Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorAngulo García, Fabiola
dc.contributor.advisorMorcillo Bastidas, José Daniel
dc.contributor.authorAbella Ángel, Anderson Fabian
dc.date.accessioned2023-02-20T19:35:30Z
dc.date.available2023-02-20T19:35:30Z
dc.date.issued2021
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83530
dc.descriptiongraficas, tablas
dc.description.abstractEn esta tesis de maestría se realizan 2 estudios, en el primero de ellos se plantea el diseño de un cargador off-board para vehículos eléctricos afianzado al nivel eléctrico residencial de 120 V en Colombia. Este permite realizar la carga de la batería de alta tensión del vehículo con corriente directa, logrando de esta manera un tiempo de carga menor y una potencia de carga más alta estando desde casa. Para desarrollar esta propuesta se realiza una metodología que va desde el diseño de la inductancia, hasta la selección del capacitor y demás dispositivos de la electrónica de potencia. Los resultados permiten destacar el cumplimiento de los requerimientos internacionales para este tipo de aplicaciones, como lo son: factor de potencia, eficiencia del cargador y distorsión armónica total de la corriente de entrada, sin considerar la inductancia de la red eléctrica y considerándola. El segundo estudio está relacionado con un fenómeno conocido como burbujeo, el cual ha afectado a los convertidores de potencia en general; no obstante, se presenta una estrategia de control que elimina el fenómeno y no requiere un cambio físico del sistema, comprobada en varios inversores de potencia monofásicos, aislados y de puente completo, la cual funciona aumentando la frecuencia de conmutación a un nivel establecido por medio de análisis de señales temporales. En medio de las pruebas se detecta un comportamiento oscilatorio en los diagramas de bifurcaciones donde se varía la frecuencia de conmutación, relacionado con el punto de muestreo establecido en cada sistema y el periodo de la señal de referencia. (Texto tomado de la fuente)
dc.description.abstractIn this work 2 studies are carried out, in the first one, the design of an off-board charger for electric vehicles is proposed, anchored to the residential electric level of 120 V in Colombia. This allows charging the high voltage battery of the vehicle with direct current, thus achieving a shorter charging time and a higher charging power being from home. In order to develop this proposal, a methodology that goes from the design of the inductance to the selection of the capacitor and other devices of the power electronics is carried out. The results allow highlighting the compliance with international requirements for this type of applications, such as: power factor, charger efficiency, and total harmonic distortion of the input current, without considering the inductance of the electrical network and considering it. The second study is related to a phenomenon known as bubbling, which has affected power converters in general; however, a control strategy is presented that eliminates the phenomenon and does not require a physical change of the system, tested in several single-phase, isolated, and full-bridge power inverters, which works by increasing the switching frequency to a set level by means of time signal analysis. In the middle of the tests, an oscillatory behavior is detected in the bifurcation diagrams where the switching frequency is varied, related to the sampling point established in each system and the period of the reference signal.
dc.format.extentxvi, 103 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.titleDiseño de cargador Off-Board para conexión domiciliaria de vehículos eléctricos a nivel nacional y control del fenómeno de burbujeo en inversores electrónicos de potencia
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Automatización Industrial
dc.contributor.researchgroupPercepción y Control Inteligente (Pci)
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Automatización Industrial
dc.description.researchareaAnálisis de Sistemas Dinámicos, Análisis Numérico y Electrónica de Potencia
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería y Arquitectura
dc.publisher.placeManizales, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizales
dc.relation.referencesAbdel-rahman, S. and Persson, E. (2019). CoolGaN™ Totem-Pole PFC Design Guide and Power Loss Modeling. Infi neon Technologies, pages 1-23.
dc.relation.referencesAG, E. (2018). Ceramic Capacitor Technology CeraLink™ Opens New Dimensions in Power Electronics.
dc.relation.referencesANDEMOS (2020). Informe Vehículos HEV, PHEV y BEV. Technical report.
dc.relation.referencesAvrutin, V., Morcillo, J. D., Zhusubaliyev, Z. T., and Angulo, F. (2017). Bubbling in a Power Electronic Inverter: Onset, Development and Detection. Chaos, Solitons and Fractals, 104:135-152.
dc.relation.referencesBaboselac, I., Bensic, T., and Hederic, Z. (2017). Matlab Simulation Model for Dynamic Mode of the Lithium-Ion Batteries to Power the EV. Tehnicki glasnik, 11(1-2):7-13.
dc.relation.referencesBattery University (2018). Charging Lithium-ion.
dc.relation.referencesBolognani, S. and Zampieri, S. (2013). A Distributed Control Strategy for Reactive Power Compensation in Smart Microgrids. IEEE Transactions on Automatic Control, 58(11):2818-2833.
dc.relation.referencesBrandt, K., Schulthei, J., and Schweizer-Berberich, M. (2019). Managing of Risk by Battery Manufacturers. In Electrochemical Power Sources: Fundamentals, Systems, and Applications Li-Battery Safety, chapter 8B, pages 303-335.
dc.relation.referencesBriane, B. and Loudot, S. (2011). Rapid Reversible Charging Device for an Electric Vehicle. US 2011/0254494 A1.
dc.relation.referencesCelsia (2020). Nuestra Apuesta por la Movilidad Sostenible.
dc.relation.referencesCentelsa (2021). Alambres Magneto.
dc.relation.referencesChan, C. C. (2013). The Rise & Fall of Electric Vehicles in 1828-1930: Lessons Learned. Proceedings of the IEEE, 101(1):206-212.
dc.relation.referencesChau, K. T. (2014). Pure Electric Vehicles. In Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance, chapter 21, pages 655-684. Elsevier Ltd.
dc.relation.referencesChellappan, S. (2018). A Comparative Analysis of Topologies for a Bridgeless-Boost PFC Circuit. Analog Design Journal, pages 1-5.
dc.relation.referencesChen, A. (2019). How to Properly Evaluate Junction Temperature with Thermal Metrics. Texas Instruments Application Report SLUA844B, pages 1-12.
dc.relation.referencesCheng, H., Chen, W., Wang, C., and Deng, J. (2018). Open Circuit Fault Diagnosis and Fault Tolerance of Three-Phase Bridgeless Recti er. Electronics (Switzerland), 7(11):1.
dc.relation.referencesCocconi, A. G. (1994). Combined Motor Drive and Battery Recharge System. US Patent 5,341,075.
dc.relation.referencesCongreso de Colombia (2019). Ley 1964.
dc.relation.referencesCREG (2005). Gestión del Flujo de Potencia Reactiva.
dc.relation.referencesDávila Márquez, L. R. (2014). Relaciones entre las Variables del Circuito Eléctrico, en el Dominio del Tiempo y en el Dominio de la Frecuencia, para Elementos Generadores y Elementos de Carga.
dc.relation.referencesDelta Electronics (2019). OBC + APM Combo.
dc.relation.referencesDinero (2019). ¿Vale la Pena Comprar un Carro Eléctrico?
dc.relation.referencesDreipelcher, W. (2014). Faster Switching in Inverters.
dc.relation.referencesEPM (2012). Guía para Seleccionar el Calibre y Protección de la Acometida para Usuario Final Nivel de Tensión 1.
dc.relation.referencesEPM (2019). Instalación de Estaciones de Carga para Vehículos Eléctricos.
dc.relation.referencesETA (2020). High Voltage Relay - Hybrid and Powerful.
dc.relation.referencesEVCompare (2021a). Electric Car Charging Cost and Time Calculator.
dc.relation.referencesEVCompare (2021b). Mercado de EVs.
dc.relation.referencesEVSpeci cations (2021). Electric Vehicle Speci cations.
dc.relation.referencesFigueiredo, J. P. M., Tofoli, F. L., and Silva, B. L. A. (2010). A review of single-phase PFC topologies based on the boost converter. 2010 9th IEEE/IAS International Conference on Industry Applications, INDUSCON 2010.
dc.relation.referencesFincan, B., Yilmaz, M., Goynusen, A., and Erenay, H. K. (2017). Design and Optimization of a High Power Density and E ciency Boost PFC. Balkan Journal of Electrical and Computer Engineering, 5(2):50-59.
dc.relation.referencesFord (2019). Ventajas de los Carros Eléctricos.
dc.relation.referencesGaN (2018). GN003 Application Note: Measurement Techniques for High-Speed GaN E-HEMTs. Technical report.
dc.relation.referencesGaN (2020). GN001 Application Note: An Introduction to GaN Enhancement-mode HEMTs. Technical report.
dc.relation.referencesGegner, J. P. and Lee, C. Q. (1996). Linear Peak Current Mode Control: A Simple Active Power Factor Correction Control Technique for Continuous Conduction Mode. 27th Annual IEEE Power Electronics Specialists Conference, 1:196-202.
dc.relation.referencesGohari, H. S., Abbaszadeh, K., and Gorji, J. G. (2020). A novel O -Board Interleaved Charger for EVs with G2H/G2VH/V2H Functions and Capable of Controlling Reactive Power. 2020 28th Iranian Conference on Electrical Engineering, ICEE 2020.
dc.relation.referencesGong, X. and Rangaraju, J. (2020). Taking Charge of Electric Vehicles { Both in the Vehicle and on the Grid. Texas Instruments, pages 1-13.
dc.relation.referencesGraovac, D., P urschel, M., and Andreas, K. (2006). MOSFET Power Losses Calculation Using the Data-Sheet Parameters. In neon Technologies AG, pages 1-23.
dc.relation.referencesGurpinar, E. and Castellazzi, A. (2016). Single-Phase T-Type Inverter Performance. IEEE Transactions on Power Electronics, 31(10):7148-7160.
dc.relation.referencesHabib, S., Mansoor Khan, M., Abbas, F., and Tang, H. (2018). Assessment of Electric Vehicles Concerning Impacts , Charging Infrastructure with Unidirectional and Bidirectional Chargers , and Power Flow Comparisons. Energy Research, pages 1-26.
dc.relation.referencesHaghbin, S., Khan, K., Lundmark, S., Alak ula, M., Carlson, O., Leksell, M., and Wallmark, O. (2010). Integrated Chargers for EV's and PHEV's: Examples and New Solutions. 19th International Conference on Electrical Machines, ICEM 2010.
dc.relation.referencesHannan, M. A., Hoque, M. M., Hussain, A., Yusof, Y., and Ker, P. J. (2018). State-of-the-Art and Energy Management System of Lithium-Ion Batteries in Electric Vehicle Applications: Issues and Recommendations. IEEE Access, 6:19362-19378.
dc.relation.referencesHart, D. W. (2010). Power Electronics. McGraw-Hill Education.
dc.relation.referencesHauser, A. and Kuhn, R. (2015). High-Voltage Battery Management Systems (BMS) for Electric Vehicles. In Advances in Battery Technologies for Electric Vehicles, chapter 11, pages 265-282. Elsevier Ltd.
dc.relation.referencesHerrmann, H. and Bucksch, H. (2015). Powder Core. Dictionary Geotechnical Engineering/ W orterbuch GeoTechnik, page 104.
dc.relation.referencesHuang, Z., Lam, C.-s., Member, S., Mak, P.-i., Paulo, R., Wong, S.-c., Member, S., and Tse, C. K. (2020). A Single-Stage Inductive-Power-Transfer Converter for Constant-Power and Maximum-Eficiency Battery Charging. IEEE Transactions on Power Electronics, 35(9):8973-8984.
dc.relation.referencesHurley, W. G. and Wolfle, W. H. (2013). Transformers and Inductors for Power Electronics.
dc.relation.referencesHussein, B., Abdi, N., and Massoud, A. (2020). Design of a Three-phase Isolated SEPIC-Based Off- Board Fast Charger for Electric Vehicles. ISCAIE 2020 - IEEE 10th Symposium on Computer Applications and Industrial Electronics, pages 145-150.
dc.relation.referencesIberdrola (2018). Efectos Ambientales de la Producción y Distribución de Energía Eléctrica: Acciones para su Control y Corrección.
dc.relation.referencesICONTEC (1998). Codigo Eléctrico Colombiano.
dc.relation.referencesIEA (2020). Tracking Clean Energy Progress. Technical report, Paris.
dc.relation.referencesIT (2020). CoolSiC ™ Schottky diodes 650V G5 y G6.
dc.relation.referencesJappe, T. K., Lohn, M. K., and Mussa, S. A. (2019). GaN-Based Single-Phase Bridgeless PFC Boost Recti er. The Journal of Engineering, 2019(17):3614--3617.
dc.relation.referencesKaufhold, E., Meyer, J., and Schegner, P. (2020). Impact of Grid Impedance and their Resonance on the Stability of Single-Phase PV-Inverters in Low Voltage Grids. IEEE International Symposium on Industrial Electronics, 2020-June:880-885.
dc.relation.referencesKerr, J. (2014). Microsemi SiC Products.
dc.relation.referencesKesler, M., Kisacikoglu, M. C., and Tolbert, L. M. (2014). Vehicle-to-grid reactive power operation using plug-in electric vehicle bidirectional o board charger. IEEE Transactions on Industrial Electronics, 61(12):6778-6784.
dc.relation.referencesKhaligh, A. and Antonio, M. D. (2019). Global Trends in High-Power On-Board Chargers for Electric Vehicles. IEEE Transactions on Vehicular Technology, 68(4):3306-3324.
dc.relation.referencesKhaligh, A. and Tang, Y. (2018). Integrated Dual-Output Grid-to-Vehicle (G2V) and Vehicle-to-Grid (V2G) On-Board Charger for Plug-in Electric Vehicles. US 2018/0222333 A1.
dc.relation.referencesKonrad, J., Koini, M., Schossmann, M., and Puff, M. (2014). New Demands on DC Link Power Capacitors. Congress on Automotive Electronic Systems - 3rd and 4th, (Diciembre):1-6.
dc.relation.referencesLenka, R. K., Naik N, V., Panda, A. K., Tiwary, N., and Dash, A. R. (2021). Reactive Power Compensation using Vehicle-to- Grid enabled Bidirectional Off-Board EV Battery Charger. 1st International Conference on Power Electronics and Energy.
dc.relation.referencesLi, H., Zhang, X., Zhang, Z., Yao, C., Qi, F., Hu, B., Wang, J., and Liu, L. (2016). Design of a 10 kW GaN-Based High Power Density Three-Phase Inverter. ECCE 2016 - IEEE Energy Conversion Congress and Exposition, Proceedings.
dc.relation.referencesLi, M., Dai, D., Xikui, M., and Iu, H. H. C. (2008). Fast-Scale Period-Doubling Bifurcation in Voltage-Mode Controlled Full-Bridge Inverter. Proceedings - IEEE International Symposium on Circuits and Systems, pages 2829-2832.
dc.relation.referencesLiu, P., Chen, C., Zhang, X., and Huang, S. (2019). Online Junction Temperature Estimation Method for SiC Modules With Built-in NTC Sensor. CPSS Transactions on Power Electronics and Applications, 4(1):94-99.
dc.relation.referencesLoudot, S., Briane, B., Ploix, O., and Villeneuve, A. (2012). Fast Charging Device for an Eletric Vehicle. US 2012/028674.0 A1.
dc.relation.referencesLunz, B. and Sauer, D. U. (2015). Electric Road Vehicle Battery Charging Systems and Infrastructure. In Advances in battery technologies for electric vehicles, chapter 17, pages 445-467. Elsevier Ltd.
dc.relation.referencesLyon, W. (1933). Reactive Power and Power Factor Power. Electrical Engineering, 52(5):342.
dc.relation.referencesMagnetics (2019). AmoFlux.
dc.relation.referencesMarmaras, C., Xydas, E., and Cipcigan, L. (2017). Simulation of Electric Vehicle Driver Behaviour in Road Transport and Electric Power Networks. Transportation Research Part C: Emerging Technologies, 80:239-256.
dc.relation.referencesMartínez, E. I. (2019). Tipos de Cables Usados para Instalaciones Eléctricas.
dc.relation.referencesMartínez-Lao, J., Montoya, F. G., Montoya, M. G., and Manzano-Agugliaro, F. (2017). Electric vehicles in Spain: An overview of charging systems. Renewable and Sustainable Energy Reviews, 77(November 2016):970-983.
dc.relation.referencesMathWorks (2008). Library S-R Flip-Flop.
dc.relation.referencesMathWorks (2017). Library Battery.
dc.relation.referencesMetwly, M. Y., Abdel-Majeed, M. S., Abdel-Khalik, A. S., Hamdy, R. A., Hamad, M. S., and Ahmed, S. (2020). A Review of Integrated On-Board EV Battery Chargers: Advanced Topologies, Recent Developments and Optimal Selection of FSCW Slot/Pole Combination. IEEE Access, 8:85216-85242.
dc.relation.referencesMobility House (2021). Charging Time Summary for EVs.
dc.relation.referencesMohan, N., M. Undeland, T., and P. Robbins, W. (2003). Power Electronics: Converters, Applications, and Design. John Wiley & Sons, Inc., third edition.
dc.relation.referencesMonteiro, V., Ferreira, J. C., Melendez, A. A., Afonso, J. A., Couto, C., and Afonso, J. L. (2019). Experimental Validation of a Bidirectional Three-Level dc-dc Converter for On-Board or O -Board EV Battery Chargers. IECON Proceedings (Industrial Electronics Conference), 2019-Octob(i):3468-3473.
dc.relation.referencesMonteiro, V., Ferreira, J. C., Nogueiras Melendez, A. A., Couto, C., and Afonso, J. L. (2018a). Experimental Validation of a Novel Architecture Based on a Dual-Stage Converter for O -Board Fast Battery Chargers of Electric Vehicles. IEEE Transactions on Vehicular Technology, 67(2):1000-1011.
dc.relation.referencesMonteiro, V., Sousa, T. J., Afonso, J. A., and Afonso, J. L. (2018b). Innovative Off-Board EV Home Charging Station as a Smart Home Enabler: Present and Proposed Perspectives. Proceedings - IEEE 16th International Conference on Industrial Informatics, INDIN 2018, pages 966-971.
dc.relation.referencesMunari, B. and Schneer, A. (2020). How To Design a Precharge Circuit for Hybrid and Electric Vehicle Applications.
dc.relation.referencesMwasilu, F., Justo, J. J., Kim, E. K., Do, T. D., and Jung, J. W. (2014). Electric Vehicles and Smart Grid Interaction: A Review on Vehicle to Grid and Renewable Energy Sources Integration. Renewable and Sustainable Energy Reviews, 34(June):501-516.
dc.relation.referencesNassary, M., Orabi, M., and El Aroudi, A. (2020). Single-Loop Control Scheme for Electrolytic Capacitor- Less AC{DC Recti ers with PFC in Continuous Conduction Mode. Electronics Letters, 56(10):506-508.
dc.relation.referencesNeI (2019). ¿Cómo y Dónde Recargar Vehículos Eléctricos?
dc.relation.referencesNichicon (2015). General Description of Aluminum Electrolytic Capacitors.
dc.relation.referencesNissan (2018). Nissan Leaf.
dc.relation.referencesNussbaumer, T., Raggl, K., and Kolar, J. W. (2009). Design guidelines for interleaved single-phase boost PFC circuits. IEEE Transactions on Industrial Electronics, 56(7):2559-2573.
dc.relation.referencesOgata, K. (2010). Ingeniería de control moderna.
dc.relation.referencesONU (2016). ONU Propone Sistemas de Transporte Sostenibles.
dc.relation.referencesOta, Y., Taniguchi, H., Suzuki, H., Nakajima, T., Baba, J., and Yokoyama, A. (2012). Implementation of Grid-Friendly Charging Scheme to Electric Vehicle Off-Board Charger for V2G. IEEE PES Innovative Smart Grid Technologies Conference Europe, pages 1-6.
dc.relation.referencesPérez, D. (2017). Gran Conquista de la Energía Limpia.
dc.relation.referencesPersson, E. (2018). In neon CoolGaN™. In neon, pages 1-17.
dc.relation.referencesPoon, N. K., Pong, B. M., and Tse, C. K. (2003). A Constant-Power Battery Charger with Inherent Soft Switching and Power Factor Correction. IEEE Transactions on Power Electronics, 18(6):1262-1269.
dc.relation.referencesPressman, A. I., Billings, K., and Morey, T. (2009). Switching Power Supply Design Rules, volume 72. The McGraw-Hill Companies.
dc.relation.referencesRaff, R., Golub, V., Pelin, D., and Topic, D. (2019). Overview of Charging Modes and Connectors for the Electric Vehicles. 7th International Youth Conference on Energy, IYCE 2019.
dc.relation.referencesRamakrishnan, H. and Rangaraju, J. (2020). Power Topology Considerations for Electric Vehicle Charging Stations. Technical report.
dc.relation.referencesRamírez, E. (2008). Distorsión Armónica.
dc.relation.referencesRashid, M. H., Vázquez, N., and Vaquero-López, J. (2018). Power Electronics Handbook. Elsevier Inc., fourth edition.
dc.relation.referencesRenault (2018). Renault Zoe.
dc.relation.referencesRippel, W. E. and Cocconi, A. G. (1992). Integrated Motor Drive and Recharge System. US Patent 5,099,186.
dc.relation.referencesRodrigues, M. d. C. B. P., de Oliveira, J. G., Ferreira, A. A., Barbosa, P. G., and Braga, H. A. C. (2014). Conexao de Veículos Elétricos a Rede de Energia Elétrica para Recarga de Baterias: Uma Visao Geral. Eletronica de Potencia, 19(2):194-207.
dc.relation.referencesRodríguez-Licea, M. A., Perez-Pinal, F. J., Soriano-Sánchez, A. G., and Vázquez-López, J. A. (2019). Noninvasive Vehicle-to-Load Energy Management Strategy to Prevent Li-Ion Batteries Premature Degradation. Hindawi - Mathematical Problems in Engineering, 2019.
dc.relation.referencesRubino, L., Capasso, C., and Veneri, O. (2017). Review on Plug-in Electric Vehicle Charging Architectures Integrated with Distributed Energy Sources for Sustainable Mobility. Applied Energy, 207:438-464.
dc.relation.referencesRubycon (2008). Performance of Aluminium Electrolytic Capacitors.
dc.relation.referencesRubycon Corporation (2017). Life of Aluminum Electrolytic Capacitors.
dc.relation.referencesSchmidt, O., Thomitzek, M., R oder, F., Thiede, S., Herrmann, C., and Krewer, U. (2020). Modeling the Impact of Manufacturing Uncertainties on Lithium-Ion Batteries. Journal of The Electrochemical Society, 167(060501):15.
dc.relation.referencesSeth, A. K. and Singh, M. (2021). Control of Two-Stage OFF-Board Electric Vehicle Charger. 1st International Conference on Power Electronics and Energy IEEE, pages 4-9.
dc.relation.referencesShankar, D. P., Govindarajan, U., and Karunakaran, K. (2013). Period-Bubbling and Mode-Locking Instabilities in a Full-Bridge DC-AC Buck Inverter. IET Power Electronics, 6(9):1956-1970.
dc.relation.referencesShepherd, C. M. (1963). Theoretical Design of Primary and Secondary Cells Part III - Battery Discharge Equation. Technical report, Electrochemistry Branch Chemistry Division.
dc.relation.referencesShi, C., Tang, Y., and Khaligh, A. (2018). A Three-Phase Integrated On-board Charger for Plug-In Electric Vehicles. IEEE Transactions on Power Electronics, 33(6):4716-4725.
dc.relation.referencesSoldano, M. (2005). Bridge-Less Boost (BLB) Power Factor Correction Topology Controlled With One Cycle Control. WO 2005/033819 A2.
dc.relation.referencesST (2011). Calculation of Conduction Losses in a Power Recti er. STMicroelectronics AN-604, pages 1{12.
dc.relation.referencesST (2012). Calculation of Reverse Losses in a Power Diode. STMicroelectronics AN-4021, pages 1-10.
dc.relation.referencesStyles, J. (2019). Common Misconceptions about the MOSFET Body Diode.
dc.relation.referencesSubotic, I., Bodo, N., and Levi, E. (2016a). Single-Phase On-Board Integrated Battery Chargers for EVs Based on Multiphase Machines. IEEE Transactions on Power Electronics, 31(9):6511-6523.
dc.relation.referencesSubotic, I., Bodo, N., Levi, E., Dumnic, B., Milicevic, D., and Katic, V. (2016b). Overview of Fast On-Board Integrated Battery Chargers for Electric Vehicles Based on Multiphase Machines and Power Electronics. IET Electric Power Applications, 10(3):217-229.
dc.relation.referencesSujitha, N. and Krithiga, S. (2017). RES Based EV Battery Charging System : A Review. Renewable and Sustainable Energy Reviews, 75(July 2016):978-988.
dc.relation.referencesTang, Y., Lu, J., Wu, B., Zou, S., Ding, W., and Khaligh, A. (2018). An Integrated Dual-Output Isolated Converter for Plug-in Electric Vehicles. IEEE Transactions on Vehicular Technology, 67(2):966-976.
dc.relation.referencesTao, J. (2017). Power Factor Correction (PFC) Topology Comparison.
dc.relation.referencesTDK (2016). Aluminum Electrolytic Capacitors General Technical Information.
dc.relation.referencesTesla (2020). Battery Day. Technical report, Tesla.
dc.relation.referencesThimmesch, D. (1985). An SCR Inverter with an Integral Battery Charger for Electric Vehicles. IEEE Transactions on Industry Applications, IA-21(4):1023-1029.
dc.relation.referencesThompson, A. W. and Perez, Y. (2019). Vehicle-to-Anything ( V2X ) Energy Services , Value Streams , and Regulatory Policy Implications. HAL, 1:29.
dc.relation.referencesTI (1999). Understanding Buck Power Stages in Switchmode Power Supplies. Texas Instruments, page 36.
dc.relation.referencesTI (2020). 98.6% Effciency, 6.6-kW Totem-Pole PFC Reference Design for HEV/EV Onboard Charger. Texas Instruments Designs, pages 1-72.
dc.relation.referencesTomaszewska, A., Chu, Z., Feng, X., O'Kane, S., Liu, X., Chen, J., Ji, C., Endler, E., Li, R., Liu, L., Li, Y., Zheng, S., Vetterlein, S., Gao, M., Du, J., Parkes, M., Ouyang, M., Marinescu, M., Offer, G., and Wu, B. (2019). Lithium-ion Battery Fast Charging: A Review. eTransportation, 1(100011):28.
dc.relation.referencesUPME (2019). Establecer Recomendaciones en Materia de Infraestructura de Recarga para la Movilidad Eléctrica en Colombia para los Diferentes Segmentos: Buses, motos, taxis, BRT.
dc.relation.referencesVerma, A. and Singh, B. (2017). Three Phase O -Board Bi-directional Charger for EV with V2G Functionality. 2017 7th International Conference on Power Systems, ICPS 2017, pages 145-150.
dc.relation.referencesVerma, A. and Singh, B. (2019). Multi-Objective Recon gurable Three-Phase Off-Board Charger for EV. IEEE Transactions on Industry Applications, 55(4):4192-4203.
dc.relation.referencesWang, H. (2016). Capacitors in Power Electronics Applications{Reliability and Circuit Design. IECON, pages 1-82.
dc.relation.referencesWare, J. (2006). Power Factor Correction. IEE Wiring Matters, page 3.
dc.relation.referencesWei, L., Lukaszewski, R. A., Wijenayake, A. H., Krause, P., and Loth, M. (2010). Power Electronic Module Pre-charge System and Method. US Patent 7,830,036 B2.
dc.relation.referencesWei, Y. (2018). A High Frequency, High Efficiency, High Power Factor Isolated On-board Battery Charger for Electric Vehicles. Theses and dissertations. 1949, University of Wisconsin Milwaukee.
dc.relation.referencesWirtz, J. (2011). On-Board Vs . Off-Board Charging.
dc.relation.referencesWood, P. (2006). BridgeLess Boost Converter With PFC circuit. W0 2006/105247 A2.
dc.relation.referencesYilmaz, M. and Krein, P. T. (2013). Review of Battery Charger Topologies , Charging Power Levels , and Infrastructure for Plug-in Electric and Hybrid Vehicles. IEEE Transactions on Power Electronics, 28(5):2151-2169.
dc.relation.referencesYong, J. Y., Fazeli, S. M., Ramachandaramurthy, V. K., and Tan, K. M. (2017). Design and Development of a Three-Phase Off-Board Electric Vehicle Charger Prototype for Power Grid Voltage Regulation. Energy, 133:128-141.
dc.relation.referencesZehendner, M. and Ulmann, M. (2016). Power Topologies Handbook.
dc.relation.referencesZhang, D., Kang, S., Lin, H., and Lv, Z. (2016). Application of Predictive Current Control Based Multi- Pulse Flexible-Topology Thyristor Recti er in O -Board Battery Charger for Electric Vehicle. 2016 IEEE Vehicle Power and Propulsion Conference, VPPC 2016 - Proceedings, (51407151):1-5.
dc.relation.referencesZhang, S. S. (2006). The Effect of the Charging Protocol on the Cycle Life of a Li-ion Battery. Journal of Power Sources, 161(2):1385-1391.
dc.relation.referencesZhou, B., Lai, J.-S., Ha, D. S., and Nelson, D. J. (2014). CCM Totem-Pole Bridgeless PFC with Ultra-Fast IGBT. Maestría en ingeniería eléctrica, Instituto Politécnico y Universidad Estatal de Virginia.
dc.relation.referencesZhusubaliyev, Z. T., Mosekilde, E., Andriyanov, A. I., and Shein, V. V. (2014). Phase Synchronized Quasiperiodicity in Power Electronic Inverter Systems. Physica D, 268:14-24.
dc.relation.referencesZou, S., Lu, J., Mallik, A., and Khaligh, A. (2018). Modeling and Optimization of an Integrated Transformer for Electric Vehicle On-Board Charger Applications. IEEE Transactions on Transportation Electri cation, 4(2):355-363.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembCircuitos eléctricos
dc.subject.proposalCargador off-board
dc.subject.proposalVehículos eléctricos
dc.subject.proposalFactor de potencia
dc.subject.proposalEficiencia
dc.subject.proposalDistorsión armónica total
dc.subject.proposalFenómeno de burbujeo
dc.subject.proposalInversores de potencia
dc.subject.proposalFrecuencia de conmutación
dc.subject.proposalComportamiento oscilatorio
dc.subject.proposalOff-board charger
dc.subject.proposalElectric vehicles
dc.subject.proposalPower factor
dc.subject.proposalEfficiency
dc.subject.proposalTotal harmonic distortion
dc.subject.proposalBubbling phenomenon
dc.subject.proposalPower inverters
dc.subject.proposalSwitching frequency
dc.subject.proposalOscillatory behavior
dc.title.translatedDesign of an Off-Board charger for domestic connection of electric vehicles at national level and control of the bubbling phenomenon in electronic power inverters
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentImage
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaEléctrica, Electrónica, Automatización Y Telecomunicaciones.Sede Manizales


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito