Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorNarváez Rincón, Paulo César
dc.contributor.advisorBoly, Vincent
dc.contributor.advisorFalk, Véronique
dc.contributor.advisorSerna Rodas, Juliana
dc.contributor.authorRivera Gil, Jose Luis
dc.date.accessioned2023-02-10T19:11:27Z
dc.date.available2023-02-10T19:11:27Z
dc.date.issued2022-12-14
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83421
dc.descriptionilustraciones
dc.description.abstractManaging a new chemical product design and development project is a complex task at different levels. In addition to the technical challenges of the formulation and the definition of process conditions, design teams should also consider the requirements of the organization where the product design is performed. Therefore, the organizational dimension and its importance in chemical product design are explored in this research. Through a bibliometric literature review, it was found that chemical product design methodologies integrating the organizational context have not been thoroughly analyzed and are highly required. In this research, through a systemic analysis based on information collected in semi-structured interviews with design experts of the cosmetic sector, the characteristics of the organizational context and its effects on the product design process of that sector were studied. Additionally, information captured during those interviews was formalized in an expert knowledge base of recommendations to support the cosmetic product design process. A tool to adapt those recommendations to the design process of specific companies was proposed. The tool is applied through collaborative workshops which enable the active participation of the design team in the evaluation of the design process in order to select and implement the most suitable recommendations. Finally, the tool is applied in a real organization showing how it can be used to evaluate and improve a real design process. In that case it was found that the tool proposes adapted improvement solutions aligned to the company's value concepts, where the design team has the role of evaluator and builder of its own design methodology. (Texto tomado de la fuente)
dc.description.abstractGestionar un proyecto de diseño y desarrollo de un nuevo producto químico es una tarea compleja a diferentes niveles. Además de los retos técnicos de la formulación y la definición de las condiciones del proceso, los equipos de diseño también deben tener en cuenta los requisitos de la organización donde se realiza el diseño del producto. Por lo tanto, en esta investigación se explora la dimensión organizativa y su importancia en el diseño de productos químicos. A través de una revisión bibliográfica, se encontró que las metodologías de diseño de productos químicos que integran el contexto organizacional no han sido analizadas a fondo y son altamente requeridas. En esta investigación, a través de un análisis sistémico basado en la información recopilada en entrevistas semiestructuradas con expertos en diseño del sector cosmético, se estudiaron las características del contexto organizacional y sus efectos en el proceso de diseño de productos de dicho sector. Además, la información capturada durante dichas entrevistas se formalizó en una base de conocimiento experto de recomendaciones para apoyar el proceso de diseño de productos cosméticos. Se propuso una herramienta para adaptar esas recomendaciones al proceso de diseño de empresas específicas. La herramienta se aplica a través de talleres colaborativos que permiten la participación activa del equipo de diseño en la evaluación del proceso de diseño para seleccionar e implementar las recomendaciones más adecuadas. Por último, la herramienta se aplica en una organización real mostrando cómo puede utilizarse para evaluar y mejorar un proceso de diseño real. En ese caso se comprobó que la herramienta propone soluciones de mejora adaptadas y alineadas con los conceptos de valor de la empresa, donde el equipo de diseño tiene el papel de evaluador y constructor de su propia metodología de diseño.
dc.format.extentxvii, 133 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.publisherUniversité de Lorraine
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.titleA system approach to support a methodology for the design of formulated cosmetic products in the context of companies
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Química
dc.contributor.researchgroupGrupo de Investigación en Procesos Químicos y Bioquímicos
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ingeniería
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAbdul Rahim, Z., Lim Sing Sheng, I., & Nooh, A. B. (2015). TRIZ methodology for applied chemical engineering: A case study of new product development. Chemical Engineering Research and Design, 103, 11–24. https://doi.org/10.1016/j.cherd.2015.08.027
dc.relation.referencesAbildskov, J., & Kontogeorgis, G. M. (2004). Chemical Product Design: A new challenge of applied thermodynamics. Chemical Engineering Research and Design, 82(11), 1505–1510. https://doi.org/10.1205/cerd.82.11.1505.52036
dc.relation.referencesAbildskov, Jens, & O’Connell, J. P. (2011). Molecular Thermodynamic Modeling and Design of Microencapsulation Systems for Drug Delivery. Journal of Chemical & Engineering Data, 56(4), 1229–1237. https://doi.org/10.1021/je1011218
dc.relation.referencesAlshehri, A. S., Gani, R., & You, F. (2020). Deep learning and knowledge-based methods for computer-aided molecular design—toward a unified approach: State-of-the-art and future directions. Computers & Chemical Engineering, 141, 107005. https://doi.org/10.1016/j.compchemeng.2020.107005
dc.relation.referencesAlvarez, O. (2017). Integrating creativity in the design of chemical products. 2017 Research in Engineering Education Symposium, REES 2017, Armstrong 2006, 1–9.
dc.relation.referencesAndo, S. (2020). METHOD FOR PROVIDING COSMETIC PRODUCT CUSTOMIZED FOR CUSTOMER (Patent No. WO/2020/194365). https://patentscope.wipo.int/search/es/detail.jsf?docId=WO2020194365&tab=PCTBIBLIO&_cid=P22-KI778W-46975-1
dc.relation.referencesAriffin Kashinath, S. A., Abdul Manan, Z., Hashim, H., & Wan Alwi, S. R. (2012). Design of green diesel from biofuels using computer aided technique. Computers & Chemical Engineering, 41, 88–92. https://doi.org/10.1016/j.compchemeng.2012.03.006
dc.relation.referencesArrieta-Escobar, J. A., Bernardo, F. P., Orjuela, A., Camargo, M., & Morel, L. (2019). Incorporation of heuristic knowledge in the optimal design of formulated products: Application to a cosmetic emulsion. Computers and Chemical Engineering, 122, 265–274. https://doi.org/10.1016/j.compchemeng.2018.08.032
dc.relation.referencesArrieta-Escobar, J. A., Camargo, M., Morel, L., & Orjuela, A. (2020). Current approaches on chemical product design: A study of opportunities identification for integrated methodologies. Towards the Digital World and Industry X.0 - Proceedings of the 29th International Conference of the International Association for Management of Technology, IAMOT 2020, 785–794.
dc.relation.referencesAustin, N. D., Sahinidis, N. V., & Trahan, D. W. (2016). Computer-aided molecular design: An introduction and review of tools, applications, and solution techniques. Chemical Engineering Research and Design, 116, 2–26. https://doi.org/10.1016/j.cherd.2016.10.014
dc.relation.referencesAustin, N. D., Samudra, A. P., Sahinidis, N. V., & Trahan, D. W. (2016). Mixture design using derivative-free optimization in the space of individual component properties. AIChE Journal, 62(5), 1514–1530. https://doi.org/10.1002/aic.15142
dc.relation.referencesAzmin, S. N., Yunus, N. A., Mustaffa, A. A., Wan Alwi, S. R., & Chua, L. S. (2015). A framework for solvent selection based on herbal extraction process design. Journal of Engineering Science and Technology, 10(October 2017), 25–34.
dc.relation.referencesBagajewicz, M., Hill, S., Robben, A., Lopez, H., Sanders, M., Sposato, E., Baade, C., Manora, S., & Hey Coradin, J. (2011). Product design in price-competitive markets: A case study of a skin moisturizing lotion. AIChE Journal, 57(1), 160–177. https://doi.org/10.1002/aic.12242
dc.relation.referencesBagajewicz, M. J. (2007). On the role of microeconomics, planning, and finances in product design. AIChE Journal, 53(12), 3155–3170. https://doi.org/10.1002/aic.11332
dc.relation.referencesBardow, A., Steur, K., & Gross, J. (2010). Continuous-Molecular Targeting for Integrated Solvent and Process Design. Industrial & Engineering Chemistry Research, 49(6), 2834–2840. https://doi.org/10.1021/ie901281w
dc.relation.referencesBergez-Lacoste, M., Thiebaud-Roux, S., De Caro, P., Fabre, J.-F., Gerbaud, V., & Mouloungui, Z. (2014). From chemical platform molecules to new biosolvents: Design engineering as a substitution methodology. Biofuels, Bioproducts and Biorefining, 8(3), 438–451. https://doi.org/10.1002/bbb.1480
dc.relation.referencesBernardo, F. P., & Saraiva, P. M. (2004). Value of information analysis in product/process design (pp. 151–156). https://doi.org/10.1016/S1570-7946(04)80091-9
dc.relation.referencesBernardo, F. P., & Saraiva, P. M. (2005). Integrated process and product design optimization: a cosmetic emulsion application. Computer Aided Chemical Engineering, 20(C), 1507–1512. https://doi.org/10.1016/S1570-7946(05)80093-8
dc.relation.referencesBernardo, F. P., & Saraiva, P. M. (2015). A conceptual model for chemical product design. AIChE Journal, 61(3), 802–815. https://doi.org/10.1002/aic.14681
dc.relation.referencesBoly, V., Camargo-Pardo, M., & Morel, L. (2016). Ingénierie de l’innovation (H. Lavoisier (ed.); 3e édition). Lavoisier, Hermès.
dc.relation.referencesBongers, P. M. M., & Almeida-Rivera, C. (2009). Product Driven Process Synthesis Methodology. In Computer Aided Chemical Engineering (Vol. 26). Elsevier B.V. https://doi.org/10.1016/S1570-7946(09)70039-2
dc.relation.referencesBosschaert, T. (2019). Symbiosis in development Making new futures possible.
dc.relation.referencesBrem, A., Maier, M., & Wimschneider, C. (2016). Competitive advantage through innovation: the case of Nespresso. European Journal of Innovation Management, 19(1), 133–148. https://doi.org/10.1108/EJIM-05-2014-0055
dc.relation.referencesBrunet, E. (2019). La boîte à outils du design thinking. In Dunod (Ed.), La boîte à outils du design thinking : 67 outils clés en main + 4 vidéos d’approfondissement. Dunod.
dc.relation.referencesCardona Jaramillo, J. E. C., Achenie, L. E., Álvarez, O. A., Carrillo Bautista, M. P., & González Barrios, A. F. (2020). The multiscale approach t o the design of bio-based emulsions. In Current Opinion in Chemical Engineering (Vol. 27, pp. 65–71). https://doi.org/10.1016/j.coche.2019.11.008
dc.relation.referencesCEFIC. (2022). 2022 Facts and figures of the European chemical industry. https://cefic.org/a-pillar-of-the-european-economy/facts-and-figures-of-the-european-chemical-industry/profile/
dc.relation.referencesChai, S., Liu, Q., Liang, X., Guo, Y., Zhang, S., Xu, C., Du, J., Yuan, Z., Zhang, L., & Gani, R. (2020). A grand product design model for crystallization solvent design. Computers & Chemical Engineering, 135, 106764. https://doi.org/10.1016/j.compchemeng.2020.106764
dc.relation.referencesChan, T. H., Mihm, J., & Sosa, M. E. (2018). On styles in product design: An analysis of U.S. Design patents. Management Science, 64(3), 1230–1249. https://doi.org/10.1287/mnsc.2016.2653
dc.relation.referencesChan, Y. C., Fung, K. Y., & Ng, K. M. (2018). Product design: A pricing framework accounting for product quality and consumer awareness. AIChE Journal, 64(7), 2462–2471. https://doi.org/10.1002/aic.16153
dc.relation.referencesChandrasegaran, S. K., Ramani, K., Sriram, R. D., Horváth, I., Bernard, A., Harik, R. F., & Gao, W. (2013). The evolution, challenges, and future of knowledge representation in product design systems. CAD Computer Aided Design, 45(2), 204–228. https://doi.org/10.1016/j.cad.2012.08.006
dc.relation.referencesChang, S. S. L., Kong, Y. L., Lim, W. X., Ooi, J., Ng, D. K. S., & Chemmangattuvalappil, N. G. (2018). Design of alternate solvent for recovery of residual palm oil: simultaneous optimization of process performance with environmental, health and safety aspects. Clean Technologies and Environmental Policy, 20(5), 949–968. https://doi.org/10.1007/s10098-018-1515-5
dc.relation.referencesChavy-Macdonald, M. A., Oizumi, K., & Aoyama, K. (2019). Towards a generalized system dynamics model for product design & adoption. Advances in Transdisciplinary Engineering, 10(July), 455–464. https://doi.org/10.3233/ATDE190152
dc.relation.referencesChemmangattuvalappil, N. G., & Eden, M. R. (2013). A Novel Methodology for Property-Based Molecular Design Using Multiple Topological Indices. Industrial & Engineering Chemistry Research, 52(22), 7090–7103. https://doi.org/10.1021/ie302516v
dc.relation.referencesCheng, K. C., Khoo, Z. S., Lo, N. W., Tan, W. J., & Chemmangattuvalappil, N. G. (2020). Design and performance optimisation of detergent product containing binary mixture of anionic-nonionic surfactants. Heliyon, 6(5), e03861. https://doi.org/10.1016/j.heliyon.2020.e03861
dc.relation.referencesCheng, Yuen S., Lam, K. W., Ng, K. M., Ko, R. K. M., & Wibowo, C. (2009). An integrative approach to product development—A skin-care cream. Computers & Chemical Engineering, 33(5), 1097–1113. https://doi.org/10.1016/j.compchemeng.2008.10.010
dc.relation.referencesCheng, Yuen S., Ng, K. M., & Wibowo, C. (2010). Product Design: a Transdermal Patch Containing a Traditional Chinese Medicinal Tincture. Industrial & Engineering Chemistry Research, 49(10), 4904–4913. https://doi.org/10.1021/ie901554s
dc.relation.referencesCheng, Yuen Shan, Fung, K. Y., Ng, K. M., & Wibowo, C. (2016). Economic analysis in product design - A case study of a TCM dietary supplement. Chinese Journal of Chemical Engineering, 24(1), 202–214. https://doi.org/10.1016/j.cjche.2015.06.014
dc.relation.referencesCholakov, G. S. (2011). Towards computer aided design of fuels and lubricants. Journal of the University of Chemical Technology and Metallurgy, 46(3), 217–236.
dc.relation.referencesChong, F. K., Eljack, F. T., Atilhan, M., Foo, D. C. Y., & Chemmangattuvalappil, N. G. (2016). A systematic visual methodology to design ionic liquids and ionic liquid mixtures: Green solvent alternative for carbon capture. Computers & Chemical Engineering, 91, 219–232. https://doi.org/10.1016/j.compchemeng.2016.04.006
dc.relation.referencesChong, F. K., Foo, D. C. Y., Eljack, F. T., Atilhan, M., & Chemmangattuvalappil, N. G. (2015). Ionic liquid design for enhanced carbon dioxide capture by computer-aided molecular design approach. Clean Technologies and Environmental Policy, 17(5), 1301–1312. https://doi.org/10.1007/s10098-015-0938-5
dc.relation.referencesChong, F. K., Foo, D. C. Y., Eljack, F. T., Atilhan, M., & Chemmangattuvalappil, N. G. (2016). A systematic approach to design task-specific ionic liquids and their optimal operating conditions. Molecular Systems Design & Engineering, 1(1), 109–121. https://doi.org/10.1039/C5ME00013K
dc.relation.referencesCignitti, S., Mansouri, S. S., Woodley, J. M., & Abildskov, J. (2018). Systematic Optimization-Based Integrated Chemical Product–Process Design Framework. Industrial & Engineering Chemistry Research, acs.iecr.7b04216. https://doi.org/10.1021/acs.iecr.7b04216
dc.relation.referencesCisternas, L. A. (2006). Nature of Chemical Products. In Ka Ming Ng, R. Gani, & K. Dam-johansen (Eds.), Chemical Product Design: Towards a Perspective through Case Studies (First Edit, p. 459). Elsevier Science.
dc.relation.referencesConte, E., Gani, R., Cheng, Y. S. Y. S., & Ng, K. M. K. M. (2012). Design of formulated products: Experimental component. AIChE Journal, 58(1), 173–189. https://doi.org/10.1002/aic.12582
dc.relation.referencesConte, E., Gani, R., & Malik, T. I. (2011). The virtual Product-Process Design laboratory to manage the complexity in the verification of formulated products. Fluid Phase Equilibria, 302(1–2), 294–304. https://doi.org/10.1016/j.fluid.2010.09.031
dc.relation.referencesConte, E., Gani, R., & Ng, K. M. (2011). Design of Formulated Products: A Systematic Methodology. AIChE Journal, 57(9), 2431–2449. https://doi.org/10.1002/aic.12458
dc.relation.referencesConte, E., Morales-Rodriguez, R., & Gani, R. (2009a). The Virtual Product-Process Design Laboratory as a Tool for Product Development (pp. 249–254). https://doi.org/10.1016/S1570-7946(09)70042-2
dc.relation.referencesConte, E., Morales-Rodriguez, R., & Gani, R. (2009b). The Virtual Product-Process Design Laboratory for Design and Analysis of Formulations (pp. 825–830). https://doi.org/10.1016/S1570-7946(09)70358-X
dc.relation.referencesCooper, R. G. (2019). The drivers of success in new-product development. Industrial Marketing Management, 76(January 2018), 36–47. https://doi.org/10.1016/j.indmarman.2018.07.005
dc.relation.referencesCosta, R., Elliott, P., Saraiva, P. M., Aldridge, D., & Moggridge, G. D. (2008). Development of Sustainable Solutions for Zebra Mussel Control Through Chemical Product Engineering. Chinese Journal of Chemical Engineering, 16(3), 435–440. https://doi.org/10.1016/S1004-9541(08)60101-9
dc.relation.referencesCosta, R., Moggridge, G. D., & Saraiva, P. M. (2006). Chemical product engineering: An emerging paradigm within chemical engineering. AIChE Journal, 52(6), 1976–1986. https://doi.org/10.1002/aic.10880
dc.relation.referencesCussler, E. L., & Moggridge, G. D. (2011). Chemical product design. In Chemical Product Design, Second Edition (Second, Vol. 9780521168). https://doi.org/10.1017/CBO9781139035132
dc.relation.referencesDahmen, M., & Marquardt, W. (2016). Model-Based Design of Tailor-Made Biofuels. Energy & Fuels, 30(2), 1109–1134. https://doi.org/10.1021/acs.energyfuels.5b02674
dc.relation.referencesDahmen, M., & Marquardt, W. (2017). Model-Based Formulation of Biofuel Blends by Simultaneous Product and Pathway Design. Energy & Fuels, 31(4), 4096–4121. https://doi.org/10.1021/acs.energyfuels.7b00118
dc.relation.referencesDerkyi, N. S. A., Acheampong, M. A., Mwin, E. N., Tetteh, P., & Aidoo, S. C. (2018). Product design for a functional non-alcoholic drink. South African Journal of Chemical Engineering, 25, 85–90. https://doi.org/10.1016/j.sajce.2018.02.002
dc.relation.referencesDori, D., & Shpitalni, M. (2005). Mapping knowledge about product lifecycle engineering for ontology construction via object-process methodology. CIRP Annals - Manufacturing Technology, 54(1), 117–122. https://doi.org/10.1016/S0007-8506(07)60063-8
dc.relation.referencesElias, E., & Chaumon, M.-E. B. (2022). Les objets intermédiaires de conception comme instruments de l’activité : quels apports dans une démarche de conception inclusive et participative de technologies ambiantes à destination des personnes fragilisées ? Activites, 19–1. https://doi.org/10.4000/activites.7295
dc.relation.referencesEwoldt, R. H. (2014). Extremely Soft: Design with Rheologically Complex Fluids. Soft Robotics, 1(1), 12–20. https://doi.org/10.1089/soro.2013.1508
dc.relation.referencesFatoni, R., Elkamel, A., Simon, L., & Almansoori, A. (2015). A computer-aided framework for product design with application to wheat straw polypropylene composites. The Canadian Journal of Chemical Engineering, 93(12), 2141–2149. https://doi.org/10.1002/cjce.22346
dc.relation.referencesFeng, T.-J., Ma, L.-T., Ding, X.-Q., Yang, N., & Xiao, X. (2008). Intelligent techniques for cigarette formula design. Mathematics and Computers in Simulation, 77(5–6), 476–486. https://doi.org/10.1016/j.matcom.2007.11.025
dc.relation.referencesTowards satisfying performance of an O/W cosmetic emulsion: screening of reformulation factors on textural and rheological properties using general experimental design. International Journal of
dc.relation.referencesFilipovic, M., Lukic, M., Djordjevic, S., Krstonosic, V., Pantelic, I., Vuleta, G., & Savic, S. (2017). Cosmetic Science, 39(5), 486–499. https://doi.org/10.1111/ics.12402
dc.relation.referencesFrenkel, M. (2011). Thermophysical and thermochemical properties on-demand for chemical process and product design. Computers & Chemical Engineering, 35(3), 393–402. https://doi.org/10.1016/j.compchemeng.2010.12.013
dc.relation.referencesFrutiger, J., Cignitti, S., Abildskov, J., Woodley, J. M., & Sin, G. (2019). Computer-aided molecular product-process design under property uncertainties – A Monte Carlo based optimization strategy. Computers & Chemical Engineering, 122, 247–257. https://doi.org/10.1016/j.compchemeng.2018.08.021
dc.relation.referencesFrutiger, J., Cignitti, S., Abildskov, J., Woodley, J., & Sin, G. (2017). Computational working fluid design under property uncertainties: Application to organic rankine cycle. 30th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2017.
dc.relation.referencesFung, K. Y., & Ng, K. M. (2003). Product-centered processing: Pharmaceutical tablets and capsules. AIChE Journal, 49(5), 1193–1215. https://doi.org/10.1002/aic.690490512
dc.relation.referencesFung, K. Y., Ng, K. M., Zhang, L., & Gani, R. (2016). A grand model for chemical product design. Computers & Chemical Engineering, 91, 15–27. https://doi.org/10.1016/j.compchemeng.2016.03.009
dc.relation.referencesGani, R., & Ng, K. M. (2015). Product design - Molecules, devices, functional products, and formulated products. Computers and Chemical Engineering, 81, 70–79. https://doi.org/10.1016/j.compchemeng.2015.04.013
dc.relation.referencesGertig, C., Leonhard, K., & Bardow, A. (2020). Computer-aided molecular and processes design based on quantum chemistry: current status and future prospects. In Current Opinion in Chemical Engineering (Vol. 27, pp. 89–97). https://doi.org/10.1016/j.coche.2019.11.007
dc.relation.referencesGong, H., Ding, X., & Ma, L. (2006). Genetic algorithm for optimization of tobacco-group formulas design. The Proceedings of the Multiconference on “Computational Engineering in Systems Applications,” 1532–1536. https://doi.org/10.1109/CESA.2006.313558
dc.relation.referencesGoodwin, K. (2009). Designing for the Digital Age - How to Create Human-Centered Products and Services. 739. https://books.google.fr/books?hl=es&lr=&id=yH6Aqr5zKJEC&oi=fnd&pg=PR23&dq=The+organizational+context+for+product+design+involves+the+interaction+of+multiple+actors+with+different+competencies+and+responsibilities+&ots=IIJB6_Kgmm&sig=b1FIHttXZ34GUUfi4ylqPJ
dc.relation.referencesGrime, M. M., & Wright, G. (2016). Delphi Method. In Wiley StatsRef: Statistics Reference Online (pp. 1–6). https://doi.org/10.1002/9781118445112.stat07879
dc.relation.referencesHada, S., Herring, R. H., & Eden, M. R. (2017). Mixture formulation through multivariate statistical analysis of process data in property cluster space. Computers and Chemical Engineering, 107, 26–36. https://doi.org/10.1016/j.compchemeng.2017.06.017
dc.relation.referencesHatchuel, A., & Weil, B. (2003). A new approach of innovative design: An introduction to C-K theory. Proceedings of the International Conference on Engineering Design, ICED, DS 31, 1–15.
dc.relation.referencesHeintz, J., Belaud, J.-P., Pandya, N., Teles Dos Santos, M., & Gerbaud, V. (2014). Computer aided product design tool for sustainable product development. Computers & Chemical Engineering, 71, 362–376. https://doi.org/10.1016/j.compchemeng.2014.09.009
dc.relation.referencesHeintz, J., Belaud, J. P., & Gerbaud, V. (2014). Chemical enterprise model and decision-making framework for sustainable chemical product design. Computers in Industry, 65(3), 505–520. https://doi.org/10.1016/j.compind.2014.01.010
dc.relation.referencesHill, M. (2004). Product and process design for structured products. AIChE Journal, 50(8), 1656–1661. https://doi.org/10.1002/aic.10293
dc.relation.referencesHill, M. (2009). Chemical Product Engineering-The third paradigm. Computers and Chemical Engineering, 33(5), 947–953. https://doi.org/10.1016/j.compchemeng.2008.11.013
dc.relation.referencesHo, E. N., Fung, K. Y., Wibowo, C., Zhang, X., & Ng, K. M. (2020). Conceptual design of chemical devices. Journal of Advanced Manufacturing and Processing. https://doi.org/10.1002/amp2.10073
dc.relation.referencesHolmes, A. M., Charlton, A., Derby, B., Ewart, L., Scott, A., & Shu, W. (2017). Rising to the challenge: applying biofabrication approaches for better drug and chemical product development. Biofabrication, 9(3), 033001. https://doi.org/10.1088/1758-5090/aa7bbd
dc.relation.referencesHoussein, E. H., Hosney, M. E., Oliva, D., Mohamed, W. M., & Hassaballah, M. (2020). A novel hybrid Harris hawks optimization and support vector machines for drug design and discovery. Computers & Chemical Engineering, 133, 106656. https://doi.org/10.1016/j.compchemeng.2019.106656
dc.relation.referencesJasimuddin, S. M. (2006). Disciplinary roots of knowledge management: A theoretical review. International Journal of Organizational Analysis, 14(2), 171–180. https://doi.org/10.1108/10553180610742782/FULL/XML
dc.relation.referencesJebb, A. T., Ng, V., & Tay, L. (2021). A Review of Key Likert Scale Development Advances: 1995–2019. Frontiers in Psychology, 12, 1590. https://doi.org/10.3389/FPSYG.2021.637547/BIBTEX
dc.relation.referencesJhamb, S., Liang, X., Dam-Johansen, K., & Kontogeorgis, G. M. (2020). A model-based solvent selection and design framework for organic coating formulations. Progress in Organic Coatings, 140, 105471. https://doi.org/10.1016/j.porgcoat.2019.105471
dc.relation.referencesJhamb, S., Liang, X., Gani, R., & Kontogeorgis, G. M. (2019). Systematic Model-Based Methodology for Substitution of Hazardous Chemicals. ACS Sustainable Chemistry & Engineering, 7(8), 7652–7666. https://doi.org/10.1021/acssuschemeng.8b06064
dc.relation.referencesJonuzaj, S., & Adjiman, C. S. (2017). Designing optimal mixtures using generalized disjunctive programming: Hull relaxations. Chemical Engineering Science, 159, 106–130. https://doi.org/10.1016/j.ces.2016.08.008
dc.relation.referencesJonuzaj, S., Akula, P. T., Kleniati, P., & Adjiman, C. S. (2016). The formulation of optimal mixtures with generalized disjunctive programming: A solvent design case study. AIChE Journal, 62(5), 1616–1633. https://doi.org/10.1002/aic.15122
dc.relation.referencesJonuzaj, S., Cui, J., & Adjiman, C. S. (2019). Computer-aided design of optimal environmentally benign solvent-based adhesive products. Computers & Chemical Engineering, 130, 106518. https://doi.org/10.1016/j.compchemeng.2019.106518
dc.relation.referencesKalakul, S., Zhang, L., Fang, Z., Choudhury, H. A. H. A., Intikhab, S., Elbashir, N., Eden, M. R., & Gani, R. (2018). Computer aided chemical product design – ProCAPD and tailor-made blended products. Computers & Chemical Engineering, 116, 37–55. https://doi.org/10.1016/j.compchemeng.2018.03.029
dc.relation.referencesKashinath, S. A. A., Hashim, H., Yunus, N. A., & Mustaffa, A. A. (2018). Design of surfactant for water in diesel emulsion fuel for designing eco-friendly fuel. Chemical Engineering Transactions, 63(2006), 433–438. https://doi.org/10.3303/CET1863073
dc.relation.referencesKerm, T. Van, Noël, L., & Vérilhac, I. (2012). Quand le design... s’investit dans l’entreprise: 10 entreprises témoignent de l’impact du design sur leur développement (CITE DU DE).
dc.relation.referencesKhor, S. Y., Liam, K. Y., Loh, W. X., Tan, C. Y., Ng, L. Y., Hassim, M. H., Ng, D. K. S., & Chemmangattuvalappil, N. G. (2017). Computer Aided Molecular Design for alternative sustainable solvent to extract oil from palm pressed fibre. Process Safety and Environmental Protection, 106, 211–223. https://doi.org/10.1016/j.psep.2017.01.006
dc.relation.referencesKimura, F., Ariyoshi, H., Ishikawa, H., Naruko, Y., & Yamato, H. (2004). Capturing expert knowledge for supporting design and manufacturing of injection molds. CIRP Annals - Manufacturing Technology, 53(1), 147–150. https://doi.org/10.1016/S0007-8506(07)60665-9
dc.relation.referencesKind, M. (1999). Product engineering. Chemical Engineering and Processing: Process Intensification, 38(4–6), 405–410. https://doi.org/10.1016/S0255-2701(99)00038-0
dc.relation.referencesKiskini, A., Zondervan, E., Wierenga, P. A., Poiesz, E., & Gruppen, H. (2016). Using product driven process synthesis in the biorefinery. Computers & Chemical Engineering, 91, 257–268. https://doi.org/10.1016/j.compchemeng.2016.03.030
dc.relation.referencesKönig, A., Neidhardt, L., Viell, J., Mitsos, A., & Dahmen, M. (2020). Integrated design of processes and products: Optimal renewable fuels. Computers & Chemical Engineering, 134, 106712. https://doi.org/10.1016/j.compchemeng.2019.106712
dc.relation.referencesKontogeorgis, G. M. G. M., Mattei, M., Ng, K. M. K. M., & Gani, R. (2019). An Integrated Approach for the Design of Emulsified Products. AIChE Journal, 65(1), 75–86. https://doi.org/10.1002/aic.16363
dc.relation.referencesKrishna, S. (1992). Introduction to Database and Knowledge-Base Systems. Introduction to Database and Knowledge-Base Systems. https://doi.org/10.1142/1374
dc.relation.referencesKumar Mohajan, H. (2017). The Roles of Knowledge Management for the Development of Organizations. Journal of Scientific Achievements, 2(2), 1–27.
dc.relation.referencesLai, Y. Y., Yik, K. C. H., Hau, H. P., Chow, C. P., Chemmangattuvalappil, N. G., & Ng, L. Y. (2019). Enterprise Decision-making Framework for Chemical Product Design in Integrated Biorefineries. Process Integration and Optimization for Sustainability, 3(1), 25–42. https://doi.org/10.1007/s41660-018-0037-2
dc.relation.referencesLee, C. K. H., Choy, K. L., & Chan, Y. N. (2014). A knowledge-based ingredient formulation system for chemical product development in the personal care industry. Computers and Chemical Engineering, 65, 40–53. https://doi.org/10.1016/j.compchemeng.2014.03.004
dc.relation.referencesLee, C. K. H. K. H. (2017). A knowledge-based product development system in the chemical industry. Journal of Intelligent Manufacturing, 1–16. https://doi.org/10.1007/s10845-017-1331-5
dc.relation.referencesLi, X., Chen, Y., & Qian, Y. (2009). Integration of chemical product development, process synthesis, and operation optimization. Computer Aided Chemical Engineering, 26, 37–42. https://doi.org/10.1016/S1570-7946(09)70009-4
dc.relation.referencesLiang, X., Zhang, X., Zhang, L., Liu, L., Du, J., Zhu, X., & Ng, K. M. (2019). Computer-Aided Polymer Design: Integrating Group Contribution and Molecular Dynamics. Industrial & Engineering Chemistry Research, 58(34), 15542–15552. https://doi.org/10.1021/acs.iecr.9b02769
dc.relation.referencesLinehan, S., Nizami, S. N., & Bagajewicz, M. (2010). On the Application of a Consumer Preference-Based Method for Designing Products To Wine Fermentation Monitoring Devices. Chemical Engineering Communications, 198(2), 255–272. https://doi.org/10.1080/00986445.2010.499833
dc.relation.referencesLiu, Q., Zhang, L., Liu, L., Du, J., Tula, A. K., Eden, M., & Gani, R. (2019). OptCAMD: An optimization-based framework and tool for molecular and mixture product design. Computers and Chemical Engineering, 124, 285–301. https://doi.org/10.1016/j.compchemeng.2019.01.006
dc.relation.referencesMarques, C. M., Moniz, S., de Sousa, J. P., Barbosa-Povoa, A. P., & Reklaitis, G. (2020). Decision-support challenges in the chemical-pharmaceutical industry: Findings and future research directions. Computers & Chemical Engineering, 134, 106672. https://doi.org/10.1016/j.compchemeng.2019.106672
dc.relation.referencesMartín, M., & Martínez, A. (2013). A methodology for simultaneous process and product design in the formulated consumer products industry: The case study of the detergent business. Chemical Engineering Research and Design, 91(5), 795–809. https://doi.org/10.1016/j.cherd.2012.08.012
dc.relation.referencesMartín, M., & Martínez, A. (2015). Addressing Uncertainty in Formulated Products and Process Design. Industrial & Engineering Chemistry Research, 54(22), 5990–6001. https://doi.org/10.1021/acs.iecr.5b00792
dc.relation.referencesMartín, M., & Martínez, A. (2018). On the effect of price policies in the design of formulated products. Computers & Chemical Engineering, 109, 299–310. https://doi.org/10.1016/j.compchemeng.2017.11.019
dc.relation.referencesMattei, M., Kontogeorgis, G. M., & Gani, R. (2014). A comprehensive framework for surfactant selection and design for emulsion based chemical product design. Fluid Phase Equilibria, 362, 288–299. https://doi.org/10.1016/j.fluid.2013.10.030
dc.relation.referencesMeyer, T. H., & Keurentjes, J. T. F. (2004). Polymer Reaction Engineering, an Integrated Approach. Chemical Engineering Research and Design, 82(12), 1580–1582. https://doi.org/10.1205/cerd.82.12.1580.58035
dc.relation.referencesMinisterio de Comercio, I. y T. (n.d.). Definición Tamaño Empresarial Micro, Pequeña, Mediana o Grande | Mi Pymes. Retrieved October 13, 2022, from https://www.mipymes.gov.co/temas-de-interes/definicion-tamano-empresarial-micro-pequena-median
dc.relation.referencesMorel, L., & Boly, V. (2006). New Product Development Process (NPDP): Updating the identification stage practices. International Journal of Product Development, 3(2), 232–251. https://doi.org/10.1504/IJPD.2006.009373
dc.relation.referencesMorel, L., Camargo, M., & Boly, V. (2013). Product Development, Business Concept, and Entrepreneurship. In Encyclopedia of Creativity, Invention, Innovation and Entrepreneurship (pp. 1487–1492). Springer New York. https://doi.org/10.1007/978-1-4614-3858-8_464
dc.relation.referencesMuro-Suñé, N., Munir, A., Gani, R., Bell, G., & Shirley, I. (2005). A framework for product analysis: Modelling and design of release and uptake of pesticides (pp. 733–738). https://doi.org/10.1016/S1570-7946(05)80244-5
dc.relation.referencesMushtaq, F., Zhang, X., Fung, K. Y., & Ng, K. M. (2020). Product design: An optimization-based approach for targeting of particulate composite microstructure. Computers & Chemical Engineering, 140, 106975. https://doi.org/10.1016/j.compchemeng.2020.106975
dc.relation.referencesNarvaez, P. C. (2014). Diseño conceptual de procesos químicos - Metodología con aplicaciones en esterificación. UNIVERSIDAD NACIONAL DE COLOMBIA. https://books.google.fr/books/about/Diseño_conceptual_de_procesos_químicos.html?id=SJjGDwAAQBAJ&printsec=frontcover&source=kp_read_button&redir_esc=y#v=onepage&q&f=false
dc.relation.referencesNarvaez Rincon, P. C. (2014). Diseno conceptual de procesos quimicos: metodologia con aplicaciones en esterificaciones. Editorial Universidad Nacional de Colombia. https://books.google.fr/books/about/Diseño_conceptual_de_procesos_químicos.html?id=SJjGDwAAQBAJ&printsec=frontcover&source=kp_read_button&redir_esc=y#v=onepage&q&f=false
dc.relation.referencesNelson, A. Z., Schweizer, K. S., Rauzan, B. M., Nuzzo, R. G., Vermant, J., & Ewoldt, R. H. (2019). Designing and transforming yield-stress fluids. Current Opinion in Solid State and Materials Science, 23(5), 100758. https://doi.org/10.1016/j.cossms.2019.06.002
dc.relation.referencesNeoh, J. Q., Chin, H. H., Mah, A. X. Y., Aboagwa, O. A., Thangalazhy-Gopakumar, S., & Chemmangattuvalappil, N. G. (2019). Design of bio-oil additives using mathematical optimisation tools considering blend functionality and sustainability aspects. Sustainable Production and Consumption, 19, 53–63. https://doi.org/10.1016/j.spc.2019.03.005
dc.relation.referencesNg, Ka M. (2003). MOPSD: A framework linking business decision-making to product and process design (pp. 63–73). https://doi.org/10.1016/S1570-7946(03)80527-8
dc.relation.referencesNg, Ka M. (2004). MOPSD: a framework linking business decision-making to product and process design. Computers & Chemical Engineering, 29(1), 51–56. https://doi.org/10.1016/j.compchemeng.2004.07.029
dc.relation.referencesNg, Ka M., Li, J., & Kwauk, M. (2005). Process engineering research in China: A multiscale, market-driven approach. AIChE Journal, 51(10), 2620–2627. https://doi.org/10.1002/aic.10658
dc.relation.referencesNg, L. Y., Andiappan, V., Chemmangattuvalappil, N. G., & Ng, D. K. S. (2015). Novel methodology for the synthesis of optimal biochemicals in integrated biorefineries via inverse design techniques. Industrial and Engineering Chemistry Research, 54(21), 5722–5735. https://doi.org/10.1021/acs.iecr.5b00217
dc.relation.referencesNg, L. Y., Chemmangattuvalappil, N. G., & Ng, D. K. S. (2014). A multiobjective optimization-based approach for optimal chemical product design. Industrial and Engineering Chemistry Research, 53(44), 17429–17444. https://doi.org/10.1021/ie502906a
dc.relation.referencesOmidbakhsh, N., Duever, T. A., Elkamel, A., & Reilly, P. M. (2010). Systematic statistical-based approach for product design: Application to disinfectant formulations. Industrial and Engineering Chemistry Research, 49(1), 204–209. https://doi.org/10.1021/ie900196u
dc.relation.referencesOmidbakhsh, N., Duever, T. A., Elkamel, A., & Reilly, P. M. (2012). A Systematic Computer-Aided Product Design and Development Procedure: Case of Disinfectant Formulations. Industrial & Engineering Chemistry Research, 51(45), 14925–14934. https://doi.org/10.1021/ie300644f
dc.relation.referencesOmidbakhsh, N., Elkamel, A., Duever, T. A., & Reilly, P. M. (2010). Combining Design of Experiments Techniques, Connectionist Models, and Optimization for the Efficient Design of New Product Formulations. Chemical Product and Process Modeling, 5(1). https://doi.org/10.2202/1934-2659.1441
dc.relation.referencesOsterwalder, A., & Pigneur, Y. (2010). Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers. In A handbook for visionaries, game changers, and challengers.
dc.relation.referencesPapadopoulos, A. I., Shavalieva, G., Papadokonstantakis, S., Seferlis, P., Perdomo, F. A., Galindo, A., Jackson, G., & Adjiman, C. S. (2020). An approach for simultaneous computer-aided molecular design with holistic sustainability assessment: Application to phase-change CO2 capture solvents. Computers & Chemical Engineering, 135, 106769. https://doi.org/10.1016/j.compchemeng.2020.106769
dc.relation.referencesParmar, B. L., Freeman, R. E., Harrison, J. S., Wicks, A. C., Purnell, L., & de Colle, S. (2010). Stakeholder theory: The state of the art. Academy of Management Annals, 4(1), 403–445. https://doi.org/10.1080/19416520.2010.495581
dc.relation.referencesPavurala, N., & Achenie, L. E. K. (2014). Identifying polymer structures for oral drug delivery – A molecular design approach. Computers & Chemical Engineering, 71, 734–744. https://doi.org/10.1016/j.compchemeng.2014.07.015
dc.relation.referencesPerrot, N., Ioannou, I., Allais, I., Curt, C., Hossenlopp, J., & Trystram, G. (2006). Fuzzy concepts applied to food product quality control: A review. Fuzzy Sets and Systems, 157(9), 1145–1154. https://doi.org/10.1016/j.fss.2005.12.013
dc.relation.referencesPicchioni, F., & Broekhuis, A. (2012). Material properties and processing in chemical product design. Current Opinion in Chemical Engineering, 1(4), 459–464. https://doi.org/10.1016/j.coche.2012.08.002
dc.relation.referencesQian, Y., Wu, Z., Jiang, Y., Zhihui, W., & Yanbin, J. (2006). Integration of Process Design and Operation for Chemical Product Development with Implementation of a Kilo-plant. In Computer Aided Chemical Engineering (Vol. 21, Issue 6, pp. 600–606). Elsevier. https://doi.org/10.1016/S1570-7946(06)80175-6
dc.relation.referencesRafeqah, R., Hassim, M. H., Denny, N. K. S., Nishanth, G. C., & Norafneeza, N. (2019). Safety and health index development for formulated product design: Paint formulation. E3S Web of Conferences, 90, 03002. https://doi.org/10.1051/e3sconf/20199003002
dc.relation.referencesRähse, W., & Hoffmann, S. (2002). Produkt-Design – Zusammenwirken von Chemie, Technik und Marketing im Dienste des Kunden. Chemie Ingenieur Technik, 74(9), 1220–1229. https://doi.org/10.1002/1522-2640(20020915)74:9<1220::AID-CITE1220>3.0.CO;2-Z
dc.relation.referencesRähse, W., & Hoffmann, S. (2003). Product Design– The Interaction between Chemistry, Technology and Marketing to Meet Customer Needs. Chemical Engineering & Technology, 26(9), 931–940. https://doi.org/10.1002/ceat.200306106
dc.relation.referencesRaslan, R., Hassim, M. H., Chemmangattuvalappil, N. G., Ng, D. K. S., & Ten, J. Y. (2020a). Development of inherent safety and health index for formulated product design. Journal of Loss Prevention in the Process Industries, 66, 104209. https://doi.org/10.1016/j.jlp.2020.104209
dc.relation.referencesRaslan, R., Hassim, M. H., Chemmangattuvalappil, N. G., Ng, D. K. S., & Ten, J. Y. (2020b). Safety and health risk assessment methodology of dermal and inhalation exposure to formulated products ingredients. Regulatory Toxicology and Pharmacology, 116, 104753. https://doi.org/10.1016/j.yrtph.2020.104753
dc.relation.referencesRivera-Gil, J.-L., Rodas, J. S., Narváez-Rincón, P. C., Boly, V., & Falk, V. (2021). Towards a systemic approach for cosmetics formulation within companies: modeling the design system. 30th Annual Conference of the International Association for Management of Technology (IAMOT 2021), 529–540. https://doi.org/10.52202/060557-0039
dc.relation.referencesRivera Gil, J. L., Serna, J., Arrieta‐Escobar, J. A., Narváez Rincón, P. C., Boly, V., & Falk, V. (2022). Triggers for Chemical Product Design: A Systematic Literature Review. AIChE Journal, December 2021, 1–16. https://doi.org/10.1002/aic.17563
dc.relation.referencesRodriguez-Donis, I., Thiebaud-Roux, S., Lavoine, S., & Gerbaud, V. (2018). Computer-aided product design of alternative solvents based on phase equilibrium synergism in mixtures. Comptes Rendus Chimie, 21(6), 606–621. https://doi.org/10.1016/j.crci.2018.04.005
dc.relation.referencesSalim, H. K., Stewart, R. A., Sahin, O., & Dudley, M. (2020). Systems approach to end-of-life management of residential photovoltaic panels and battery energy storage system in Australia. Renewable and Sustainable Energy Reviews, 134(June), 110176. https://doi.org/10.1016/j.rser.2020.110176
dc.relation.referencesSamudra, A., & Sahinidis, N. V. (2013). Design of Heat-Transfer Media Components for Retail Food Refrigeration. Industrial & Engineering Chemistry Research, 52(25), 8518–8526. https://doi.org/10.1021/ie303611v
dc.relation.referencesSantos, J., Trujillo-Cayado, L. A., Calero, N., & Muñoz, J. (2014). Physical characterization of eco-friendly O/W emulsions developed through a strategy based on product engineering principles. AIChE Journal, 60(7), 2644–2653. https://doi.org/10.1002/aic.14460
dc.relation.referencesSerna, J., Boly, V., Rincon, P. C. N., & Falk, V. (2018). Improving knowledge capitalization in product formulation: A cosmetic industry study case. Towards Sustainable Technologies and Innovation - Proceedings of the 27th Annual Conference of the International Association for Management of Technology, IAMOT 2018, 1–7.
dc.relation.referencesSerna, J., Narváez Rincón, P. C., Falk, V., Boly, V., & Camargo, M. (2021). A Methodology for Emulsion Design Based on Emulsion Science and Expert Knowledge. Part 1: Conceptual Approach. Industrial & Engineering Chemistry Research, 60(7), 3210–3227. https://doi.org/10.1021/acs.iecr.0c04942
dc.relation.referencesŠimberová, I., & Kita, P. (2020). New business models based on multiple value creation for the customer: A case study in the chemical industry. Sustainability (Switzerland), 12(9), 1–18. https://doi.org/10.3390/su12093932
dc.relation.referencesSmith, B. V., & Ierapepritou, M. (2009). Framework for Consumer-Integrated Optimal Product Design. Industrial & Engineering Chemistry Research, 48(18), 8566–8574. https://doi.org/10.1021/ie900377e
dc.relation.referencesSmith, B. V., & Ierapepritou, M. G. (2010). Integrative chemical product design strategies: Reflecting industry trends and challenges. Computers and Chemical Engineering, 34(6), 857–865. https://doi.org/10.1016/j.compchemeng.2010.02.039
dc.relation.referencesSolvason, C. C., Chemmangattuvalappil, N. G., & Eden, M. R. (2010). Multi-Scale Chemical Product Design using the Reverse Problem Formulation (pp. 1285–1290). https://doi.org/10.1016/S1570-7946(10)28215-9
dc.relation.referencesStelzer, T., & Ulrich, J. (2010). Crystallization a tool for product design. Advanced Powder Technology, 21(3), 227–234. https://doi.org/10.1016/j.apt.2010.04.006
dc.relation.referencesSuárez Palacios, O. Y., Narváez Rincón, P. C., Camargo, M., Corriou, J.-P., Fonteix, C., Suárez-Palacios, O. Y., Narváez-Rincón, P. C., Camargo, M., Corriou, J.-P., & Fonteix, C. (2020). Chemical product design integrating MCDA: Performance prediction and human preferences modelling. Canadian Journal of Chemical Engineering, June 2020, 1–15. https://doi.org/10.1002/cjce.23956
dc.relation.referencesSuaza Montalvo, A. (2020). Desarrollo de una estrategia de escalamiento para procesos de producción de emulsiones. Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química.
dc.relation.referencesSunkle, S., Saxena, K., Patil, A., Kulkarni, V., Jain, D., Chacko, R., & Rai, B. (2020). Information Extraction and Graph Representation for the Design of Formulated Products. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12127 LNCS, 433–448. https://doi.org/10.1007/978-3-030-49435-3_27
dc.relation.referencesTaifouris, M., Martín, M., Martínez, A., & Esquejo, N. (2020a). Challenges in the design of formulated products: multiscale process and product design. Current Opinion in Chemical Engineering, 27, 1–9. https://doi.org/10.1016/j.coche.2019.10.001
dc.relation.referencesTaifouris, M., Martín, M., Martínez, A., & Esquejo, N. (2020b). On the effect of the selection of suppliers on the design of formulated products. Computers & Chemical Engineering, 141, 106980. https://doi.org/10.1016/j.compchemeng.2020.106980
dc.relation.referencesTam, S. K., Fung, K. Y., Poon, G. S. H., & Ng, K. M. (2016). Product design: Metal nanoparticle-based conductive inkjet inks. AIChE Journal, 62(8), 2740–2753. https://doi.org/10.1002/aic.15271
dc.relation.referencesTomba, E., Barolo, M., & García-Muñoz, S. (2014). In-silico product formulation design through latent variable model inversion. Chemical Engineering Research and Design, 92(3), 534–544. https://doi.org/10.1016/j.cherd.2013.08.027
dc.relation.referencesTorres, J. J., Tinjaca, C. D., Alvarez, O. A., & Gómez, J. M. (2020). Optimization proposal for emulsions formulation considering a multiscale approach. Chemical Engineering Science, 212, 115326. https://doi.org/10.1016/j.ces.2019.115326
dc.relation.referencesUhlemann, J., Costa, R., & Charpentier, J. C. (2019). Product Design and Engineering in Chemical Engineering: Past, Present State, and Future. Chemical Engineering and Technology, 42(11), 2258–2274. https://doi.org/10.1002/ceat.201900236
dc.relation.referencesUllmann, F. (2005). Ullmann’s Chemical Engineering and Plant Design. In Engineering.
dc.relation.referencesVictoria Villeda, J., Dahmen, M., Hechinger, M., Voll, A., & Marquardt, W. (2012). Towards model-based design of biofuel value chains. Current Opinion in Chemical Engineering, 1(4), 465–471. https://doi.org/10.1016/j.coche.2012.08.001
dc.relation.referencesVictoria Villeda, J. J., Dahmen, M., Hechinger, M., Voll, A., & Marquardt, W. (2015). Towards model-based design of tailor-made fuels from biomass. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 129, 193–211. https://doi.org/10.1007/978-3-662-45425-1_12
dc.relation.referencesVoinov, A., & Bousquet, F. (2010). Modelling with stakeholders. Environmental Modelling and Software, 25(11), 1268–1281. https://doi.org/10.1016/j.envsoft.2010.03.007
dc.relation.referencesWan Qi, W., Lik Yin, N., Sivaneswaran, U., & Chemmangattuvalappil, N. G. (2017). A Novel Methodology for Molecular Design via Data Driven Techniques. Journal of Physical Science, 28(Suppl. 1), 1–24. https://doi.org/10.21315/jps2017.28.s1.1
dc.relation.referencesWang, H., Chen, K., Zheng, H., Zhang, G., Wu, R., & Yu, X. (2021). Knowledge transfer methods for expressing product design information and organization. Journal of Manufacturing Systems, 58(PA), 1–15. https://doi.org/10.1016/j.jmsy.2020.11.009
dc.relation.referencesWarrier, P., Sathyanarayana, A., Bazdar, S., Joshi, Y., & Teja, A. S. (2012). Selection and Evaluation of Organosilicon Coolants for Direct Immersion Cooling of Electronic Systems. Industrial & Engineering Chemistry Research, 51(31), 10517–10523. https://doi.org/10.1021/ie300664v
dc.relation.referencesWarrier, P., Sathyanarayana, A., Patil, D. V., France, S., Joshi, Y., & Teja, A. S. (2012). Novel heat transfer fluids for direct immersion phase change cooling of electronic systems. International Journal of Heat and Mass Transfer, 55(13–14), 3379–3385. https://doi.org/10.1016/j.ijheatmasstransfer.2012.02.063
dc.relation.referencesWassick, J. M., Agarwal, A., Akiya, N., Ferrio, J., Bury, S., & You, F. (2012). Addressing the operational challenges in the development, manufacture, and supply of advanced materials and performance products. Computers & Chemical Engineering, 47, 157–169. https://doi.org/10.1016/j.compchemeng.2012.06.041
dc.relation.referencesWibowo, C., & Ng, K. M. (2001). Product-oriented process synthesis and development: Creams and pastes. AIChE Journal, 47(12), 2746–2767. https://doi.org/10.1002/aic.690471214
dc.relation.referencesWibowo, C., & Ng, K. M. (2002). Product-centered processing: Manufacture of chemical-based consumer products. AIChE Journal, 48(6), 1212–1230. https://doi.org/10.1002/aic.690480609
dc.relation.referencesWu, Z., Lei Li, & Ming Pan. (2010). A experimental platform for process operation system based on data integration. 2010 2nd International Conference on Education Technology and Computer, V2-131-V2-135. https://doi.org/10.1109/ICETC.2010.5529420
dc.relation.referencesYang, Y., Zou, X., Xiao, F., & Dong, H. (2017). Integrated product-process design approach for polyethylene production. Chemical Engineering Transactions, 61(2014), 1009–1014. https://doi.org/10.3303/CET1761166
dc.relation.referencesYin, R. K. (2018). Case study research and applications. Sage Publications, 352.
dc.relation.referencesYu, Q., Zhihui, W., & Yanbin, J. (2006). Integration of chemical product development, process design and operation based on a kilo-plant*. Progress in Natural Science, 16(6), 600–606. https://doi.org/10.1080/10020070612330041
dc.relation.referencesYunus, N. A., Gernaey, K. V., Woodley, J. M., & Gani, R. (2014). A systematic methodology for design of tailor-made blended products. Computers & Chemical Engineering, 66, 201–213. https://doi.org/10.1016/j.compchemeng.2013.12.011
dc.relation.referencesZhang, L., Fung, K. Y., Zhang, X., Fung, H. K., & Ng, K. M. (2017). An integrated framework for designing formulated products. Computers and Chemical Engineering, 107, 61–76. https://doi.org/10.1016/j.compchemeng.2017.05.014
dc.relation.referencesZhang, L., Kalakul, S., Liu, L., Elbashir, N. O., Du, J., & Gani, R. (2018). A Computer-Aided Methodology for Mixture-Blend Design. Applications to Tailor-Made Design of Surrogate Fuels. Industrial & Engineering Chemistry Research, 57(20), 7008–7020. https://doi.org/10.1021/acs.iecr.8b00775
dc.relation.referencesZhang, L., Mao, H., Liu, L., Du, J., & Gani, R. (2018). A machine learning based computer-aided molecular design/screening methodology for fragrance molecules. Computers and Chemical Engineering, 115, 295–308. https://doi.org/10.1016/j.compchemeng.2018.04.018
dc.relation.referencesZhang, L., Mao, H., Liu, Q., & Gani, R. (2020). Chemical product design – recent advances and perspectives. Current Opinion in Chemical Engineering, 27, 22–34. https://doi.org/10.1016/j.coche.2019.10.005
dc.relation.referencesZhang, X., Zhang, L., Fung, K. Y., & Ng, K. M. (2019). Product design: Incorporating make-or-buy analysis and supplier selection. Chemical Engineering Science, 202, 357–372. https://doi.org/10.1016/j.ces.2019.03.021
dc.relation.referencesZhang, Xiang, Zhang, L., Fung, K. Y., Rangaiah, G. P., & Ng, K. M. (2018). Product design: Impact of government policy and consumer preference on company profit and corporate social responsibility. Computers & Chemical Engineering, 118, 118–131. https://doi.org/10.1016/j.compchemeng.2018.06.026
dc.relation.referencesZhang, Xiang, Zhou, T., Zhang, L., Fung, K. Y., & Ng, K. M. (2019). Food Product Design: A Hybrid Machine Learning and Mechanistic Modeling Approach [Research-article]. Industrial and Engineering Chemistry Research, 58(36), 16743–16752. https://doi.org/10.1021/acs.iecr.9b02462
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccess
dc.subject.lembCosmética
dc.subject.lembBeauty culture
dc.subject.lembIndustria de cosméticos
dc.subject.lembCosmetics industry
dc.subject.proposalChemical product design
dc.subject.proposalcosmetic products
dc.subject.proposalsystems analysis
dc.subject.proposalorganizational context
dc.subject.proposaldesign methodology
dc.subject.proposalDiseño de productos químicos
dc.subject.proposalproductos cosméticos
dc.subject.proposalanálisis de sistemas
dc.subject.proposalcontexto organizativo
dc.subject.proposalmetodología de diseño
dc.title.translatedUn enfoque de sistema para apoyar una metodología de diseño de productos cosméticos formulados en el contexto de las empresas
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_14cb
dcterms.audience.professionaldevelopmentPúblico general
dc.contributor.orcidhttps://orcid.org/0000-0001-6237-8736


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento