steels,” Transactions of the Indian Institute of Metals, vol. 70, no. 6, pp. 1575–1584, Aug. 2017.
dc.relation.referencesY. Mazaheri, A. Kermanpur, and A. Najafizadeh, “Nanoindentation study of ferrite-martensite dual phase steels developed by a new thermomechanical processing,” Materials Science and Engineering A, vol. 639, pp. 8–14, 2015.
dc.relation.referencesASTM-E646, Standard Test Method for Tensile Strain-Hardening Exponents (n-Values) of Metallic Sheet Materials. ASTM International, 2016.
dc.relation.referencesW. G. Johnston and J. J. Gilman, “Dislocation velocities, dislocation densities, and plastic flow in lithium fluoride crystals,” J Appl Phys, vol. 30, no. 2, pp. 129–144, 1959.
dc.relation.referencesL. Y. Wang et al., “Strain hardening behaviour of as-quenched and tempered martensite,” Acta Mater, vol. 199, pp. 613–632, Oct. 2020.
dc.relation.referencesD. Das and P. P. Chattopadhyay, “Influence of martensite morphology on the work-hardening behavior of high strength ferrite-martensite dual-phase steel,” J Mater Sci, vol. 44, no. 11, pp. 2957–2965, Jun. 2009.
dc.relation.referencesH. Seyedrezai, A. K. Pilkey, and J. D. Boyd, “Effect of pre-IC annealing treatments on the final microstructure and work hardening behavior of a dual-phase steel,” Materials Science and Engineering A, vol. 594, pp. 178–188, Jan. 2014.
dc.relation.referencesH. Seyedrezai, “Thermo-Mechanical Processing of Dual-Phase Steels and Its Effects on the Work Hardening Behaviour,” Queen’s University Kingston, 2014. [Online]. Available: http://hdl.handle.net/1974/12677
dc.relation.referencesX. Xue, J. Liao, G. Vincze, A. B. Pereira, and F. Barlat, “Experimental assessment of nonlinear elastic behaviour of dual-phase steels and application to springback prediction,” Int J Mech Sci, vol. 117, pp. 1–15, 2016.
dc.relation.referencesS. F. Lajarin, C. P. Nikhare, and P. V. P. Marcondes, “Dependence of plastic strain and microstructure on elastic modulus reduction in advanced high-strength steels,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 40, no. 2, Feb. 2018.
dc.relation.referencesJ. Samei, L. Zhou, J. Kang, and D. S. Wilkinson, “Microstructural analysis of ductility and fracture in fine-grained and ultrafine-grained vanadium-added DP1300 steels,” Int J Plast, vol. 117, pp. 58–70, Jun. 2019.
dc.relation.referencesM. Delincé, P. J. Jacques, and T. Pardoen, “Separation of size-dependent strengthening contributions in fine-grained Dual Phase steels by nanoindentation,” Acta Mater, vol. 54, no. 12, pp. 3395–3404, 2006.
dc.relation.referencesM. D. Taylor et al., “Correlations between nanoindentation hardness and macroscopic mechanical properties in DP980 steels,” Materials Science and Engineering A, vol. 597, pp. 431–439, 2014.
dc.relation.referencesA. H. Jahanara, Y. Mazaheri, and M. Sheikhi, “Correlation of ferrite and martensite micromechanical behavior with mechanical properties of ultrafine grained dual phase steels,” Materials Science and Engineering A, vol. 764, Sep. 2019.
dc.relation.referencesR. M. Rahimi and D. F. Bahr, “Individual phase deformation and flow correlation to macroscopic constitutive properties of DP1180 steel,” Materials Science and Engineering A, vol. 756, pp. 328–335, May 2019.
dc.relation.referencesF. Zhang, A. Ruimi, and D. P. Field, “Phase Identification of Dual-Phase (DP980) Steels by Electron Backscatter Diffraction and Nanoindentation Techniques,” Microscopy and Microanalysis, vol. 22, no. 1, pp. 99–107, 2016.
dc.relation.referencesK. Ismail, A. Perlade, P. J. Jacques, T. Pardoen, and L. Brassart, “Impact of second phase morphology and orientation on the plastic behavior of dual-phase steels,” Int J Plast, vol. 118, pp. 130–146, 2019.
dc.relation.referencesK. Ismail, A. Perlade, P. J. Jacques, and T. Pardoen, “Outstanding cracking resistance of fibrous dual phase steels,” Acta Mater, vol. 207, Apr. 2021.
dc.relation.referencesA. Laureys, T. Depover, R. Petrov, and K. Verbeken, “Microstructural characterization of hydrogen induced cracking in TRIP-assisted steel by EBSD,” Mater Charact, vol. 112, pp. 169–179, 2016.
dc.relation.referencesS. Li, C. Guo, L. Hao, Y. Kang, and Y. An, “In-situ EBSD study of deformation behaviour of 600 MPa grade dual phase steel during uniaxial tensile tests,” Materials Science and Engineering A, vol. 759, pp. 624–632, Jun. 2019.
dc.relation.referencesB. Jeong, R. Gauvin, and S. Yue, “EBSD Study of Martensite in a Dual Phase Steel,” Microscopy and Microanalysis, vol. 8, no. S02, pp. 700–701, 2002.
dc.relation.referencesP. T. Pinard, A. Schwedt, A. Ramazani, U. Prahl, and S. Richter, “Characterization of dual-phase steel microstructure by combined submicrometer EBSD and EPMA carbon measurements,” Microscopy and Microanalysis, vol. 19, no. 4, pp. 996–1006, 2013.
dc.relation.referencesJ. Y. Kang, S. J. Park, and M. B. Moon, “Phase analysis on dual-phase steel using band slope of electron backscatter diffraction pattern.,” Microsc Microanal, vol. 19 Suppl 5, pp. 13–6, 2013.
dc.relation.referencesB. Y. Jeong, M. Ryou, C. Lee, and M. H. Kim, “A Study on the Surface Characteristics of Dual Phase Steel by Electron Backscatter Diffraction (EBSD) Technique,” Transactions on Electrical and Electronic Materials, vol. 15, no. 1, pp. 20–23, 2014.
dc.relation.referencesS. Dillien, M. Seefeldt, S. Allain, O. Bouaziz, and P. van Houtte, “EBSD study of the substructure development with cold deformation of dual phase steel,” Materials Science and Engineering: A, vol. 527, no. 4–5, pp. 947–953, Feb. 2010.
dc.relation.referencesN. Saeidi, F. Ashrafizadeh, B. Niroumand, and F. Barlat, “EBSD Study of Damage Mechanisms in a High-Strength Ferrite-Martensite Dual-Phase Steel,” J Mater Eng Perform, vol. 24, no. 1, pp. 53–58, Oct. 2014.
dc.relation.referencesJ. Moerman, P. R. Triguero, C. Tasan, and P. van Liempt, “Evaluation of Geometrically Necessary Dislocations Density (GNDD) near Phase Boundaries in Dual Phase Steels by Means of EBSD,” Materials Science Forum, vol. 702–703, pp. 485–488, 2011.
dc.relation.referencesS. Ogata, T. Mayama, Y. Mine, and K. Takashima, “Effect of microstructural evolution on deformation behaviour of pre-strained dual-phase steel,” Materials Science and Engineering A, vol. 689, no. February, pp. 353–365, 2017.
dc.relation.referencesN. Saeidi, F. Ashrafizadeh, B. Niroumand, and F. Barlat, “EBSD study of micromechanisms involved in high deformation ability of DP steels,” Mater Des, vol. 87, pp. 130–137, Dec. 2015.
dc.relation.referencesA. Ramazani, M. Spähn, a. Schwedt, and a. Aretz, “Characterization of failure initiation in DP600 steel by combined in-situ bending test and EBSD measurements,” in Emc2012, 2012, vol. 52, pp. 1–2.
dc.relation.referencesA. S. Keh, “Work hardening and deformation sub-structure in iron single crystals deformed in tension at 298°k,” Philosophical Magazine, vol. 12, no. 115, pp. 9–30, 1965, doi: 10.1080/14786436508224942.
dc.relation.referencesM. Calcagnotto, D. Ponge, E. Demir, and D. Raabe, “Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD,” Materials Science and Engineering A, vol. 527, no. 10–11, pp. 2738–2746, 2010.
dc.relation.referencesC. Pérez-Velásquez, D. Avendaño-Rodríguez, C. Narvaez-Tovar, L. M. Roncery, and R. Rodriguez-Baracaldo, “Fatigue Crack Growth and Fracture Toughness in a Dual Phase Steel: Effect of Increasing Martensite Volume Fraction,” International Journal of Automotive and Mechanical Engineering, vol. 17, no. 3, pp. 8086–8095, 2020.
dc.relation.referencesJ. K. Shang, J. L. Tzou, and R. O. Ritchie, “Role of Crack Tip Shielding in the Initiation and Growth of Long and Small Fatigue Cracks in Composite Microstructures,” Metallurgical Transactions A, vol. 18, no. 9, pp. 1613–1627, 1987.
dc.relation.referencesJ. Wasén and B. Karlsson, “Influence of prestrain and ageing on near-threshold fatigue crack growth in fine-grained dual-phase steels,” Int J Fatigue, vol. 11, no. 6, pp. 395–405, 1989.
dc.relation.referencesJ. L. Tzou and R. O. Ritchie, “Fatigue crack propagation in a dual-phase plain-carbon steel,” Scripta Metallurgica, vol. 19, no. 6, pp. 751–755, 1985.
dc.relation.referencesL. Sun, S. Li, Q. Zang, and Z. Wang, “Dependence of fatigue crack closure behavior on volume fraction of martensite in dual-phase steels,” Scripta Metallurgica et Materialia, vol. 32, no. 4, pp. 517–521, 1995.
dc.relation.referencesÉdgar Espejo Mora and Héctor Hernández Albañil, “Fallas por fractura y fractografía,” in Análisis de fallas de estructuras y elementos mecánicos, Bogotá D.C.: Universidad Nacional de Colombia, 2017, pp. 101–168.
dc.relation.referencesS. Li, Y. Kang, G. Zhu, and S. Kuang, “Microstructure and fatigue crack growth behavior in tungsten inert gas welded DP780 dual-phase steel,” Mater Des, vol. 85, pp. 180–189, Nov. 2015.
dc.relation.referencesĽ. Ambriško and L. Pešek, “The crack growth resistance of thin steel sheets under eccentric tension,” Sādhanā, vol. 43, no. 2, pp. 1–8, 2018.
dc.relation.referencesN. Yurioka, “Weldability of modern high strength steels,” in First United States--Japan Symposium on Advances in Welding Metallurgy, 1990, vol. 6, pp. 79–100.
dc.relation.referencesN. Yurioka, “Comparison of preheat predictive methods,” Welding in the World, vol. 48, no. 1, pp. 21–27, 2004.
dc.relation.referencesI. A. Soomro, S. R. Pedapati, and M. Awang, “Optimization of postweld tempering pulse parameters for maximum load bearing and failure energy absorption in dual phase (DP590) steel resistance spot welds,” Materials Science and Engineering A, vol. 803, Jan. 2021.
dc.relation.referencesC. Tian and C. Kirchlechner, “The fracture toughness of martensite islands in dual-phase DP800 steel,” J Mater Res, vol. 36, no. 12, pp. 2495–2504, Jun. 2021.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembSteel - specifications
dc.subject.lembACERO-ESPECIFICACIONES
dc.subject.lembTRATAMIENTO TERMICO DEL ACERO
dc.subject.lembSteel - Heat treatment
dc.subject.proposalAceros de fase dual
dc.subject.proposalEvolución de daño
dc.subject.proposalMecanismos de fractura
dc.subject.proposalVolumen en fracción de martensita
dc.subject.proposalPropagación de grietas
dc.subject.proposalEnergía de fractura
dc.subject.proposalDual-phase steels
dc.subject.proposalDamage evolution
dc.subject.proposalFracture mechanisms
dc.subject.proposalMartensite volume fraction
dc.subject.proposalCrack growth
dc.subject.proposalFracture energy
dc.title.translatedEffect of microstructure on deformation and fracture of dual phase steels
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dc.contributor.orcidAvendaño Rodríguez, Diego Fernando [0000000343656635]
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001611741&lang=es
dc.contributor.researchgatehttps://www.researchgate.net/profile/Diego-Avendano-Rodriguez
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=BvF7X2AAAAAJ&hl=es


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito