Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorGómez López, Eyder Daniel
dc.contributor.authorVelásquez Ortiz, David
dc.date.accessioned2023-02-09T20:27:49Z
dc.date.available2023-02-09T20:27:49Z
dc.date.issued2022-08-02
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83406
dc.descriptionIlustraciones, tablas, fotografías
dc.description.abstractEl maíz es una fuente importante en la alimentación humana y animal, y en la producción de materias primas industriales. Sin embargo, el rendimiento y la calidad del cultivo se ven gravemente reducidos debido a diversas enfermedades ocasionadas por hongos de los géneros Fusarium, Aspergillus y Penicillium, que son la principal fuente de contaminación de este cereal antes y después de la cosecha, pero su importancia radica por la capacidad que tienen en producir diversas micotoxinas que generan una serie de cambios bioquímicos, fisiológicos y patológicos en humanos y animales. El objetivo de esta investigación fue caracterizar morfológica y molecularmente los hongos toxigénicos asociados a la mazorca de maíz en cultivos del Valle del Cauca. Se realizaron visitas a 25 localidades productoras de maíz, colectando mazorcas secas y asintomáticas. Se obtuvieron 50 aislamientos, siendo el más frecuente Fusarium (42%), seguido de Talaromyces (28%), Penicillium (18%) y Aspergillus (12%). La identificación de los aislamientos se realizó mediante claves taxonómicas y a la amplificación de la región ITS, TEF-1α y β-tubulina, obteniendo un porcentaje de identidad y cobertura entre 99-100%, logrando la identificación de especies de importancia económica causantes de varias enfermedades en el cultivo de maíz y con la capacidad de producir importantes micotoxinas, como lo son F. verticillioides, F. graminearum, F. proliferatum y A. niger. Además, se da conocer el primer reporte en Colombia y en el Valle del Cauca de 9 especies asociadas a la mazorca de maíz como F. sororula, A. sydowii, A. tamarii, A. wentii, P. citrinum, T. funiculosus, T. sayulitensis, T. stollii y T. wortmannii. La detección de las micotoxinas se realizó mediante la amplificación por PCR de las regiones AflS, TRI5, FUM y PKS13 implicadas en la biosíntesis de aflatoxinas (AFL), deoxinivalenol (DON), fumonisinas (FUM) y zearalenona (ZEA), y la cuantificación se realizó mediante el análisis cuantitativo ELISA utilizando kits Veratox de Neogen. Los resultados revelaron que, de los 50 aislamientos, 24 amplificaron por PCR a la detección de AFL, DON, FUM y ZEA, los cuales presentaron altas concentraciones, especialmente de fumonisinas, superando los niveles máximos establecidos por la FDA de los EE. UU, la Comisión Europea de la Unión Europea y del Ministerio de Salud y Protección Social de Colombia. Así mismo, se da a conocer el primer reporte a nivel mundial de la presencia y producción de DON y ZEA por la especie F. sororula y de AFL por A. sydowii en el maíz. La identificación y caracterización de estos hongos toxigénicos y la evaluación oportuna de las micotoxinas permiten el desarrollo y fortalecimiento de las diferentes estrategias de prevención, control y vigilancia de estos contaminantes que garantizan la calidad e inocuidad del maíz y los productos derivados destinados al consumo humano y animal. (Texto tomado de la fuente)
dc.description.abstractMaize (Zea mays L.) is an important source for human and animal nutrition, and for the production of industrial raw materials. However, the yield and quality of the crop are significantly reduced due to several diseases caused by fungi of the genera Fusarium, Aspergillus and Penicillium, which are the main source of contamination of this cereal before and after harvest, but its importance is based on their capacity to produce several mycotoxins that generate a series of biochemical, physiological and pathological changes in humans and animals. The objective of this investigation was to characterize morphologically and molecularly toxigenic fungi associated with corn cobs in crops of Valle del Cauca. Visits were made to 25 maize-producing localities, collecting dry and asymptomatic cobs. Fifty isolates were obtained, the most frequent being Fusarium (42%), followed by Talaromyces (28%), Penicillium (18%) and Aspergillus (12%). Isolates were identified by taxonomic keys and amplification of the ITS region, TEF-1α and β-tubulin, obtaining a percentage of identity and coverage between 99-100%, achieving the identification of species of economic importance that cause several diseases in the corn crop and with the capacity to produce important mycotoxins, such as F. verticillioides, F. graminearum, F. proliferatum and A. niger. In addition, this is the first report in Colombia and in Valle del Cauca of 9 species associated with corn cob such as F. sororula, A. sydowii, A. tamarii, A. wentii, P. citrinum, T. funiculosus, T. sayulitensis, T. stollii and T. wortmannii. Mycotoxin detection was performed by PCR amplification of AflS, TRI5, FUM and PKS13 regions involved in the biosynthesis of aflatoxins (AFL), deoxynivalenol (DON), fumonisins (FUM) and zearalenone (ZEA), and quantification was performed by quantitative ELISA analysis using Neogen's Veratox kits for each mycotoxin. The results revealed that, of the 50 isolates, 24 amplified by PCR for the detection of AFL, DON, FUM and ZEA, which presented high concentrations, especially of fumonisins, exceeding the maximum levels established by the FDA of the USA, the European Commission of the European Union and the Ministry of Health and Social Protection of Colombia. Also, the first worldwide report on the presence and production of DON and ZEA by the species F. sororula and AFL by A. sydowii in maize is presented. The identification and characterization of these toxigenic fungi and the opportune evaluation of mycotoxins allow the development and strengthening of different strategies for the prevention, control and monitoring of these contaminants that guarantee the quality and safety of corn and derived products destined for human and animal consumption.
dc.format.extentxx, 133 páginas + anexos
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales
dc.titleCaracterización morfológica y molecular de hongos toxigénicos asociados a la mazorca de maíz en el Valle del Cauca, Colombia
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programPalmira - Ciencias Agropecuarias - Maestría en Ciencias Agrarias
dc.contributor.researchgroupProtección Vegetal Para El Mejoramiento de la Productividad
dc.coverage.regionValle del Cauca, Colombia
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias Agrarias
dc.description.methodsEl objetivo de esta investigación fue caracterizar morfológica y molecularmente los hongos toxigénicos asociados a la mazorca de maíz en cultivos del Valle del Cauca. Se realizaron visitas a 25 localidades productoras de maíz, colectando mazorcas secas y asintomáticas. Se obtuvieron 50 aislamientos, siendo el más frecuente Fusarium (42%), seguido de Talaromyces (28%), Penicillium (18%) y Aspergillus (12%). La identificación de los aislamientos se realizó mediante claves taxonómicas y a la amplificación de la región ITS, TEF-1α y β-tubulina, obteniendo un porcentaje de identidad y cobertura entre 99-100%, logrando la identificación de especies de importancia económica causantes de varias enfermedades en el cultivo de maíz y con la capacidad de producir importantes micotoxinas, como lo son F. verticillioides, F. graminearum, F. proliferatum y A. niger. Además, se da conocer el primer reporte en Colombia y en el Valle del Cauca de 9 especies asociadas a la mazorca de maíz como F. sororula, A. sydowii, A. tamarii, A. wentii, P. citrinum, T. funiculosus, T. sayulitensis, T. stollii y T. wortmannii. La detección de las micotoxinas se realizó mediante la amplificación por PCR de las regiones AflS, TRI5, FUM y PKS13 implicadas en la biosíntesis de aflatoxinas (AFL), deoxinivalenol (DON), fumonisinas (FUM) y zearalenona (ZEA), y la cuantificación se realizó mediante el análisis cuantitativo ELISA utilizando kits Veratox de Neogen
dc.description.researchareaProtección de Cultivos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias Agropecuarias
dc.publisher.placePalmira, Valle del Cauca, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmira
dc.relation.referencesAchimón, F., Krapacher, C. R., Jacquat, A. G., Pizzolitto, R. P., & Zygadlo, J. A. (2021). Carbon sources to enhance the biosynthesis of useful secondary metabolites in Fusarium verticillioides submerged cultures. World journal of microbiology & biotechnology, 37(5), 78. https://doi.org/10.1007/s11274-021-03044-z
dc.relation.referencesAcuña, C. A. (2003). Determinación y evaluación de aislamientos de hongos micotoxigénicos presentes en materias primas utilizadas en nutrición animal en Colombia [Tesis de Maestría, Universidad de los Andes]. Repositorio Institucional Séneca. https://repositorio.uniandes.edu.co/handle/1992/9410
dc.relation.referencesAcuña, C., Díaz, G. y Espitia, M. (2005). Aflatoxinas en maíz: reporte de caso en la costa atlántica colombiana. Revista de la Facultad de Medicina Veterinaria y de Zootecnia, 52 (II), 156-162.
dc.relation.referencesAdunphatcharaphon, S., Elliott, C. T., Sooksimuang, T., Charlermroj, R., Petchkongkaew, A., & Karoonuthaisiri, N. (2022). The evolution of multiplex detection of mycotoxins using immunoassay platform technologies. In Journal of Hazardous Materials (Vol. 432, p. 128706). Elsevier BV. https://doi.org/10.1016/j.jhazmat.2022.128706
dc.relation.referencesAlkhayyat, F., & Yu, J. H. (2014). Upstream regulation of mycotoxin biosynthesis. Advances in applied microbiology, 86, 251–278. https://doi.org/10.1016/B978-0-12-800262-9.00005-6
dc.relation.referencesAntipova, T. V., Zhelifonova, V. P., Kochkina, G. A., & Kozlovskii, A. G. (2008). Growth and biosynthesis of rugulovasines in Penicillium variabile sopp 1912. In Microbiology (Vol. 77, Issue 4, pp. 446–450). Pleiades Publishing Ltd. https://doi.org/10.1134/s0026261708040103
dc.relation.referencesAoki, T., O’Donnell, K., & Geiser, D. M. (2014). Systematics of key phytopathogenic Fusarium species: current status and future challenges. In Journal of General Plant Pathology (Vol. 80, Issue 3, pp. 189–201). Springer Science and Business Media LLC. https://doi.org/10.1007/s10327-014-0509-3
dc.relation.referencesArroyo, N. (2013). Micotoxinas: aproximaciones analíticas y metabolómicas. [Tesis Doctoral. Universidad de Granada]. Repositorio Digibug. https://digibug.ugr.es/handle/10481/30842
dc.relation.referencesAwuchi, C. G., Ondari, E. N., Nwozo, S., Odongo, G. A., Eseoghene, I. J., Twinomuhwezi, H., Ogbonna, C. U., Upadhyay, A. K., Adeleye, A. O., & Okpala, C. O. R. (2022). Mycotoxins' Toxicological Mechanisms Involving Humans, Livestock and Their Associated Health Concerns: A Review. Toxins, 14(3), 167. https://doi.org/10.3390/toxins14030167
dc.relation.referencesBahadur, A. (2021). Current Status of Fusarium and Their Management Strategies. In Fusarium - An Overview of the Genus. IntechOpen. https://doi.org/10.5772/intechopen.100608
dc.relation.referencesBakker, M. G., Brown, D. W., Kelly, A. C., Kim, H.-S., Kurtzman, C. P., Mccormick, S. P., O’Donnell, K. L., Proctor, R. H., Vaughan, M. M., & Ward, T. J. (2018). Fusarium mycotoxins: a trans-disciplinary overview. In Canadian Journal of Plant Pathology (Vol. 40, Issue 2, pp. 161–171). Informa UK Limited. https://doi.org/10.1080/07060661.2018.1433720
dc.relation.referencesBara, R., Aly, A. H., Wray, V., Lin, W., Proksch, P., & Debbab, A. (2013). Talaromins A and B, new cyclic peptides from the endophytic fungus Talaromyces wortmannii. In Tetrahedron Letters (Vol. 54, Issue 13, pp. 1686–1689). Elsevier BV. https://doi.org/10.1016/j.tetlet.2013.01.064
dc.relation.referencesBenítez, S., Bentley, J., Bustamante, P., Sánchez, LC, & Corrales, L. (2007). Aislamiento de los microorganismos cultivables de la rizosfera de Ornithogalum umbellatum y evaluación del posible efecto biocontrolador en dos patógenos del suelo. En Nova (Vol. 5, Número 8, p. 147). Universidad Nacional Abierta ya Distancia. https://doi.org/10.22490/24629448.383
dc.relation.referencesBenjamin, C. R. (1955). Ascocarps of Aspergillus and Penicillium. In Mycologia (Vol. 47, Issue 5, pp. 669–687). Informa UK Limited. https://doi.org/10.1080/00275514.1955.12024485
dc.relation.referencesBennett, J. W., & Klich, M. (2003). Mycotoxins. In Clinical Microbiology Reviews (Vol. 16, Issue 3, pp. 497–516). American Society for Microbiology. https://doi.org/10.1128/cmr.16.3.497-516.2003
dc.relation.referencesBerka, R. M., Dunn-Coleman, N., & Ward, M. (1992). Industrial enzymes from Aspergillus species. Biotechnology (Reading, Mass.), 23, 155–202.
dc.relation.referencesBernáldez, V., Córdoba, J. J., Delgado, J., Bermúdez, E., & Rodríguez, A. (2018). Gene expression analysis to predict aflatoxins B1 and G1 contamination in some plant origin foods. In LWT (Vol. 93, pp. 517–524). Elsevier BV. https://doi.org/10.1016/j.lwt.2018.03.068
dc.relation.referencesBhupendra, K., & Yogendra, S. (2018). Mycotoxins in Foods: Mycotoxicoses, Detection, and Management. In Microbial Contamination and Food Degradation (pp. 395–421). Elsevier. https://doi.org/10.1016/b978-0-12-811515-2.00013-5
dc.relation.referencesBiango-Daniels, M. N., & Hodge, K. T. (2018). Sea salts as a potential source of food spoilage fungi. In Food Microbiology (Vol. 69, pp. 89–95). Elsevier BV. https://doi.org/10.1016/j.fm.2017.07.020
dc.relation.referencesBluhm, B. H., Flaherty, J. E., Cousin, M. A., & Woloshuk, C. P. (2002). Multiplex Polymerase Chain Reaction Assay for the Differential Detection of Trichothecene- and Fumonisin-Producing Species of Fusarium in Cornmeal. In Journal of Food Protection (Vol. 65, Issue 12, pp. 1955–1961). Elsevier BV. https://doi.org/10.4315/0362-028x-65.12.1955
dc.relation.referencesBrodhun, F., & Feussner, I. (2011). Oxylipins in fungi. The FEBS journal, 278(7), 1047–1063. https://doi.org/10.1111/j.1742-4658.2011.08027.x
dc.relation.referencesBrown, D. W., McCormick, S. P., Alexander, N. J., Proctor, R. H., & Desjardins, A. E. (2001). A genetic and biochemical approach to study trichothecene diversity in Fusarium sporotrichioides and Fusarium graminearum. Fungal genetics and biology: FG & B, 32(2), 121–133. https://doi.org/10.1006/fgbi.2001.1256
dc.relation.referencesBulgaru, C. V., Marin, D. E., Pistol, G. C., & Taranu, I. (2021). Zearalenone and the Immune Response. In Toxins (Vol. 13, Issue 4, p. 248). MDPI AG. https://doi.org/10.3390/toxins13040248
dc.relation.referencesBuszewska-Forajta M. (2020). Mycotoxins, invisible danger of feedstuff with toxic effect on animals. Toxicon: official journal of the International Society on Toxinology, 182, 34–53. https://doi.org/10.1016/j.toxicon.2020.04.10
dc.relation.referencesCarvajal-Moreno, M. (2022). Mycotoxin challenges in maize production and possible control methods in the 21st century. In Journal of Cereal Science (Vol. 103, p. 103293). Elsevier BV. https://doi.org/10.1016/j.jcs.2021.103293
dc.relation.referencesChan, W. K., Wildeboer, D., Garelick, H., & Purchase, D. (2016). Mycoremediation of Heavy Metal/Metalloid-Contaminated Soil: Current Understanding and Future Prospects. In Fungal Applications in Sustainable Environmental Biotechnology (pp. 249–272). Springer International Publishing. https://doi.org/10.1007/978-3-319-42852-9_10
dc.relation.referencesChandra, N. S., Wulff, E. G., Udayashankar, A. C., Nandini, B. P., Niranjana, S. R., Mortensen, C. N., & Prakash, H. S. (2011). Prospects of molecular markers in Fusarium species diversity. Applied microbiology and biotechnology, 90(5), 1625–1639. https://doi.org/10.1007/s00253-011-3209-3
dc.relation.referencesChandra, P. (2021). Aflatoxins: Food Safety, Human Health Hazards and Their Prevention. In Aflatoxins - Occurrence, Detoxification, Determination and Health Risks. IntechOpen. https://doi.org/10.5772/intechopen.96647
dc.relation.referencesChang, S., Su, Y., Sun, Y., Meng, X., Shi, B., & Shan, A. (2018). Response of the nuclear receptors PXR and CAR and their target gene mRNA expression in female piglets exposed to zearalenone. Toxicon: official journal of the International Society on Toxinology, 151, 111–118. https://doi.org/10.1016/j.toxicon.2018.06.081
dc.relation.referencesChen, J., Li, Z., Cheng, Y., Gao, C., Guo, L., Wang, T., & Xu, J. (2020). Sphinganine-Analog Mycotoxins (SAMs): Chemical Structures, Bioactivities, and Genetic Controls. Journal of fungi (Basel, Switzerland), 6(4), 312. https://doi.org/10.3390/jof6040312
dc.relation.referencesChhabra, R., Muthusamy, V., Gain, N., Katral, A., Prakash, N. R., Zunjare, R. U., & Hossain, F. (2021). Allelic variation in sugary1 gene affecting kernel sweetness among diverse-mutant and -wild-type maize inbreds. Molecular genetics and genomics: MGG, 296(5), 1085–1102. https://doi.org/10.1007/s00438-021-01807-9
dc.relation.referencesChilaka, C., De Boevre, M., Atanda, O., & De Saeger, S. (2017). The Status of Fusarium Mycotoxins in Sub-Saharan Africa: A Review of Emerging Trends and Post-Harvest Mitigation Strategies towards Food Control. In Toxins (Vol. 9, Issue 1, p. 19). MDPI AG. https://doi.org/10.3390/toxins9010019
dc.relation.referencesClaeys, L., Romano, C., De Ruyck, K., Wilson, H., Fervers, B., Korenjak, M., Zavadil, J., Gunter, M. J., De Saeger, S., De Boevre, M., & Huybrechts, I. (2020). Mycotoxin exposure and human cancer risk: A systematic review of epidemiological studies. Comprehensive reviews in food science and food safety, 19(4), 1449–1464. https://doi.org/10.1111/1541-4337.12567
dc.relation.referencesClimate Change, Agriculture and Food Security [CGIAR]. (2016). Annual Report 2016, Innovations for Global Food Security. Consultado Abril 8, 2022 en https://hdl.handle.net/10568/88230
dc.relation.referencesCoppock, R. W., & M. Dziwenka, M. (2014). Mycotoxins. In Biomarkers in Toxicology (pp. 549–562). Elsevier. https://doi.org/10.1016/b978-0-12-404630-6.00032-4
dc.relation.referencesCoppock, R. W., Christian, R. G., & Jacobsen, B. J. (2018). Aflatoxins. In Veterinary Toxicology (pp. 983–994). Elsevier. https://doi.org/10.1016/b978-0-12-811410-0.00069-6
dc.relation.referencesCrawford, J. M., & Townsend, C. A. (2010). New insights into the formation of fungal aromatic polyketides. In Nature Reviews Microbiology (Vol. 8, Issue 12, pp. 879–889). Springer Science and Business Media LLC. https://doi.org/10.1038/nrmicro2465
dc.relation.referencesCrous, P. W; Verkley, G. J. M; Groenewald, J. Z et al. (2019a). Fungal Biodiversity. Westerdijk Laboratory Manual Series. Fungal Biodiversity. 2nd Edition. ISBN: 9789491751165.
dc.relation.referencesCurry, S., Hendel, E. G., Gott, P., Murugesan, G. R., & Hofstetter-Schähs, U. (2019). 170 Trends in mycotoxin contamination in the united states corn. Journal of Animal Science, 97(Suppl 2), 93–94. https://doi.org/10.1093/jas/skz122.169
dc.relation.referencesDe la Torre-Hernández, Ma., Sánchez-Rangel, D., Galeana-Sánchez, E., & Plasencia-de la Parra, J. (2014). Fumonisinas –Síntesis y función en la interacción Fusarium verticillioides-maíz. In TIP (Vol. 17, Issue 1, pp. 77–91). Universidad Nacional Autónoma de México. https://doi.org/10.1016/s1405-888x(14)70321-3
dc.relation.referencesDeivasigamni, M. R., & Ramalingam, P. (2017). Decolorization and Biodegradation of basic violet dye by fungal- bacterial consortia. In Journal of Advances in Chemistry (Vol. 13, Issue 3, pp. 6438–6444). CIRWOLRD. https://doi.org/10.24297/jac.v13i0.4073
dc.relation.referencesDellaporta, S. L., Wood, J., & Hicks, J. B. (1983). A plant DNA minipreparation: Version II. In Plant Molecular Biology Reporter (Vol. 1, Issue 4, pp. 19–21). Springer Science and Business Media LLC. https://doi.org/10.1007/bf02712670
dc.relation.referencesDeng, L. Z., Sutar, P. P., Mujumdar, A. S., Tao, Y., Pan, Z., Liu, Y. H., & Xiao, H. W. (2021). Thermal Decontamination Technologies for Microorganisms and Mycotoxins in Low-Moisture Foods. Annual review of food science and technology, 12, 287–305. https://doi.org/10.1146/annurev-food-062220-112934
dc.relation.referencesDeng, M., Li, W., Chen, Y., Wang, K., Sun, Y., & Xu, H. (2022). Detection of fumonisin B1 by aptamer-functionalized magnetic beads and ultra-performance liquid chromatography. In Microchemical Journal (Vol. 178, p. 107346). Elsevier BV. https://doi.org/10.1016/j.microc.2022.107346
dc.relation.referencesDesjardins, A. E. (1996). Reduced Virulence of Trichothecene-Nonproducing Mutants of Gibberella zeae in Wheat Field Tests. In Molecular Plant-Microbe Interactions (Vol. 9, Issue 9, p. 775). Scientific Societies. https://doi.org/10.1094/mpmi-9-0775
dc.relation.referencesDesjardins, A. E., & Proctor, R. H. (2007). Molecular biology of Fusarium mycotoxins. International journal of food microbiology, 119(1-2), 47–50. https://doi.org/10.1016/j.ijfoodmicro.2007.07.024
dc.relation.referencesDesjardins, A. E., Hohn, T. M., & McCormick, S. P. (1993). Trichothecene biosynthesis in Fusarium species: chemistry, genetics, and significance. Microbiological reviews, 57(3), 595–604. https://doi.org/10.1128/mr.57.3.595-604.1993
dc.relation.referencesDíaz, G. (2005). Micotoxinas y Micotoxicosis de importancia en salud humana en Colombia. Ponencia VII Congreso Latinoamericano de Microbiología e higiene de alimentos COLMIC, 2005. Mayo 18-25. Bogotá, Colombia.
dc.relation.referencesDíaz, G., Perilla, N., & Rojas, Y. (2001). Occurrence of aflatoxins in selected Colombian foods. Mycotoxin Research, 17(1), 15–20. https://doi.org/10.1007/BF02946113
dc.relation.referencesDooso-Oloo, R., Okoth, S., Wachira, P., Mutiga, S., Ochieng, P., Kago, L., Nganga, F., Domelevo Entfellner, J.-B., & Ghimire, S. (2019). Genetic Profiling of Aspergillus Isolates with Varying Aflatoxin Production Potential from Different Maize-Growing Regions of Kenya. In Toxins (Vol. 11, Issue 8, p. 467). MDPI AG. https://doi.org/10.3390/toxins11080467
dc.relation.referencesDuarte, S., Villamil, L. (2006). Micotoxinas en la Salud Pública. Revista de Salud Pública, 8 (Supl. 1), 129-135.
dc.relation.referencesEbrahimi, A., Emadi, A., Arabameri, M., Jayedi, A., Abdolshahi, A., Yancheshmeh, B. S., & Shariatifar, N. (2022). The prevalence of aflatoxins in different nut samples: A global systematic review and probabilistic risk assessment. In AIMS Agriculture and Food (Vol. 7, Issue 1, pp. 130–148). American Institute of Mathematical Sciences (AIMS). https://doi.org/10.3934/agrfood.2022009
dc.relation.referencesEl-Sayed, R. A., Jebur, A. B., Kang, W., & El-Demerdash, F. M. (2022). An overview on the major mycotoxins in food products: characteristics, toxicity, and analysis. In Journal of Future Foods (Vol. 2, Issue 2, pp. 91–102). Elsevier BV. https://doi.org/10.1016/j.jfutfo.2022.03.002
dc.relation.referencesEncuesta Nacional Agropecuaria [ENA]. (2022). Serie histórica por departamento cultivos transitorios (2012 - II semestre 2021). Consultado agosto 13, 2022 en https://www.dane.gov.co/index.php/estadisticas-por tema/agropecuario/encuesta-nacional-agropecuaria-ena
dc.relation.referencesEskola, M., Kos, G., Elliott, C. T., Hajšlová, J., Mayar, S., & Krska, R. (2020). Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited 'FAO estimate' of 25. Critical reviews in food science and nutrition, 60(16), 2773–2789. https://doi.org/10.1080/10408398.2019.1658570
dc.relation.referencesEsquivel-Cote, R., Gavilanes-Ruiz, M., Cruz-Ortega, R., & Huante, P. (2013). Importancia agrobiotecnológica de la enzima ACC desaminasa en rizobacterias, una revisión. In Revista Fitotecnia Mexicana (Vol. 36, Issue 3, p. 251). Sociedad Mexicana de Fitogenetica A.C. https://doi.org/10.35196/rfm.2013.3.251
dc.relation.referencesEuropean Commission Regulation (EC) No. 1881/2006. (2006). “Setting Maximum Levels for Certain Contaminants in Foodstuffs”. Off J Eur Union. L364, 5-24. Consultado Agosto 22, 2022. https://eur-lex.europa.eu/legal-content/ES/TXT/PDF/?uri=CELEX:32006R1881&from=EN
dc.relation.referencesFood and Agriculture Organization of the Unites Nations [FAO]. (2021). World Food Situation, Cereal Supply and Demand Brief. Consultado febrero 11, 2022 en https://www.fao.org/worldfoodsituation/csdb/en/
dc.relation.referencesFood and Agriculture Organization of the Unites Nations [FAO]. (2015). The state of agricultural commodity markets 2015–2016. Trade and food security: Achieving a better balance between national priorities and the collective good 2015. ISBN 978-92-5-108931-6.
dc.relation.referencesFood and Agriculture Organization of the Unites Nations [FAOSTA]. (2021). Crops and livestock products. Consultado en febrero 11, 2022 en https://www.fao.org/faostat/en/#home
dc.relation.referencesFood and Drug Administration [FDA]. (2022). Chemical Contaminants, Metals, Natural Toxins & Pesticides Guidance, Documents & Regulations. Consultado junio 8 de 2022 https://www.fda.gov/food/guidance-documents-regulatory-information-topic-food-and-dietary-supplements/chemical-metals-natural-toxins-pesticides-guidance documents-regulations
dc.relation.referencesForm, I. C., Bonus, M., Gohlke, H., Lin, W., Daletos, G., & Proksch, P. (2019). Xanthone, benzophenone and bianthrone derivatives from the hypersaline lake-derived fungus Aspergillus wentii. In Bioorganic & Medicinal Chemistry (Vol. 27, Issue 20, p. 115005). Elsevier BV. https://doi.org/10.1016/j.bmc.2019.07.021
dc.relation.referencesFournier, P., Benneveau, A., Hardy, C., Chillet, M., & Léchaudel, M. (2015). A predictive model based on a pluviothermic index for leathery pocket and fruitlet core rot of pineapple cv. ‘Queen.’ In European Journal of Plant Pathology (Vol. 142, Issue 3, pp. 449–460). Springer Science and Business Media LLC. https://doi.org/10.1007/s10658-015-0625-8
dc.relation.referencesFrisvad, J. C., Samson, R. A. (2004). Polyphasic taxonomy of Penicillium subgenus Penicillium - A guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins. Studies in Mycology, 49, 1-173. ISSN 0166-0616.
dc.relation.referencesFrisvad, J. C., Møller, L. L. H., Larsen, T. O., Kumar, R., & Arnau, J. (2018). Safety of the fungal workhorses of industrial biotechnology: update on the mycotoxin and secondary metabolite potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. Applied microbiology and biotechnology, 102(22), 9481–9515. https://doi.org/10.1007/s00253-018-9354-1
dc.relation.referencesFrisvad, J. C., Hubka, V., Ezekiel, C. N., Hong, S. B., Nováková, A., Chen, A. J., Arzanlou, M., Larsen, T. O., Sklenář, F., Mahakarnchanakul, W., Samson, R. A., & Houbraken, J. (2019). Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins. Studies in mycology, 93, 1–63. https://doi.org/10.1016/j.simyco.2018.06.001
dc.relation.referencesGarcia, J. M. D., Shagarodsky, T., Fresneda, J. A., Fundora, Y. H., & González, J. (2007). Caracterización de especies del género Fusarium en el cultivo del garbanzo (Cicer arietinum) en las provincias ciudad Habana y la Habana. Temas de Ciencia y Tecnología. 32 (11), 63-66.
dc.relation.referencesGarcia, S. (2016). Química supramolecular del estado líquido: disolventes nanoestructurados para la extracción de micotoxinas en productos agroalimentarios. [Tesis Doctoral. Universidad de Córdoba]. Repositorio Helvia. https://helvia.uco.es/xmlui/handle/10396/13840
dc.relation.referencesGarcía-Lara, S., & Serna-Saldivar, S. O. (2019). Corn History and Culture. In Corn (pp. 1–18). Elsevier. https://doi.org/10.1016/b978-0-12-811971-6.00001-2
dc.relation.referencesGardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. In Molecular Ecology (Vol. 2, Issue 2, pp. 113–118). Wiley. https://doi.org/10.1111/j.1365-294x.1993.tb00005.x
dc.relation.referencesGardiner, D. M., Osborne, S., Kazan, K., & Manners, J. M. (2009). Low pH regulates the production of deoxynivalenol by Fusarium graminearum. Microbiology (Reading, England), 155(Pt 9), 3149–3156. https://doi.org/10.1099/mic.0.029546-0
dc.relation.referencesGaron, D., Richard, E., Sage, L., Bouchart, V., Pottier, D., & Lebailly, P. (2006). Mycoflora and multimycotoxin detection in corn silage: experimental study. Journal of agricultural and food chemistry, 54(9), 3479–3484. https://doi.org/10.1021/jf060179i
dc.relation.referencesGeiser, D. M., Klich, M. A., Frisvad, J. C., Peterson, S. W., Varga, J., & Samson, R. A. (2007). The current status of species recognition and identification in Aspergillus. In Studies in Mycology (Vol. 59, pp. 1–10). Westerdijk Fungal Biodiversity Institute. https://doi.org/10.3114/sim.2007.59.01
dc.relation.referencesGeiser, D. M., Aoki, T., Bacon, C. W., Baker, S. E., Bhattacharyya, M. K., Brandt, M. E., Brown, D. W., Burgess, L. W., Chulze, S., Coleman, J. J., Correll, J. C., Covert, S. F., Crous, P. W., Cuomo, C. A., De Hoog, G. S., Di Pietro, A., Elmer, W. H., Epstein, L., Frandsen, R. J., Freeman, S., Zhang, N. (2013). One fungus, one name: defining the genus Fusarium in a scientifically robust way that preserves longstanding use. Phytopathology, 103(5), 400–408. https://doi.org/10.1094/PHYTO-07-12-0150-LE
dc.relation.referencesGeiser, D. M., Al-Hatmi, A. M. S., Aoki, T., Arie, T., Balmas, V., Barnes, I., Bergstrom, G. C., Bhattacharyya, M. K., Blomquist, C. L., Bowden, R. L., Brankovics, B., Brown, D. W., Burgess, L. W., Bushley, K., Busman, M., Cano-Lira, J. F., Carrillo, J. D., Chang, H. X., Chen, C. Y., Chen, W., Zhang, X. (2021). Phylogenomic Analysis of a 55.1-kb 19-Gene Dataset Resolves a Monophyletic Fusarium that Includes the Fusarium solani Species Complex. Phytopathology, 111(7), 1064–1079. https://doi.org/10.1094/PHYTO-08-20-0330-LE
dc.relation.referencesGil-Serna, J., Vázquez, C., & Patiño, B. (2020). Mycotoxins in Functional Beverages: A Review. In Beverages (Vol. 6, Issue 3, p. 52). MDPI AG. https://doi.org/10.3390/beverages6030052
dc.relation.referencesGlenn, A. E. (2007). Mycotoxigenic Fusarium species in animal feed. In Animal Feed Science and Technology (Vol. 137, Issues 3–4, pp. 213–240). Elsevier BV. https://doi.org/10.1016/j.anifeedsci.2007.06.003
dc.relation.referencesGolge, O., & Kabak, B. (2020). Occurrence of deoxynivalenol and zearalenone in cereals and cereal products from Turkey. In Food Control (Vol. 110, p. 106982). Elsevier BV. https://doi.org/10.1016/j.foodcont.2019.106982
dc.relation.referencesGómez, E.D. (2008). Caracterización de cepas toxigénicas del género Fusarium mediante técnicas de biología molecular [Tesis de Doctorado, Universidad Politécnica de Valencia]. Repositorio institucional UPV. https://riunet.upv.es/handle/10251/3346
dc.relation.referencesGómez, K. S., Castañeda Roldán, E., Ávila Sosa, R., & Munguía-Pérez, R. (2022). Mycotoxins and Climate Change. In Fungal Biology (pp. 239–256). Springer International Publishing. https://doi.org/10.1007/978-3-030-89664-5_14
dc.relation.referencesGovaerts, B.; Vega, D.; Chávez, X.; Narro, L. (2019). Maíz Para Colombia Visión 2030. CIMMYT/CIAT. ISBN 978-958-694-222-5
dc.relation.referencesGroenewald, J. Z., Nakashima, C., Nishikawa, J., Shin, H.-D., Park, J.-H., Jama, A. N., Groenewald, M., Braun, U., & Crous, P. W. (2013). Species concepts in Cercospora: spotting the weeds among the roses. In Studies in Mycology (Vol. 75, pp. 115–170). Westerdijk Fungal Biodiversity Institute. https://doi.org/10.3114/sim0012
dc.relation.referencesGruber-Dorninger, C., Jenkins, T., & Schatzmayr, G. (2019). Global Mycotoxin Occurrence in Feed: A Ten-Year Survey. Toxins, 11(7), 375. https://doi.org/10.3390/toxins11070375
dc.relation.referencesGu, Y., Ding, P., Liang, Z., Song, Y., Liu, Y., Chen, G., & Li, J. L. (2018). Activated production of silent metabolites from marine-derived fungus Penicillium citrinum. Fitoterapia, 127, 207–211. https://doi.org/10.1016/j.fitote.2018.02.012
dc.relation.referencesGuevara, M. I. (2018). Taxonomía y filogenia de aislados clínicos y ambientales de Penicillium y Talaromyces. [Tesis Doctoral. Universitat Rovira i Virgili]. Departament de Ciències Mèdiques Bàsiques. https://www.tesisenred.net/handle/10803/662736
dc.relation.referencesHallegraeff, G., Coman, F., Davies, C., Hayashi, A., McLeod, D., Slotwinski, A., Whittock, L., & Richardson, A. J. (2014). Australian dust storm associated with extensive Aspergillus sydowii fungal "bloom" in coastal waters. Applied and environmental microbiology, 80(11), 3315–3320. https://doi.org/10.1128/AEM.04118-13
dc.relation.referencesHan, L., Li, Y. T., Jiang, J. Q., Li, R. F., Fan, G. Y., Lv, J. M., Zhou, Y., Zhang, W. J., & Wang, Z. L. (2019). Development of a Direct Competitive ELISA Kit for Detecting Deoxynivalenol Contamination in Wheat. Molecules (Basel, Switzerland), 25(1), 50. https://doi.org/10.3390/molecules25010050
dc.relation.referencesHaque, M. A., Wang, Y., Shen, Z., Li, X., Saleemi, M. K., & He, C. (2020). Mycotoxin contamination and control strategy in human, domestic animal and poultry: A review. In Microbial Pathogenesis (Vol. 142, p. 104095). Elsevier BV. https://doi.org/10.1016/j.micpath.2020.104095
dc.relation.referencesHernández, C. A. (2016). Especies de Fusarium y Penicillium asociadas a frutales en los departamentos del Cauca y Valle de Cauca, Colombia. [Tesis de Maestría. Universidad Nacional de Colombia, Sede Palmira]. Repositorio Institucional UN. https://repositorio.unal.edu.co/handle/unal/56918
dc.relation.referencesHerron, D. A., Wingfield, M. J., Wingfield, B. D., Rodas, C. A., Marincowitz, S., & Steenkamp, E. T. (2015). Novel taxa in the Fusarium fujikuroi species complex from Pinus spp. Studies in mycology, 80, 131–150. https://doi.org/10.1016/j.simyco.2014.12.001
dc.relation.referencesHocking, D. A. (2006). Aspergillus and related teleomorphs. Food spoilage microorganisms. pp, 451-487. ISBN 9781855739666.
dc.relation.referencesHolanda, D. M., & Kim, S. W. (2021). Mycotoxin Occurrence, Toxicity, and Detoxifying Agents in Pig Production with an Emphasis on Deoxynivalenol. In Toxins (Vol. 13, Issue 2, p. 171). MDPI AG. https://doi.org/10.3390/toxins13020171
dc.relation.referencesHossain, F., Chhabra, R., Devi, E. L., Zunjare, R. U., Jaiswal, S. K., & Muthusamy, V. (2019). Molecular analysis of mutant granule-bound starch synthase-I (waxy1) gene in diverse waxy maize inbreds. 3 Biotech, 9(1), 3. https://doi.org/10.1007/s13205-018-1530-6
dc.relation.referencesHossain, F., Muthusamy, V., Zunjare, R. U., & Gupta, H. S. (2019). Biofortification of Maize for Protein Quality and Provitamin-A Content. In Concepts and Strategies in Plant Sciences (pp. 115–136). Springer International Publishing. https://doi.org/10.1007/978-3-319-95354-0_5
dc.relation.referencesHossain, F., Rakshit, S., Kumar, B., Amalraj, J. J., Muthusamy, V., Prakash, B., Zunjare, R. U., Karjagi, C., Khulbe, R., Arora, A., Pramitha, L., Choudhary, D., Rao, S. V. R., Raju, M. V. L. N., & Kamboj, M. C. (2021). Molecular breeding for increasing nutrition quality in maize: recent progress. In Molecular breeding in wheat, maize and sorghum: strategies for improving abiotic stress tolerance and yield (pp. 360–379). CABI. https://doi.org/10.1079/9781789245431.0021
dc.relation.referencesHossain, F., Muthusamy, V., Bhat, J. S., Zunjare, R. U., Kumar, S., Prakash, N. R., & Mehta, B. K. (2022). Maize Breeding. In Fundamentals of Field Crop Breeding (pp. 221–258). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-9257-4_4
dc.relation.referencesHoubraken, J. A. M. P., Frisvad, J. C., & Samson, R. A. (2010). Taxonomy of Penicillium citrinum and related species. In Fungal Diversity (Vol. 44, Issue 1, pp. 117–133). Springer Science and Business Media LLC. https://doi.org/10.1007/s13225-010-0047-z
dc.relation.referencesHoubraken, J., & Samson, R. A. (2011). Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Studies in mycology, 70(1), 1–51. https://doi.org/10.3114/sim.2011.70.01
dc.relation.referencesHoubraken, J., López-Quintero, C. A., Frisvad, J. C., Boekhout, T., Theelen, B., Franco-Molano, A. E., & Samson, R. A. (2011). Penicillium araracuarense sp. nov., Penicillium elleniae sp. nov., Penicillium penarojense sp. nov., Penicillium vanderhammenii sp. nov. and Penicillium wotroi sp. nov., isolated from leaf litter. International journal of systematic and evolutionary microbiology, 61(Pt 6), 1462–1475. https://doi.org/10.1099/ijs.0.025098-0
dc.relation.referencesHoubraken, J., Frisvad, J. C., Seifert, K. A., Overy, D. P., Tuthill, D. M., Valdez, J. G., & Samson, R. A. (2012). New penicillin-producing Penicillium species and an overview of section Chrysogena. Persoonia, 29, 78–100. https://doi.org/10.3767/003158512X660571
dc.relation.referencesHoubraken, J., de Vries, R. P., & Samson, R. A. (2014). Modern taxonomy of biotechnologically important Aspergillus and Penicillium species. Advances in applied microbiology, 86, 199–249. https://doi.org/10.1016/B978-0-12-800262-9.00004-4
dc.relation.referencesHoubraken, J., Kocsubé, S., Visagie, C. M., Yilmaz, N., Wang, X. C., Meijer, M., Kraak, B., Hubka, V., Bensch, K., Samson, R. A., & Frisvad, J. C. (2020). Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): An overview of families, genera, subgenera, sections, series and species. Studies in mycology, 95, 5–169. https://doi.org/10.1016/j.simyco.2020.05.002
dc.relation.referencesHuang, Y., Begum, M., Chapman, B., & Hocking, A. D. (2010). Effect of reduced water activity and reduced matric potential on the germination of xerophilic and non-xerophilic fungi. International journal of food microbiology, 140(1), 1–5. https://doi.org/10.1016/j.ijfoodmicro.2010.02.026
dc.relation.referencesInternational Agency for Research on Cancer [IARC]. (1993). Monographs on the evaluation of carcinogenic risks to humans Some naturally occurring substances: Food items and constituents, heterocyclic aromatic amines and mycotoxins. Consultado Mayo 16, 2022 en https://monographs.iarc.who.int/
dc.relation.referencesInternational Agency for Research on Cancer [IARC. (2002). Monographs on the evaluation of carcinogenic risks to humans some traditional herbal medicines, some mycotoxins, naphthalene and styrene. Consultado Mayo 16, 2022 en https://pubmed.ncbi.nlm.nih.gov/12687954/
dc.relation.referencesInternational Agency for Research on Cancer [IARC]. (2012). Agents classified by the IARC Monographs. International Agency for Reseach on Cancer. Consultado Mayo 16, 2022 en https://monographs.iarc.who.int/agents-classified-by-the-iarc/
dc.relation.referencesInternational Agency for Research on Cancer [IARC]. (2019). Report of the Advisory Group to Recommend Priorities for IARC Monographs during 2020–2024. Consultado Mayo 16, 2022 en https://www.iarc.who.int/news-events/report-of-the-advisory-group-to-recommend-priorities-for-the-iarc-monographs-during-2020-2024/
dc.relation.referencesIqbal, N., Czékus, Z., Poór, P., & Ördög, A. (2021). Plant defence mechanisms against mycotoxin Fumonisin B1. Chemico-biological interactions, 343, 109494. https://doi.org/10.1016/j.cbi.2021.109494
dc.relation.referencesIsmaiel, A. A., & Papenbrock, J. (2015). Mycotoxins: producing fungi and mechanisms of phytotoxicity. Agriculture, 5(3), 492-537.
dc.relation.referencesIsmail, A., Naeem, I., Gong, Y. Y., Routledge, M. N., Akhtar, S., Riaz, M., Ramalho, L. N. Z., de Oliveira, C. A. F., & Ismail, Z. (2021). Early life exposure to dietary aflatoxins, health impact and control perspectives: A review. In Trends in Food Science & Technology (Vol. 112, pp. 212–224). Elsevier BV. https://doi.org/10.1016/j.tifs.2021.04.002
dc.relation.referencesJanik, E., Niemcewicz, M., Ceremuga, M., Stela, M., Saluk-Bijak, J., Siadkowski, A., & Bijak, M. (2020). Molecular Aspects of Mycotoxins-A Serious Problem for Human Health. International journal of molecular sciences, 21(21), 8187. https://doi.org/10.3390/ijms21218187
dc.relation.referencesJia, R., Liu, W., Zhao, L., Cao, L., & Shen, Z. (2020). Low doses of individual and combined deoxynivalenol and zearalenone in naturally moldy diets impair intestinal functions via inducing inflammation and disrupting epithelial barrier in the intestine of piglets. Toxicology letters, 333, 159–169. https://doi.org/10.1016/j.toxlet.2020.07.032
dc.relation.referencesJiao, F., Kawakami, A., & Nakajima, T. (2008). Effects of different carbon sources on trichothecene production and Tri gene expression by Fusarium graminearum in liquid culture. In FEMS Microbiology Letters (Vol. 285, Issue 2, pp. 212–219). Oxford University Press (OUP). https://doi.org/10.1111/j.1574-6968.2008.01235.x
dc.relation.referencesJoshi, P., Chauysrinule, C., Mahakarnchanakul, W., & Maneeboon, T. (2022). Multi-Mycotoxin Contamination, Mold Incidence and Risk Assessment of Aflatoxin in Maize Kernels Originating from Nepal. In Microbiology Research (Vol. 13, Issue 2, pp. 258–277). MDPI AG. https://doi.org/10.3390/microbiolres13020021
dc.relation.referencesKarlsson, I., Edel-Hermann, V., Gautheron, N., Durling, M. B., Kolseth, A. K., Steinberg, C., Persson, P., & Friberg, H. (2015). Genus-Specific Primers for Study of Fusarium Communities in Field Samples. Applied and environmental microbiology, 82(2), 491–501. https://doi.org/10.1128/AEM.02748-15
dc.relation.referencesKeller, M. D., Bergstrom, G. C., & Shields, E. J. (2014). The aerobiology of Fusarium graminearum. In Aerobiologia (Vol. 30, Issue 2, pp. 123–136). Springer Science and Business Media LLC. https://doi.org/10.1007/s10453-013-9321-3
dc.relation.referencesKhan, R. B., Phulukdaree, A., & Chuturgoon, A. A. (2018). Concentration-dependent effect of fumonisin B1 on apoptosis in esophageal cancer cells. Human & experimental toxicology, 37(7), 762–771. https://doi.org/10.1177/0960327117735570
dc.relation.referencesKim, Y. T., Lee, Y. R., Jin, J., Han, K. H., Kim, H., Kim, J. C., Lee, T., Yun, S. H., & Lee, Y. W. (2005). Two different polyketide synthase genes are required for synthesis of zearalenone in Gibberella zeae. Molecular microbiology, 58(4), 1102–1113. https://doi.org/10.1111/j.1365-2958.2005.04884.x
dc.relation.referencesKim, J. E., Son, H., Lee, Y. W. (2018). Biosynthetic mechanism and regulation of zearalenone in Fusarium graminearum. JSM Mycotoxins, 68(1), 1–6.
dc.relation.referencesKlich, M. A. (2007). Environmental and developmental factors influencing aflatoxin production by Aspergillus flavus and Aspergillus parasiticus. In Mycoscience (Vol. 48, Issue 2, pp. 71–80). The Mycological Society of Japan. https://doi.org/10.1007/s10267-006-0336-2
dc.relation.referencesKumari, A., Joshua, R., Kumar, R., Ahlawat, P., & Sindhu, S. C. (2021). Fungal Mycotoxins: Occurrence and Detection. In Fungal Biology (pp. 427–459). Springer International Publishing. https://doi.org/10.1007/978-3-030-68260-6_15
dc.relation.referencesLatorre, A. (2017). Desarrollo de nuevas metodologías analíticas para evaluar la incidencia y la estabilidad de micotoxinas del género Fusarium en forrajes de maíz ensilados. [Tesis Doctoral, Universidad de Santiago de Compostela]. Repositorio Institucional Minerva USC. http://hdl.handle.net/10347/15456
dc.relation.referencesLeitão, A. L., & Enguita, F. J. (2016). Gibberellins in Penicillium strains: Challenges for endophyte-plant host interactions under salinity stress. In Microbiological Research (Vol. 183, pp. 8–18). Elsevier BV. https://doi.org/10.1016/j.micres.2015.11.004
dc.relation.referencesLeslie, J. F., and Summerell, B. A. (2006). The Fusarium laboratory manual. Blackwell Publishing, Ames. ISBN: 9780813819198.
dc.relation.referencesLi, T., Jiang, G., Qu, H., Wang, Y., Xiong, Y., Jian, Q., Wu, Y., Duan, X., Zhu, X., Hu, W., Wang, J., Gong, L., & Jiang, Y. (2017). Comparative Transcriptome Analysis of Penicillium citrinum Cultured with Different Carbon Sources Identifies Genes Involved in Citrinin Biosynthesis. Toxins, 9(2), 69. https://doi.org/10.3390/toxins9020069
dc.relation.referencesLi, C., Zhou, J., Du, G., Chen, J., Takahashi, S., & Liu, S. (2020). Developing Aspergillus niger as a cell factory for food enzyme production. In Biotechnology Advances (Vol. 44, p. 107630). Elsevier BV. https://doi.org/10.1016/j.biotechadv.2020.107630
dc.relation.referencesLiu, S., Wang, J., Guo, N., Sun, H., Ma, H., Zhang, H., & Shi, J. (2021). Talaromyces funiculosus, a Novel Causal Agent of Maize Ear Rot and Its Sensitivity to Fungicides. Plant disease, 105(12), 3978–3984. https://doi.org/10.1094/PDIS-04-21-0686-RE
dc.relation.referencesLlorens, A., Mateo, R., Hinojo, M. J., Logrieco, A., & Jimenez, M. (2004). Influence of the Interactions among Ecological Variables in the Characterization of Zearalenone Producing Isolates of Fusarium spp. In Systematic and Applied Microbiology (Vol. 27, Issue 2, pp. 253–260). Elsevier BV. https://doi.org/10.1078/072320204322881871
dc.relation.referencesLogrieco, A., Battilani, P., Leggieri, M. C., Jiang, Y., Haesaert, G., Lanubile, A., Mahuku, G., Mesterházy, A., Ortega-Beltran, A., Pasti, M., Smeu, I., Torres, A., Xu, J., & Munkvold, G. (2021). Perspectives on Global Mycotoxin Issues and Management From the MycoKey Maize Working Group. Plant disease, 105(3), 525–537. https://doi.org/10.1094/PDIS-06-20-1322-FE
dc.relation.referencesMahato, D. K., Lee, K. E., Kamle, M., Devi, S., Dewangan, K. N., Kumar, P., & Kang, S. G. (2019). Aflatoxins in Food and Feed: An Overview on Prevalence, Detection and Control Strategies. In Frontiers in Microbiology (Vol. 10). Frontiers Media SA. https://doi.org/10.3389/fmicb.2019.02266
dc.relation.referencesMarín, P. (2010). Análisis de factores ecofisiológicos que influyen en la expresión de genes relacionados con la biosíntesis de toxinas en especies de Fusarium. [Tesis Doctoral. Universidad Complutense De Madrid]. Repositorio Institucional de la UCM. https://eprints.ucm.es/id/eprint/11150/
dc.relation.referencesMarin, S., Ramos, A. J., Cano-Sancho, G., & Sanchis, V. (2013). Mycotoxins: occurrence, toxicology, and exposure assessment. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association, 60, 218–237. https://doi.org/10.1016/j.fct.2013.07.047
dc.relation.referencesMarin, D. E., Pistol, G. C., Bulgaru, C. V., & Taranu, I. (2019). Cytotoxic and inflammatory effects of individual and combined exposure of HepG2 cells to zearalenone and its metabolites. Naunyn-Schmiedeberg's archives of pharmacology, 392(8), 937–947. https://doi.org/10.1007/s00210-019-01644-z
dc.relation.referencesMartinez, E. (2004). Estudio de especies micotoxigénicas del género Penicillium: Penicillium verrucosum Dierckx. [Tesis de Doctorado. Universidad Autónoma de Barcelona].
dc.relation.referencesMartínez-Larrañaga, M. R., Anadón, A. (2006). Micotoxinas. En: Cameán, A. M., Repetto, M. (Eds.) Toxicología alimentaria. Ediciones Díaz de Santos, Madrid. ISBN 84-7978-727-9.
dc.relation.referencesMartinez-Miranda, M. M., Rosero-Moreano, M., & Taborda-Ocampo, G. (2019). Occurrence, dietary exposure and risk assessment of aflatoxins in arepa, bread and rice. In Food Control (Vol. 98, pp. 359–366). Elsevier BV. https://doi.org/10.1016/j.foodcont.2018.11.046
dc.relation.referencesMateo, E. M. (2015). Emerging fungi and mycotoxins in crops in the framework of climate change. Design of strategies for their prevention and control. [Tesis de Doctorado. Universidad de Valencia].
dc.relation.referencesMcCormick, S. P., Alexander, N. J., & Proctor, R. H. (2006). Heterologous expression of two trichothecene P450 genes in Fusarium verticillioides. Canadian journal of microbiology, 52(3), 220–226. https://doi.org/10.1139/w05-124
dc.relation.referencesMcNeill, J., Barrie, F. F., Buck, W. R., et al. (eds) (2012). International Code of Nomenclature for algae, fungi, and plants (Melbourne Code). Koeltz Scientific Books, Königstein. [Regnum vegetabile no. 154].
dc.relation.referencesMedina, A., Akbar, A., Baazeem, A., Rodriguez, A., & Magan, N. (2017). Climate change, food security and mycotoxins: Do we know enough? In Fungal Biology Reviews (Vol. 31, Issue 3, pp. 143–154). Elsevier BV. https://doi.org/10.1016/j.fbr.2017.04.002
dc.relation.referencesMinisterio de Salud y Protección Social. (2013). Resolución 4506 “Por la cual se establecen los niveles máximos de contaminantes en los alimentos destinados al consumo humano y se dictan otras disposiciones”. Consultado agosto 22, 2022 https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/resolucion-4506-de-2013.pdf
dc.relation.referencesMinisterio de Salud y Protección Social. (2014). Resolución 2671 “Por lo cual se modifica la Tabla 1 del artículo 4 de la Resolución 4506 de 2013” Consultado agosto 22, 2022. https://www.minsalud.gov.co/Normatividad_Nuevo/Resoluci%C3%B3n%202671%20de%202014.pdf
dc.relation.referencesMinisterio de Salud y Protección Social. (2015). Resolución 3709 “Por la cual se modifica parcialmente la Resolución número 4506 de 2013 modificada por la Resolución número 2671 de 2014”. Consultado agosto 24, 2022 en https://www.icbf.gov.co/cargues/avance/docs/resolucion_minsaludps_3709_2015.htm
dc.relation.referencesMishra, S., Srivastava, S., Dewangan, J., Divakar, A., & Kumar Rath, S. (2020). Global occurrence of deoxynivalenol in food commodities and exposure risk assessment in humans in the last decade: a survey. Critical reviews in food science and nutrition, 60(8), 1346–1374. https://doi.org/10.1080/10408398.2019.1571479
dc.relation.referencesMolina-Pintor, I. B., Rojas-García, A. E., Medina-Díaz, I. M., Barrón-Vivanco, B. S., Bernal-Hernández, Y. Y., Ortega-Cervantes, L., Ramos, A. J., Herrera-Moreno, J. F., & González-Arias, C. A. (2022). An update on genotoxic and epigenetic studies of fumonisin B1. In World Mycotoxin Journal (Vol. 15, Issue 1, pp. 57–72). Wageningen Academic Publishers. https://doi.org/10.3920/wmj2021.2720
dc.relation.referencesMoreira, F. G., Lenartovicz, V., & Peralta, R. M. (2004). A thermostable maltose-tolerant alpha-amylase from Aspergillus tamarii. Journal of basic microbiology, 44(1), 29–35. https://doi.org/10.1002/jobm.200310302
dc.relation.referencesMoretti, A., Susca, A., Mulé, G., Logrieco, A. F., & Proctor, R. H. (2013). Molecular biodiversity of mycotoxigenic fungi that threaten food safety. International journal of food microbiology, 167(1), 57–66. https://doi.org/10.1016/j.ijfoodmicro.2013.06.033
dc.relation.referencesMoretti, A., Pascale, M., & Logrieco, A. F. (2019). Mycotoxin risks under a climate change scenario in Europe. In Trends in Food Science & Technology (Vol. 84, pp. 38–40). Elsevier BV. https://doi.org/10.1016/j.tifs.2018.03.008
dc.relation.referencesMorris, L. (2011). Determinación de aflatoxinas en muestras de maíz (Zea mays) y arroz (Oryza sativa) para consumo humano en cinco departamentos de la Costa Caribe Colombiana mediante cromatografía de alta eficiencia durante seis meses en 2011. [Tesis de Maestría, Universidad Nacional de Colombia, sede Bogotá]. Repositorio UN. https://repositorio.unal.edu.co/handle/unal/8318
dc.relation.referencesMousavi, B., Hedayati, M. T., Hedayati, N., Ilkit, M., & Syedmousavi, S. (2016). Aspergillus species in indoor environments and their possible occupational and public health hazards. Current medical mycology, 2(1), 36–42. https://doi.org/10.18869/acadpub.cmm.2.1.36
dc.relation.referencesMunkvold G. P. (2017). Fusarium Species and Their Associated Mycotoxins. Methods in molecular biology (Clifton, N.J.), 1542, 51–106. https://doi.org/10.1007/978-1-4939-6707-0_4
dc.relation.referencesMunkvold, G. P., Arias, S., Taschl, I., & Gruber-Dorninger, C. (2019). Mycotoxins in Corn: Occurrence, Impacts, and Management. In Corn (pp. 235–287). Elsevier. https://doi.org/10.1016/b978-0-12-811971-6.00009-7
dc.relation.referencesNaeem, I., Ismail, A., Rehman, A. U., Ismail, Z., Saima, S., Naz, A., Faraz, A., de Oliveira, C. A. F., Benkerroum, N., Aslam, M. Z., & Aslam, R. (2022). Prevalence of Aflatoxins in Selected Dry Fruits, Impact of Storage Conditions on Contamination Levels and Associated Health Risks on Pakistani Consumers. International journal of environmental research and public health, 19(6), 3404. https://doi.org/10.3390/ijerph19063404
dc.relation.referencesNahle, S., El Khoury, A., & Atoui, A. (2021). Current status on the molecular biology of zearalenone: its biosynthesis and molecular detection of zearalenone producing Fusarium species. In European Journal of Plant Pathology (Vol. 159, Issue 2, pp. 247–258). Springer Science and Business Media LLC. https://doi.org/10.1007/s10658-020-02173-9
dc.relation.referencesNakagawa, H., Hashimoto, R., Matsuo, Y., Sago, Y., Yokoyama, K., & Takahashi, H. (2020). Detection and Determination of Fumonisins B1, B2, and B3 Contaminating Japanese Domestic Wine by Liquid Chromatography Coupled to Tandem Mass Spectrometry (LC–MS/MS). In Current Microbiology (Vol. 77, Issue 10, pp. 3057–3064). Springer Science and Business Media LLC. https://doi.org/10.1007/s00284-020-02113-0
dc.relation.referencesNarasaiah, K. V., Sashidhar, R. B., & Subramanyam, C. (2006). Biochemical analysis of oxidative stress in the production of aflatoxin and its precursor intermediates. Mycopathologia, 162(3), 179–189. https://doi.org/10.1007/s11046-006-0052-7
dc.relation.referencesNational Center for Biotechnology Information (NBCI). (2022). Taxonomía del género Aspergillus. Consultado Mayo 22, 2022 en https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=5052
dc.relation.referencesNational Center for Biotechnology Information [NBCI]. (2022). Taxonomía del género Fusarium. Consultado Mayo 22, 2022 en https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=5506
dc.relation.referencesNational Center for Biotechnology Information (NBCI). (2022). Taxonomía del género Penicillium. Consultado Mayo 22, 2022 en https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=5073
dc.relation.referencesNational Center for Biotechnology Information (NBCI). (2022). Taxonomía del género Talaromyces. Consultado Mayo 22, 2022 en https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?&id=5094
dc.relation.referencesNelson, P., Toussoun, T., and Marasas, W. 1983. Fusarium species: An Illustrated Manual for Identification. The Pennsylvania State University Press, University Park. ISBN 9780271003498.
dc.relation.referencesNiu, C., Payne, G. A., & Woloshuk, C. P. (2015). Transcriptome changes in Fusarium verticillioides caused by mutation in the transporter-like gene FST1. BMC microbiology, 15, 90. https://doi.org/10.1186/s12866-015-0427-3
dc.relation.referencesNji, Q. N., Babalola, O. O., Ekwomadu, T. I., Nleya, N., & Mwanza, M. (2022). Six Main Contributing Factors to High Levels of Mycotoxin Contamination in African Foods. In Toxins (Vol. 14, Issue 5, p. 318). MDPI AG. https://doi.org/10.3390/toxins14050318
dc.relation.referencesO’Donnell, K., Cigelnik, E., & Nirenberg, H. I. (1998). Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. In Mycologia (Vol. 90, Issue 3, pp. 465–493). Informa UK Limited. https://doi.org/10.1080/00275514.1998.12026933
dc.relation.referencesO'Donnell, K., Kistler, H. C., Cigelnik, E., & Ploetz, R. C. (1998). Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences of the United States of America, 95(5), 2044–2049. https://doi.org/10.1073/pnas.95.5.2044
dc.relation.referencesO’Donnell, K., Nirenberg, H. I., Aoki, T., & Cigelnik, E. (2000). A Multigene phylogeny of the Gibberella fujikuroi species complex: Detection of additional phylogenetically distinct species. In Mycoscience (Vol. 41, Issue 1, pp. 61–78). The Mycological Society of Japan. https://doi.org/10.1007/bf02464387
dc.relation.referencesO'Donnell, K., Sutton, D. A., Rinaldi, M. G., Sarver, B. A., Balajee, S. A., Schroers, H. J., Summerbell, R. C., Robert, V. A., Crous, P. W., Zhang, N., Aoki, T., Jung, K., Park, J., Lee, Y. H., Kang, S., Park, B., & Geiser, D. M. (2010). Internet-accessible DNA sequence database for identifying fusaria from human and animal infections. Journal of clinical microbiology, 48(10), 3708–3718. https://doi.org/10.1128/JCM.00989-10
dc.relation.referencesO'Donnell, K., Rooney, A. P., Proctor, R. H., Brown, D. W., McCormick, S. P., Ward, T. J., Frandsen, R. J., Lysøe, E., Rehner, S. A., Aoki, T., Robert, V. A., Crous, P. W., Groenewald, J. Z., Kang, S., & Geiser, D. M. (2013). Phylogenetic analyses of RPB1 and RPB2 support a middle Cretaceous origin for a clade comprising all agriculturally and medically important fusaria. Fungal genetics and biology: FG & B, 52, 20–31. https://doi.org/10.1016/j.fgb.2012.12.004
dc.relation.referencesO’Donnell, K., Ward, T. J., Robert, V. A. R. G., Crous, P. W., Geiser, D. M., & Kang, S. (2015). DNA sequence-based identification of Fusarium: Current status and future directions. In Phytoparasitica (Vol. 43, Issue 5, pp. 583–595). Springer Science and Business Media LLC. https://doi.org/10.1007/s12600-015-0484-z
dc.relation.referencesOrencio-Trejo, M., Torres-Granados, J., Rangel-Lara, A., Beltrán-Guerrero, E., García-Aguilar, S., Moss-Acosta, C., Valenzuela-Soto, H., De la Torre-Zavala, S., Gastelum-Arellanez, A., Martinez, A., Tiessen, A., Diaz-Mireles, E., & Lozoya-Gloria, E. (2016). Cellulase and Xylanase Production by the Mexican Strain Talaromyces stollii LV186 and Its Application in the Saccharification of Pretreated Corn and Sorghum Stover. In BioEnergy Research (Vol. 9, Issue 4, pp. 1034–1045). Springer Science and Business Media LLC. https://doi.org/10.1007/s12155-016-9791-6
dc.relation.referencesOstry, V., Malir, F., Toman, J., & Grosse, Y. (2017). Mycotoxins as human carcinogens-the IARC Monographs classification. Mycotoxin research, 33(1), 65–73. https://doi.org/10.1007/s12550-016-0265-7
dc.relation.referencesPal, S., Zunjare, R. U., Muthusamy, V., Duo, H., Gowda, M. M., Bhowmick, P. K., Kasana, R., Bhatt, V., & Hossain, F. (2020). Influence of T-, C- and S- cytoplasms on male sterility and their utilisation in baby corn hybrid breeding. In Euphytica (Vol. 216, Issue 9). Springer Science and Business Media LLC. https://doi.org/10.1007/s10681-020-02682-y
dc.relation.referencesPang, C., Liu, Y.-H., Cao, X.-H., Li, M., Huang, G.-L., Hua, R., Wang, C.-X., Liu, Y.-T., & An, X.-F. (2011). Biosorption of uranium(VI) from aqueous solution by dead fungal biomass of Penicillium citrinum. In Chemical Engineering Journal (Vol. 170, Issue 1, pp. 1–6). Elsevier BV. https://doi.org/10.1016/j.cej.2010.10.068
dc.relation.referencesPedraza, D. (2014). Evaluación de la actividad enzimática de aislamientos microbianos celulolíticos y lignolíticos, y su aplicación en la degradación de tamo de arroz (Oryza sativa). [Tesis de Maestría. Universidad Nacional de Colombia, Sede Bogotá]. Repositorio Institucional UN. https://repositorio.unal.edu.co/handle/unal/75010
dc.relation.referencesPeña, G. A., Cardenas, M. A., Monge, M. P., Yerkovich, N., Planes, G. A., & Chulze, S. N. (2022). Reduction of Fusarium proliferatum growth and fumonisin accumulation by ZnO nanoparticles both on a maize based medium and irradiated maize grains. In International Journal of Food Microbiology (Vol. 363, p. 109510). Elsevier BV. https://doi.org/10.1016/j.ijfoodmicro.2021.109510
dc.relation.referencesPerilla, N., & Diaz, G. (1998). Incidence and levels of fumonisin contamination in Colombian corn and corn products. In Mycotoxin Research (Vol. 14, Issue 2, pp. 74–82). Springer Science and Business Media LLC. https://doi.org/10.1007/bf02945096
dc.relation.referencesPeromingo, B., Rodríguez, M., Delgado, J., Andrade, M. J., & Rodríguez, A. (2017). Gene expression as a good indicator of aflatoxin contamination in dry-cured ham. Food microbiology, 67, 31–40. https://doi.org/10.1016/j.fm.2017.05.008
dc.relation.referencesPerrone, G., Susca, A., Cozzi, G., Ehrlich, K., Varga, J., Frisvad, J. C., Meijer, M., Noonim, P., Mahakarnchanakul, W., & Samson, R. A. (2007). Biodiversity of Aspergillus species in some important agricultural products. In Studies in Mycology (Vol. 59, pp. 53–66). Westerdijk Fungal Biodiversity Institute. https://doi.org/10.3114/sim.2007.59.07
dc.relation.referencesPerrone, G., Gallo, A., Susca, A. (2009). Molecular detection of foodborne Aspergillus in agricultural products. In: Liu, D. (ed) Molecular detection of foodborne pathogens. CRC press, Boca Raton, pp 529-548.
dc.relation.referencesPerrone, G., Stea, G., Epifani, F., Varga, J., Frisvad, J. C., & Samson, R. A. (2011). Aspergillus niger contains the cryptic phylogenetic species A. awamori. Fungal biology, 115(11), 1138–1150. https://doi.org/10.1016/j.funbio.2011.07.008
dc.relation.referencesPerrone, G., & Gallo, A. (2017). Aspergillus Species and Their Associated Mycotoxins. Methods in molecular biology (Clifton, N.J.), 1542, 33–49. https://doi.org/10.1007/978-1-4939-6707-0_3
dc.relation.referencesPerrone, G., & Susca, A. (2017). Penicillium Species and Their Associated Mycotoxins. Methods in molecular biology (Clifton, N.J.), 1542, 107–119. https://doi.org/10.1007/978-1-4939-6707-0_5
dc.relation.referencesPerrone, G., Ferrara, M., Medina, A., Pascale, M., & Magan, N. (2020). Toxigenic Fungi and Mycotoxins in a Climate Change Scenario: Ecology, Genomics, Distribution, Prediction and Prevention of the Risk. In Microorganisms (Vol. 8, Issue 10, p. 1496). MDPI AG. https://doi.org/10.3390/microorganisms8101496
dc.relation.referencesPeterson, M. (2008). Fusarium species. A British Columbia perspective in forest seedling production. In: Dumroese, R. K., Riley L. E. (technical coordinators). National Proceedings: Forest and Conservation Nursery Associations 2007. Fort Collins (CO): USDA Forest Service, Rocky Mountain Research Station. Proceedings RMRS-P-57, 109-125.
dc.relation.referencesPeterson, S. W., & Jurjević, Ž. (2019). The Talaromyces pinophilus species complex. Fungal biology, 123(10), 745–762. https://doi.org/10.1016/j.funbio.2019.06.007
dc.relation.referencesPinto, A. C. S. M., De Pierri, C. R., Evangelista, A. G., Gomes, A. S. de L. P. B., & Luciano, F. B. (2022). Deoxynivalenol: Toxicology, Degradation by Bacteria, and Phylogenetic Analysis. In Toxins (Vol. 14, Issue 2, p. 90). MDPI AG. https://doi.org/10.3390/toxins14020090
dc.relation.referencesPiotrowska, M. (2021). Microbiological Decontamination of Mycotoxins: Opportunities and Limitations. In Toxins (Vol. 13, Issue 11, p. 819). MDPI AG. https://doi.org/10.3390/toxins13110819
dc.relation.referencesPitt, J. I. (1979). The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. Academic Press Inc, London.
dc.relation.referencesPitt J. I., and Hocking A. D. (1997), Fungi and Food Spoilage, 2nd eds, London, Blackie Academic and Professional.
dc.relation.referencesPitt, J. I. (2006). Penicillium and related genera. In Food Spoilage Microorganisms (pp. 437–450). Elsevier. https://doi.org/10.1533/9781845691417.4.437
dc.relation.referencesPitt, J. I., & Hocking, A. D. (2009). Aspergillus and Related Teleomorphs. In Fungi and Food Spoilage (pp. 275–337). Springer US. https://doi.org/10.1007/978-0-387-92207-2_8
dc.relation.referencesPitt, J. I. (2014). Penicillium and Talaromyces: Introduction. SIRO Animal, Food and Health Sciences, NSW, Australia. pp. 1-8.
dc.relation.referencesPizzolato Montanha, F., Anater, A., Burchard, J. F., Luciano, F. B., Meca, G., Manyes, L., & Pimpão, C. T. (2018). Mycotoxins in dry-cured meats: A review. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 111, 494–502. https://doi.org/10.1016/j.fct.2017.12.008
dc.relation.referencesPleadin, J., Frece, J., & Markov, K. (2019). Mycotoxins in food and feed. Advances in food and nutrition research, 89, 297–345. https://doi.org/10.1016/bs.afnr.2019.02.007
dc.relation.referencesPrasanna, B. M., Palacios-Rojas, N., Hossain, F., Muthusamy, V., Menkir, A., Dhliwayo, T., Ndhlela, T., San Vicente, F., Nair, S. K., Vivek, B. S., Zhang, X., Olsen, M., & Fan, X. (2020). Molecular Breeding for Nutritionally Enriched Maize: Status and Prospects. In Frontiers in Genetics (Vol. 10). Frontiers Media SA. https://doi.org/10.3389/fgene.2019.01392
dc.relation.referencesPretsch, A., Nagl, M., Schwendinger, K., Kreiseder, B., Wiederstein, M., Pretsch, D., Genov, M., Hollaus, R., Zinssmeister, D., Debbab, A., Hundsberger, H., Eger, A., Proksch, P., & Wiesner, C. (2014). Antimicrobial and anti-inflammatory activities of endophytic fungi Talaromyces wortmannii extracts against acne-inducing bacteria. PloS one, 9(6), e97929. https://doi.org/10.1371/journal.pone.0097929
dc.relation.referencesProctor, R. H., Desjardins, A. E., Plattner, R. D., & Hohn, T. M. (1999). A polyketide synthase gene required for biosynthesis of fumonisin mycotoxins in Gibberella fujikuroi mating population A. Fungal genetics and biology: FG & B, 27(1), 100–112. https://doi.org/10.1006/fgbi.1999.1141
dc.relation.referencesProctor, R. H., Brown, D. W., Plattner, R. D., & Desjardins, A. E. (2003). Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis. Fungal genetics and biology: FG & B, 38(2), 237–249. https://doi.org/10.1016/s1087-1845(02)00525-x
dc.relation.referencesProctor, R. H., & Vaughan, M. M. (2017). Targeting Fumonisin Biosynthetic Genes. Methods in molecular biology (Clifton, N.J.), 1542, 201–214. https://doi.org/10.1007/978-1-4939-6707-0_13
dc.relation.referencesQu, L., Wang, L., Ji, H., Fang, Y., Lei, P., Zhang, X., Jin, L., Sun, D., & Dong, H. (2022). Toxic Mechanism and Biological Detoxification of Fumonisins. In Toxins (Vol. 14, Issue 3, p. 182). MDPI AG. https://doi.org/10.3390/toxins14030182
dc.relation.referencesRahman, H. U., Yue, X., Yu, Q., Zhang, W., Zhang, Q., & Li, P. (2020). Current PCR-based methods for the detection of mycotoxigenic fungi in complex food and feed matrices. In World Mycotoxin Journal (Vol. 13, Issue 2, pp. 139–150). Wageningen Academic Publishers. https://doi.org/10.3920/wmj2019.2455
dc.relation.referencesRai, A., Das, M., & Tripathi, A. (2019). Occurrence and toxicity of a Fusarium mycotoxin, zearalenone. In Critical Reviews in Food Science and Nutrition (Vol. 60, Issue 16, pp. 2710–2729). Informa UK Limited. https://doi.org/10.1080/10408398.2019.1655388
dc.relation.referencesRajasekhar, K. V., Prakash, B., Vijaya Lakshmi, K., Rama Rao, S. V., & Raju, M. V. L. N. (2020). Effect of feeding diet with alternate protein sources and quality protein maize on performance and nutrient utilization in broiler chickens. Tropical animal health and production, 52(5), 2297–2302. https://doi.org/10.1007/s11250-020-02251-4
dc.relation.referencesRajeshkumar, K. C., Yilmaz, N., Marathe, S. D., & Seifert, K. A. (2019). Morphology and multigene phylogeny of Talaromyces amyrossmaniae, a new synnematous species belonging to the section Trachyspermi from India. In MycoKeys (Vol. 45, pp. 41–56). Pensoft Publishers. https://doi.org/10.3897/mycokeys.45.32549
dc.relation.referencesRamadan, N., & Al-Ameri, H. (2022). Aflatoxins. In Aflatoxins - Occurrence, Detoxification, Determination and Health Risks. IntechOpen. https://doi.org/10.5772/intechopen.97292
dc.relation.referencesRaper, K. B., & Thom, C. (1949). A manual of the penicillia, by Kenneth B. Raper and Charles Thom; with the technical assistance and illus. by Dorothy I. Fennel. Williams & Wilkins Co. https://doi.org/10.5962/bhl.title.4993
dc.relation.referencesRaper, K. B., Benjamin, C. R. & Fennell, D. I. (1965). The Genus Aspergillus. In Mycologia (Vol. 58, Issue 3, p. 500). Informa UK Limited. https://doi.org/10.2307/3756932
dc.relation.referencesReddy, K. E., Lee, W., Jeong, J. Y., Lee, Y., Lee, H. J., Kim, M. S., Kim, D. W., Yu, D., Cho, A., Oh, Y. K., & Lee, S. D. (2018). Effects of deoxynivalenol- and zearalenone-contaminated feed on the gene expression profiles in the kidneys of piglets. Asian-Australasian journal of animal sciences, 31(1), 138–148. https://doi.org/10.5713/ajas.17.0454.
dc.relation.referencesRenaud, J. B., Walsh, J. P., & Sumarah, M. W. (2022). Simplified Synthesis and Stability Assessment of Aflatoxin B1-Lysine and Aflatoxin G1-Lysine. Toxins, 14(1), 56. https://doi.org/10.3390/toxins14010056
dc.relation.referencesRodríguez, Y. (2015). Estudio analítico y de exposición a micotoxinas de Fusarium. [Tesis Doctoral. Universidad de Valencia].
dc.relation.referencesRodríguez-Sánchez, I., & Rodríguez-Alfonso, M. A. (2017). Evaluación in vitro de actividades directas de promoción de crecimiento vegetal de Penicillium sp. HC1. [Tesis de Maestría, Pontificia Universidad Javeriana]. Repositorio Javeriana. https://repository.javeriana.edu.co/handle/10554/57937
dc.relation.referencesRodriguez, A. V. (2018). Comportamiento de híbridos de maíz ante una cepa de Aspergillus flavus en la provincia de Córdoba. [Tesis de Maestría. Universidad Nacional de La Plata]. Repositorio institucional Biblioteca Digital, Inta Digital. https://repositorio.inta.gob.ar/handle/20.500.12123/11014
dc.relation.referencesRojas, O. L., & Wilches, A. M. (2009). Determinación de aflatoxinas en alimentos de mayor consumo infantil comercializados en la ciudad de Pamplona, Norte de Santander. Bistua: Revista de la Facultad de Ciencias Básicas. 7(1).
dc.relation.referencesRojas, L., & Wilches, A. M. (2011). Coexistencia de aflatoxinas, zearalenona y deoxinivalenol en alimentos de consumo infantil. @limentech, Ciencia y Tecnología Alimentaria, 10 (1).
dc.relation.referencesRojas C., L., Wilches F, Á., & Darghan C, E. (2015). Co-ocurrencia de microorganismos y sus metabolitos tóxicos en productos alimenticios infantiles. In Revista U.D.C.A Actualidad & amp; Divulgación Científica (Vol. 18, Issue 1). Universidad de Ciencias Aplicadas Y Ambientales - UDCA. https://doi.org/10.31910/rudca.v18.n1.2015.444
dc.relation.referencesRomera, D. (2016). Evaluación del riesgo de la presencia de micotoxinas en piensos comercializados en España mediante métodos cromatográficos multidetección y alta resolución optimizados. [Tesis de Doctorado, Universidad Politécnica de Valencia].
dc.relation.referencesRopejko, K., & Twarużek, M. (2021). Zearalenone and Its Metabolites-General Overview, Occurrence, and Toxicity. Toxins, 13(1), 35. https://doi.org/10.3390/toxins13010035
dc.relation.referencesRypien, K. L. (2008). The Origins and Spread of Aspergillus sydowii, an Opportunistic Pathogen of Caribbean Gorgonian Corals. [Doctoral Thesis, Faculty of the Graduate School of Cornell University]. Cornell University Library. https://ecommons.cornell.edu/handle/1813/9503
dc.relation.referencesSalazar, C. E. (2016). Caracterización molecular y morfológica de aislamientos de Fusarium spp., productores de micotoxinas [Tesis de Doctorado, Universidad Nacional de Colombia, sede Palmira]. Repositorio UN. https://repositorio.unal.edu.co/handle/unal/57485
dc.relation.referencesSalazar, M. M. (2019). Identification and characterization of Fusarium graminearum pathogenesis genes and determination of aggressiveness. [Thesis of Master, University of Illinois at Urbana-Champaign]. University Library. https://www.ideals.illinois.edu/items/112184
dc.relation.referencesSalgar, L. M. (2005). El cultivo de maíz en Colombia. Revista Semillas en la economía campesina. Grupo Semillas. Pag. 2. ISSN 0122-0985
dc.relation.referencesSamson, R.A. (2000). List of names of Trichocomaceae published between 1992 and 1999. En: Integration of modern taxonomic methods for Penicillium and Aspergillus classification. Harwood Academic Publishers, Amsterdam. pp. 73-79.
dc.relation.referencesSamson, R. A., Houbraken, J., Thrane, U., Frisvad, J. C., Andersen, B. (2010). Food and indoor fungi. CBS KNAW Biodiversity Center, Utrecht. ISBN: 9789491751189.
dc.relation.referencesSamson, R. A., Yilmaz, N., Houbraken, J., Spierenburg, H., Seifert, K. A., Peterson, S. W., Varga, J., & Frisvad, J. C. (2011). Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium. In Studies in Mycology (Vol. 70, pp. 159–183). Westerdijk Fungal Biodiversity Institute. https://doi.org/10.3114/sim.2011.70.04
dc.relation.referencesSamson, R. A., Visagie, C. M., Houbraken, J., Hong, S. B., Hubka, V., Klaassen, C. H., Perrone, G., Seifert, K. A., Susca, A., Tanney, J. B., Varga, J., Kocsubé, S., Szigeti, G., Yaguchi, T., & Frisvad, J. C. (2014). Phylogeny, identification and nomenclature of the genus Aspergillus. Studies in mycology, 78, 141–173. https://doi.org/10.1016/j.simyco.2014.07.004
dc.relation.referencesSanchis, V., & Magan, N. (2004). Environmental conditions affecting mycotoxins. In Mycotoxins in Food (pp. 174–189). Elsevier. https://doi.org/10.1533/9781855739086.2.174
dc.relation.referencesSantos, P. E., Piontelli, E., Shea, Y. R., Galluzzo, M. L., Holland, S. M., Zelazko, M. E., & Rosenzweig, S. D. (2006). Penicillium piceum infection: diagnosis and successful treatment in chronic granulomatous disease. Medical mycology, 44(8), 749–753. https://doi.org/10.1080/13693780600967089
dc.relation.referencesSchoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., Chen, W., Fungal Barcoding Consortium, & Fungal Barcoding Consortium Author List (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America, 109(16), 6241–6246. https://doi.org/10.1073/pnas.1117018109
dc.relation.referencesSeifert, K. A., Samson, R. A., Dewaard, J. R., Houbraken, J., Lévesque, C. A., Moncalvo, J. M., Louis-Seize, G., & Hebert, P. D. (2007). Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case. Proceedings of the National Academy of Sciences of the United States of America, 104(10), 3901–3906. https://doi.org/10.1073/pnas.0611691104
dc.relation.referencesSeo, J. A., Proctor, R. H., & Plattner, R. D. (2001). Characterization of four clustered and co-regulated genes associated with fumonisin biosynthesis in Fusarium verticillioides. Fungal genetics and biology: FG & B, 34(3), 155–165. https://doi.org/10.1006/fgbi.2001.1299
dc.relation.referencesShabeer, S., Asad, S., Jamal, A., & Ali, A. (2022). Aflatoxin Contamination, Its Impact and Management Strategies: An Updated Review. Toxins, 14(5), 307. https://doi.org/10.3390/toxins14050307
dc.relation.referencesShen, G., Kang, X., Su, J., Qiu, J., Liu, X., Xu, J., Shi, J., & Mohamed, S. R. (2022). Rapid detection of fumonisin B1 and B2 in ground corn samples using smartphone-controlled portable near-infrared spectrometry and chemometrics. In Food Chemistry (Vol. 384, p. 132487). Elsevier BV. https://doi.org/10.1016/j.foodchem.2022.132487
dc.relation.referencesSmith, J. W., & Groopman, J. D. (2019). Aflatoxins. In Reference Module in Biomedical Sciences. Elsevier. https://doi.org/10.1016/b978-0-12-801238-3.65030-4
dc.relation.referencesSoares, C., Rodrigues, P., Peterson, S. W., Lima, N., & Venâncio, A. (2012). Three new species of Aspergillus section Flavi isolated from almonds and maize in Portugal. Mycologia, 104(3), 682–697. https://doi.org/10.3852/11-088
dc.relation.referencesStein, R. A., & Bulboacӑ, A. E. (2017). Mycotoxins. In Foodborne Diseases (pp. 407–446). Elsevier. https://doi.org/10.1016/b978-0-12-385007-2.00021-8
dc.relation.referencesStępień, Ł., Gromadzka, K., & Chełkowski, J. (2012). Polymorphism of mycotoxin biosynthetic genes among Fusarium equiseti isolates from Italy and Poland. In Journal of Applied Genetics (Vol. 53, Issue 2, pp. 227–236). Springer Science and Business Media LLC. https://doi.org/10.1007/s13353-012-0085-1
dc.relation.referencesStępień, Ł., Waśkiewicz, A., & Wilman, K. (2015). Host extract modulates metabolism and fumonisin biosynthesis by the plant-pathogenic fungus Fusarium proliferatum. International journal of food microbiology, 193, 74–81. https://doi.org/10.1016/j.ijfoodmicro.2014.10.020
dc.relation.referencesSummerell B. A. (2019). Resolving Fusarium: Current Status of the Genus. Annual review of phytopathology, 57, 323–339. https://doi.org/10.1146/annurev-phyto-082718-100204
dc.relation.referencesSweeney, M. J., & Dobson, A. D. (1998). Mycotoxin production by Aspergillus, Fusarium and Penicillium species. International journal of food microbiology, 43(3), 141–158. https://doi.org/10.1016/s0168-1605(98)00112-3
dc.relation.referencesTagne, A., Feujio, T. P., Sonna, C. (2008). Essential oil and plant extracts as potential substitutes to synthetic fungicides in the control of fungi. Endure Conference on durable Crop Protection. Montpellier.
dc.relation.referencesTapia Coronado, J. J., Atencio Solano, L. M., Ramirez Duran, J., Osorio Guerrero, K. V., Castillo Sierra, J., & Mejía Kerguelén, S. (2022). Situación actual y avances tecnológicos para mejorar la productividad del cultivo de maíz en Colombia. In ACI Avances en Ciencias e Ingenierías (Vol. 14, Issue 1). Universidad San Francisco De Quito. https://doi.org/10.18272/aci.v14i1.2585
dc.relation.referencesTemba, M. C., Njobeh, P. B., & Kayitesi, E. (2017). Storage stability of maize-groundnut composite flours and an assessment of aflatoxin B1 and ochratoxin A contamination in flours and porridges. In Food Control (Vol. 71, pp. 178–186). Elsevier BV. https://doi.org/10.1016/j.foodcont.2016.06.033
dc.relation.referencesThapa, A., Horgan, K. A., White, B., & Walls, D. (2021). Deoxynivalenol and Zearalenone - Synergistic or Antagonistic Agri-Food Chain Co-Contaminants? In Toxins (Vol. 13, Issue 8, p. 561). MDPI AG. https://doi.org/10.3390/toxins13080561
dc.relation.referencesThom, C., & Raper, K. B. (1945). A manual of the Aspergilli, by Charles Thom and Kenneth B. Raper. The Williams & Wilkins Company,. https://doi.org/10.5962/bhl.title.5694
dc.relation.referencesTomlinson, J. K., Cooley, A. J., Zhang, S., & Johnson, M. E. (2011). Granulomatous lymphadenitis caused by Talaromyces helicus in a Labrador Retriever. Veterinary clinical pathology, 40(4), 553–557. https://doi.org/10.1111/j.1939-165X.2011.00377.x
dc.relation.referencesU.S. Department of Agriculture [USDA]. (2022). Corn. Consultado agosto 14, 2022 en https://www.fas.usda.gov/commodities/corn
dc.relation.referencesVarga, J., Juhász, Á., Kevei, F., & Kozakiewicz, Z. (2004). Molecular Diversity of Agriculturally Important Aspergillus Species. In European Journal of Plant Pathology (Vol. 110, Issue 5/6, pp. 627–640). Springer Science and Business Media LLC. https://doi.org/10.1023/b:ejpp.0000032402.36050.df
dc.relation.referencesVarón de Agudelo, F., Rodríguez, J., Villalobos, J. C., & Parody, J. (2022). Manual de Enfermedades y Plagas del Maíz. Advanta. Pp. 1-65. ISBN 978-958-53980-0-9.
dc.relation.referencesVelluti, A., Marín, S., Bettucci, L., Ramos, A. J., & Sanchis, V. (2000). The effect of fungal competition on colonization of maize grain by Fusarium moniliforme, F. proliferatum and F. graminearum and on fumonisin B1 and zearalenone formation. International journal of food microbiology, 59(1-2), 59–66. https://doi.org/10.1016/s0168-1605(00)00289-0
dc.relation.referencesVilla-Martinez, A., Pérez-Leal, R., Morales-Morales, H. A., Basurto-Sotelo, M., Soto-Parra, J. M., & Martínez-Escudero, E. (2015). Situación actual en el control de Fusarium spp. y evaluación de la actividad antifúngica de extractos vegetales. In Acta Agronómica (Vol. 64, Issue 2, pp. 194–205). Universidad Nacional de Colombia. https://doi.org/10.15446/acag.v64n2.43358
dc.relation.referencesVisagie, C. M., Hirooka, Y., Tanney, J. B., Whitfield, E., Mwange, K., Meijer, M., Amend, A. S., Seifert, K. A., & Samson, R. A. (2014). Aspergillus, Penicillium and Talaromyces isolated from house dust samples collected around the world. In Studies in Mycology (Vol. 78, Issue 1, pp. 63–139). Westerdijk Fungal Biodiversity Institute. https://doi.org/10.1016/j.simyco.2014.07.002
dc.relation.referencesVisagie, C. M., Houbraken, J., Frisvad, J. C., Hong, S. B., Klaassen, C. H., Perrone, G., Seifert, K. A., Varga, J., Yaguchi, T., & Samson, R. A. (2014). Identification and nomenclature of the genus Penicillium. Studies in mycology, 78, 343–371. https://doi.org/10.1016/j.simyco.2014.09.001
dc.relation.referencesVisagie, C. M., Seifert, K. A., Houbraken, J., Samson, R. A., & Jacobs, K. (2014). Diversity of Penicillium section Citrina within the fynbos biome of South Africa, including a new species from a Protea repens infructescence. Mycologia, 106(3), 537–552. https://doi.org/10.3852/13-256
dc.relation.referencesVolke-Sepulveda, T., Salgado-Bautista, D., Bergmann, C., Wells, L., Gutierrez-Sanchez, G., & Favela-Torres, E. (2016). Secretomic Insight into Glucose Metabolism of Aspergillus brasiliensis in Solid-State Fermentation. Journal of proteome research, 15(10), 3856–3871. https://doi.org/10.1021/acs.jproteome.6b00663
dc.relation.referencesWei, S., van der Lee, T., Verstappen, E., van Gent, M., & Waalwijk, C. (2017). Targeting Trichothecene Biosynthetic Genes. Methods in molecular biology (Clifton, N.J.), 1542, 173–189. https://doi.org/10.1007/978-1-4939-6707-0_11
dc.relation.referencesWeidenborner, M. (2011). Mycotoxins and Their Metabolites in Humans and Animals. Springer, New York. ISBN 978-1-4419-7432-7.
dc.relation.referencesWeisenborn, J. L., Kirschner, R., Cáceres, O., & Piepenbring, M. (2010). Talaromyces indigoticus Takada & Udagawa, the first record for Panama and the American continent. Mycopathologia, 170(3), 203–208. https://doi.org/10.1007/s11046-010-9305-6
dc.relation.referencesWheeler, K. A., Hurdman, B. F., & Pitt, J. I. (1991). Influence of pH on the growth of some toxigenic species of Aspergillus, Penicillium and Fusarium. In International Journal of Food Microbiology (Vol. 12, Issues 2–3, pp. 141–149). Elsevier BV. https://doi.org/10.1016/0168-1605(91)90063-u
dc.relation.referencesWitaszak, N., Lalak-Kańczugowska, J., Waśkiewicz, A., & Stępień, Ł. (2020). The Impacts of Asparagus Extract Fractions on Growth and Fumonisins Biosynthesis in Fusarium Proliferatum. Toxins, 12(2), 95. https://doi.org/10.3390/toxins12020095
dc.relation.referencesYadav, A. N., Verma, P., Kumar, V., Sangwan, P., Mishra, S., Panjiar, N., Gupta, V. K., & Saxena, A. K. (2018). Biodiversity of the Genus Penicillium in Different Habitats. In New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 3–18). Elsevier. https://doi.org/10.1016/b978-0-444-63501-3.00001-6
dc.relation.referencesYilmaz, N., Houbraken, J., Hoekstra, E. S., Frisvad, J. C., Visagie, C. M., & Samson, R. A. (2012). Delimitation and characterisation of Talaromyces purpurogenus and related species. Persoonia, 29, 39–54. https://doi.org/10.3767/003158512X659500
dc.relation.referencesYilmaz, N., Visagie, C. M., Houbraken, J., Frisvad, J. C., & Samson, R. A. (2014). Polyphasic taxonomy of the genus Talaromyces. Studies in mycology, 78, 175–341. https://doi.org/10.1016/j.simyco.2014.08.001
dc.relation.referencesYli‐Mattila, T., Paavanen‐Huhtala, S., Parikka, P., Konstantinova, P., Gagkaeva, T., Eskola, M., Jestoi, M., & Rizzo, A. (2002). Occurrence of Fusarium fungi and their toxins in Finnish cereals in 1998 and 2000. Journal of Applied Genetics, 43, 207-214.
dc.relation.referencesYu, J., Ehrlich, K. C. (2011). Aflatoxin Biosynthetic Pathway and Pathway Genes. In Aflatoxins - Biochemistry and Molecular Biology. InTech. https://doi.org/10.5772/23034
dc.relation.referencesYu, S., Jia, B., Lin, H., Zhang, S., Yu, D., Liu, N., & Wu, A. (2022). Effects of Fumonisin B and Hydrolyzed Fumonisin B on Growth and Intestinal Microbiota in Broilers. In Toxins (Vol. 14, Issue 3, p. 163). MDPI AG. https://doi.org/10.3390/toxins14030163
dc.relation.referencesZhai, M. M., Li, J., Jiang, C. X., Shi, Y. P., Di, D. L., Crews, P., & Wu, Q. X. (2016). The Bioactive Secondary Metabolites from Talaromyces species. Natural products and bioprospecting, 6(1), 1–24. https://doi.org/10.1007/s13659-015-0081-3
dc.relation.referencesZhao, X., Byrne, H. J., O’Connor, C. M., Curtin, J., & Tian, F. (2022). Limits of Detection of Mycotoxins by Laminar Flow Strips: A Review. In Applied Nano (Vol. 3, Issue 2, pp. 91–101). MDPI AG. https://doi.org/10.3390/applnano3020006
dc.relation.referencesZłoch, M., Rogowska, A., Pomastowski, P., Railean-Plugaru, V., Walczak-Skierska, J., Rudnicka, J., & Buszewski, B. (2020). Use of Lactobacillus paracasei strain for zearalenone binding and metabolization. Toxicon: official journal of the International Society on Toxinology, 181, 9–18. https://doi.org/10.1016/j.toxicon.2020.03.011
dc.relation.referencesBuslyk, T. V., Rosalovsky, V. P., & Salyha, Y. T. (2022). PCR-Based Detection and Quantification of Mycotoxin-Producing Fungi. In Cytology and Genetics (Vol. 56, Issue 1, pp. 16–30). Allerton Press. https://doi.org/10.3103/s0095452722010042
dc.relation.referencesPitt, J. I., & Hocking, A. D. (2022). Fungi and Food Spoilage. Springer International Publishing. https://doi.org/10.1007/978-3-030-85640-3
dc.relation.referencesAlina Marc, R. (2022). Implications of Mycotoxins in Food Safety. In Mycotoxins and Food Safety - Recent Advances. IntechOpen. https://doi.org/10.5772/intechopen.102495
dc.relation.referencesVásquez-Ocmín, P. G., Marti, G., Gadea, A., Cabanac, G., Vásquez-Briones, J. A., Casavilca-Zambrano, S., Ponts, N., Jargeat, P., Haddad, M., & Bertani, S. (2022). Metabotyping of Andean pseudocereals and characterization of emerging mycotoxins. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2022.06.23.497323
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.subject.agrovocHongos
dc.subject.agrovocFungi
dc.subject.agrovocMorfología fúngica
dc.subject.agrovocFungal morphology
dc.subject.agrovocMaíz
dc.subject.agrovocMaize
dc.subject.agrovocMycotoxins
dc.subject.proposalFusarium
dc.subject.proposalAspergillus
dc.subject.proposalPenicillium
dc.subject.proposalTalaromyces
dc.subject.proposalPCR
dc.subject.proposalELISA
dc.subject.proposalDetección
dc.subject.proposalMicotoxinas
dc.title.translatedMorphological and molecular characterization of toxigenic fungi associated with corn cob in Valle del Cauca, Colombia
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dc.description.curricularareaCiencias Agropecuarias.Sede Palmira
dc.contributor.orcidVelásquez-Ortiz, David [0000-0003-0781-099X]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito