Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorLizarazo Marriaga, Juan Manuel
dc.contributor.advisorArango Londoño, Juan Fernando
dc.contributor.authorSalazar Mayorga, Luis Felipe
dc.date.accessioned2023-02-21T15:49:17Z
dc.date.available2023-02-21T15:49:17Z
dc.date.issued2023-02-18
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83535
dc.descriptionilustraciones, fotografías (principalmente a color)
dc.description.abstractEl cemento pórtland adicionado con caliza y arcilla calcinada (LC3) es un material capaz de desarrollar propiedades mecánicas comparables al cemento pórtland ordinario (OPC), de permitir la obtención de una microestructura densa y rica en aluminatos que mejora la resistencia del concreto al ataque por cloruros y la reacción álcali sílice (RAS), y trae beneficios ambientales, técnicos y económicos a la sociedad. En este trabajo se evaluó la resistencia a la corrosión debida a la carbonatación en concretos fabricados con cementos LC3 encontrando que esta fue directamente proporcional al factor clínker del cemento, particularmente en condición acelerada. Los cementos LC3 fueron formulados ajustando su contenido de SO3 mediante la evaluación del proceso de hidratación en la pasta de cemento. Las pruebas de carbonatación fueron ejecutadas mediante métodos acelerados en la pasta, mortero y concreto, y también se desarrollaron pruebas en condición natural. También, se estudió el efecto de la carbonatación sobre la resistencia a la compresión del mortero, encontrando un buen desempeño para cementos con mayores factores clínker. El estado del acero de refuerzo en concretos expuestos a carbonatación natural y acelerada fue evaluado mediante las técnicas electroquímicas de resistencia a la polarización lineal (LPR) y espectroscopia de impedancia electroquímica (EIS), evidenciando que los efectos de la carbonatación acelerada en la reducción de la resistencia eléctrica de los concretos LC3 y la presencia de corrosión del acero inician antes de que el frente de carbonatación alcance la superficie de la barra de acero. Adicionalmente, la evaluación de la corrosión mostró que los concretos con cementos adicionados en grandes proporciones son más vulnerables a la corrosión debida a la carbonatación, existiendo un mayor riesgo en aquellos con menores factores clínker. (Texto tomado de la fuente)
dc.description.abstractPortland cement blended with limestone and calcined clay (LC3) is a material capable of developing mechanical properties comparable to ordinary Portland cement (OPC), allowing a dense microstructure rich in aluminates to be obtained that improves the resistance of concrete to attack by chlorides and the alkali silica reaction, and brings environmental, technical and economic benefits to society. In this work, the resistance to corrosion due to carbonation in concrete made with LC3 cements was evaluated finding that it was directly proportional to the clinker factor of the cement, particularly in the accelerated condition. LC3 cements were formulated by adjusting their SO3 content by evaluating the hydration process in the cement paste. Carbonation tests were carried out using accelerated methods on paste, mortar and concrete, although tests were also carried out in natural conditions. Also, the effect of carbonation on the compressive strength of the mortar was studied, finding a good performance for cements with higher clinker factors. The state of reinforcing steel in concrete exposed to natural and accelerated carbonation was evaluated by electrochemical techniques of linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS), showing that the effects of accelerated carbonation on the reduction of the electrical resistance of the LC3 concrete and the presence of steel corrosion begin before the carbonation front reaches the surface of the steel bar. Additionally, the corrosion evaluation showed that concretes with cements blended in large proportions are more vulnerable to corrosion due to carbonation, with a higher risk in those with lower clinker factors.
dc.format.extentxxxi, 265 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc690 - Construcción de edificios::693 - Construcción en tipos específicos de materiales y propósitos específicos
dc.titleEvaluación de la resistencia a la corrosión debida a carbonatación en concretos con cementos pórtland adicionados con caliza y arcilla calcinada
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Estructuras
dc.contributor.researchgroupGIES – Grupo de investigación en análisis, diseño y materiales
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ingeniería - Estructuras
dc.description.researchareaMateriales para construcción
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesY. Dhandapani, T. Sakthivel, M. Santhanam, R. Gettu, and R. G. Pillai, “Mechanical properties and durability performance of concretes with Limestone Calcined Clay Cement (LC3),” Cem Concr Res, vol. 107, pp. 136–151, May 2018, doi: 10.1016/j.cemconres.2018.02.005.
dc.relation.referencesA. Alujas, R. Fernández, R. Quintana, K. L. Scrivener, and F. Martirena, “Pozzolanic reactivity of low grade kaolinitic clays: Influence of calcination temperature and impact of calcination products on OPC hydration,” Appl Clay Sci, vol. 108, pp. 94–101, 2015, doi: 10.1016/j.clay.2015.01.028.
dc.relation.referencesF. Avet, R. Snellings, A. Alujas Diaz, M. ben Haha, and K. Scrivener, “Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays,” Cem Concr Res, vol. 85, pp. 1–11, 2016, doi: https://doi.org/10.1016/j.cemconres.2016.02.015.
dc.relation.referencesK. Scrivener, F. Martirena, S. Bishnoi, and S. Maity, “Calcined clay limestone cements (LC3),” Cem Concr Res, vol. 114, pp. 49–56, 2018, doi: 10.1016/j.cemconres.2017.08.017.
dc.relation.referencesF. Zunino, F. Martirena, and K. Scrivener, “Limestone calcined clay cements (LC3),” ACI Mater J, vol. 118, no. 3, pp. 49–60, May 2021, doi: 10.14359/51730422.
dc.relation.referencesS. Rathnarajan, B. S. Dhanya, R. G. Pillai, R. Gettu, and M. Santhanam, “Carbonation model for concretes with fly ash, slag, and limestone calcined clay - using accelerated and five - year natural exposure data,” Cem Concr Compos, vol. 126, Feb. 2022, doi: 10.1016/j.cemconcomp.2021.104329.
dc.relation.referencesS. Rathnarajan and R. Pillai, “Carbonation rate and service life of reinforced concrete systems with mineral admixtures and special cements,” 2017.
dc.relation.referencesQ. D. Nguyen and A. Castel, “Reinforcement corrosion in limestone flash calcined clay cement-based concrete,” Cem Concr Res, vol. 132, no. February, 2020, doi: 10.1016/j.cemconres.2020.106051.
dc.relation.referencesM. Sharma, S. Bishnoi, F. Martirena, and K. Scrivener, “Limestone calcined clay cement and concrete: A state-of-the-art review,” Cem Concr Res, vol. 149, Nov. 2021, doi: 10.1016/j.cemconres.2021.106564.
dc.relation.referencesK. L. Scrivener, V. M. John, and E. M. Gartner, “Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry,” Cem Concr Res, vol. 114, pp. 2–26, Dec. 2018, doi: 10.1016/j.cemconres.2018.03.015.
dc.relation.referencesP.-C. Aitcin, Binders for Durable and Sustainable Concrete. New York: Taylor & Francis, 2008.
dc.relation.referencesK. Scrivener et al., “Impacting factors and properties of limestone calcined clay cements (LC3),” Green Mater, vol. 7, no. 1, pp. 3–14, Jul. 2018, doi: 10.1680/jgrma.18.00029.
dc.relation.referencesS. Bishnoi, S. Maity, A. Mallik, S. Joseph, and S. Krishnan, “Pilot scale manufacture of limestone calcined clay cement : The Indian experience Limestone Calcined Clay Cement View project LC3-Limestone Calcined Clay Cement View project Soumen Maity Special iSSue-Future cements,” The Indian Concrete Journal, vol. 88, no. 77, pp. 22–28, 2014.
dc.relation.referencesA. C. Emmanuel, P. Haldar, S. Maity, and S. Bishnoi, “Second pilot production of limestone calcined clay cement in India: The experience,” Indian Concrete Journal, vol. 90, no. 5, pp. 57–63, 2016.
dc.relation.referencesR. Matallana, El concreto fundamentos y nuevas tecnologías. Constructora Conconcreto, Corona, 2019.
dc.relation.referencesA. Poursaee, Corrosion of steel in concrete structures. Woodhead Publishing, 2016.
dc.relation.referencesNACE International, “Corrosion costs and preventive strategies in the United States,” 2002, [Online]. Available: http://impact.nace.org/documents/ccsupp.pdf
dc.relation.referencesU. M. Angst, “Challenges and opportunities in corrosion of steel in concrete,” Mater Struct, vol. 51, no. 4, p. 20, 2018, doi: 10.1617/s11527-017-1131-6.
dc.relation.referencesnternational Energy Agency, “Technology Roadmap - Low-Carbon Transition in the Cement Industry,” 2018.
dc.relation.referencesWorld Business Council for Sustainable Development, “Cement Sustainability Initiative, Getting the Numbers Right, Project Emissions Report 2014,” 2016.
dc.relation.referencesS. Sánchez Berriel et al., “Assessing the environmental and economic potential of Limestone Calcined Clay Cement in Cuba,” J Clean Prod, vol. 124, pp. 361–369, Jun. 2016, doi: 10.1016/j.jclepro.2016.02.125.
dc.relation.referencesY. Cancio Díaz et al., “Limestone calcined clay cement as a low-carbon solution to meet expanding cement demand in emerging economies,” Dev Eng, vol. 2, pp. 82– 91, 2017, doi: 10.1016/j.deveng.2017.06.001
dc.relation.referencesB. Lothenbach, K. Scrivener, and R. D. Hooton, “Supplementary cementitious materials,” Cem Concr Res, vol. 41, pp. 1244–1256, Dec. 2011, doi: 10.1016/j.cemconres.2010.12.001.
dc.relation.referencesV. L. Bonavetti, V. F. Rahhal, and E. F. Irassar, “Studies on the carboaluminate formation in limestone filler-blended cements,” Cem Concr Res, vol. 31, no. 6, pp. 853–859, 2001, doi: 10.1016/S0008-8846(01)00491-4.
dc.relation.referencesL. M. Vizcaíno-Andrés, S. Sánchez-Berriel, S. Damas-Carrera, A. PérezHernández, K. L. Scrivener, and J. F. Martirena-Hernández, “Industrial trial to produce a low clinker, low carbon cement,” Materiales de Construcción, vol. 65, no317, Mar. 2015, doi: 10.3989/mc.2015.00614.
dc.relation.referencesR. Fernandez, F. Martirena, and K. L. Scrivener, “The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite,” Cem Concr Res, vol. 41, no. 1, pp. 113–122, 2011, doi: 10.1016/j.cemconres.2010.09.013.
dc.relation.referencesA. M. Rashad, “Metakaolin as cementitious material: History, scours, production and composition-A comprehensive overview,” Constr Build Mater, vol. 41, pp. 303– 318, 2013, doi: 10.1016/j.conbuildmat.2012.12.001.
dc.relation.referencesA. T. Bakera and M. G. Alexander, “Use of metakaolin as a supplementary cementitious material in concrete, with a focus on durability properties,” RILEM Technical Letters, vol. 4, pp. 89–102, May 2019, doi: 10.21809/rilemtechlett.2019.94.
dc.relation.referencesM. Antoni, J. Rossen, F. Martirena, and K. Scrivener, “Cement substitution by a combination of metakaolin and limestone,” Cem Concr Res, vol. 42, pp. 1579– 1589, 2012, doi: 10.1016/j.cemconres.2012.09.006.
dc.relation.referencesB. Lothenbach, G. le Saout, E. Gallucci, and K. Scrivener, “Influence of limestone on the hydration of Portland cements,” Cem Concr Res, vol. 38, pp. 848–860, 2008, doi: 10.1016/j.cemconres.2008.01.002.
dc.relation.referencesC. Rodríguez and J. I. Tobón, “Influence of calcined clay/limestone, sulfate and clinker proportions on cement performance,” Constr Build Mater, vol. 251, p. 119050, 2020, doi: 10.1016/j.conbuildmat.2020.119050.
dc.relation.referencesF. Zunino and K. Scrivener, “Factors influencing the sulfate balance in pure phase C3S/C3A systems,” Cem Concr Res, vol. 133, Jul. 2020, doi: 10.1016/j.cemconres.2020.106085.
dc.relation.referencesF. Zunino and K. Scrivener, “The influence of the filler effect on the sulfate requirement of blended cements,” Cem Concr Res, vol. 126, Dec. 2019, doi: 10.1016/j.cemconres.2019.105918.
dc.relation.referencesA. Campos Silva, G. Fajardo, and J. Mendoza Rangel, “Estudio del comportamiento del avance de la carbonatación del concreto reforzado en ambiente natural y acelerado,” Concreto y Cemento: Investigación y Desarrollo, vol. 8, no. 1, pp. 14–34, 2016.
dc.relation.referencesL. Bertolini, B. Elsener, P. Pedeferri, and R. P. Polder, Corrosion of steel in concrete: prevention, diagnosis, repair. Weinheim: Wiley-VCH, 2004.
dc.relation.referencesA. Licor, “Evaluación de la carbonatación en hormigones elaborados con cemento de bajo carbono LC3,” Universidad Central Marta Abreu de Las Villas, 2016. [Online]. Available: https://dspace.uclv.edu.cu/handle/123456789/7393
dc.relation.referencesA. A. Elgalhud, R. K. Dhir, and G. S. Ghataora, “Carbonation resistance of concrete: Limestone addition effect,” Magazine of Concrete Research, vol. 69, no.2, pp. 84–106, Jan. 2017, doi: 10.1680/jmacr.16.00371.
dc.relation.referencesY. D. Cárdenas, E. D. Caballero, and J. F. Martirena-Hernandez, “Evaluation of Carbonation in Specimens Made with LC3 Low Carbon Cement,” in RILEM Bookseries, vol. 22, 2020. doi: 10.1007/978-3-030-22034-1_35.
dc.relation.referencesM. S. H. Khan, Q. D. Nguyen, and A. Castel, “Carbonation of limestone calcined clay cement concrete,” RILEM Bookseries, vol. 16, pp. 238–243, 2018, doi: 10.1007/978-94-024-1207-9_38.
dc.relation.referencesR. Gettu et al., “Summary of 4-years of Research at IIT Madras on Concrete with Limestone Calcined Clay Cement (LC3),” in International Conference on Sustainable Materials, Systems and Structures, 2019, pp. 449–456.
dc.relation.referencesJ. F. Arango Londoño, Patología de la Construcción: fundamentos, En edición. 2022.
dc.relation.referencesV. Shah and S. Bishnoi, “Analysis of Pore Structure Characteristics of Carbonated Low-Clinker Cements,” Transp Porous Media, vol. 124, no. 3, pp. 861–881, 2018, doi: 10.1007/s11242-018-1101-7.
dc.relation.referencesV. Shah, K. Scrivener, B. Bhattacharjee, and S. Bishnoi, “Changes in microstructure characteristics of cement paste on carbonation,” Cem Concr Res, vol. 109, pp. 184–197, Jul. 2018, doi: 10.1016/j.cemconres.2018.04.016.
dc.relation.referencesS. Rathnarajan and R. Pillai, “Determination of pH threshold of corrosion initiation in cementitous systems with supplementary cementitious materials,” Chennai, Mar. 2018.
dc.relation.referencesE. Cabrera, A. Alujas, B. Elsener, and J. F. Martirena-Hernandez, “Preliminary Results on Corrosion Rate in Carbonated LC3 Concrete,” in RILEM Bookseries, vol. 22, Springer Netherlands, 2020, pp. 293–298. doi: 10.1007/978-3-030-220341_33.
dc.relation.referencesSTM International, “ASTM C125-21a Concrete and Concrete Aggregates.” 2021. doi: 10.1520/C0125-21A.
dc.relation.referencesS. Kosmatka, B. Kerkhoff, W. Panarese, and J. Tanesi, Diseño y control de mezclas de concreto. Skokie: Portland Cement Association, 2004.
dc.relation.referencesAsociación Colombiana de Productores de Concreto - ASOCRETO, Tecnología del concreto Materiales, Propiedades y Diseño de Mezclas Tomo 1. Bogotá D.C., 2018.
dc.relation.referencesK. Mehta and P. J. M. Monteiro, CONCRETE Microstructure, Properties and Materials, 4th ed. New York: McGraw-Hill Education, 2014.
dc.relation.referencesH. M. Owaid, R. B. Hamid, and M. R. Taha, “A review of sustainable supplementary cementitious materials as an alternative to all-portland cement mortar and concrete,” Aust J Basic Appl Sci, vol. 6, no. 9, 2012.
dc.relation.referencesZ. Li, Advanced Concrete Technology. Hoboken: John Wiley & Sons, INC., 2011.
dc.relation.referencesASTM International, “ASTM C618-19 Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete.” 2019. doi: 10.1520/C061819.
dc.relation.referencesS. S. Reddy and M. A. K. Reddy, “LIME CALCINED CLAY CEMENT (LC3): A Review,” in IOP Conference Series: Earth and Environmental Science, Aug. 2021, vol. 796, no. 1. doi: 10.1088/1755-1315/796/1/012037.
dc.relation.referencesASTM International, “ASTM C150/C150M-21 Standard Specification for Portland Cement.” 2021. doi: 10.1520/C0150_C0150M-21.
dc.relation.referencesASTM International, “ASTM C595/C595M-21 Standard Specification for Blended Hydraulic Cements.” 2021. doi: 10.1520/C0595_C0595M-21.
dc.relation.referencesASTM International, “ASTM C1157/C1157M-20 Standard Performance Specification for Hydraulic Cement.” ASTM Standards, 2020. doi: 10.1520/C1157_C1157M-20.
dc.relation.referencesC. P. Rodríguez Hidalgo, “Evaluación de la interacción en el uso conjunto de un material arcilloso activado térmicamente, caliza y sulfato sobre la cinética de hidratación y desempeño mecánico del cemento,” Universidad Nacional de Colombia, 2019.
dc.relation.referencesMETTLER TOLEDO, “Determination of calcium sulfate dihydrate and hemihydrate in cement,” 2010. [Online]. Available: www.mt.com
dc.relation.referencesF. Zunino and K. Scrivener, “The reaction between metakaolin and limestone and its effect in porosity refinement and mechanical properties,” Cem Concr Res, vol. 140, 2021, doi: 10.1016/j.cemconres.2020.106307.
dc.relation.referencesM. A. Giraldo and J. I. Tobón, “Evolución mineralógica del cemento Pórtland durante el proceso de hidratación,” Dyna (Medellin), vol. 73, no. 148, pp. 69–81, 2006.
dc.relation.referencesL. E. Romero Robles, “Evaluación de factores que afectan la aparición de etringita secundaria como simulación del envejecimiento de mezclas de concreto y su papel dentro de procesos de expansión y agrietamiento,” in 10th Latin American and Caribbean Conference for Engineering and Technology, Jul. 2012.
dc.relation.referencesS. Krishnan, A. C. Emmanuel, and S. Bishnoi, “Hydration and phase assemblage of ternary cements with calcined clay and limestone,” Constr Build Mater, vol. 222, pp. 64–72, Oct. 2019, doi: 10.1016/j.conbuildmat.2019.06.123.
dc.relation.referencesL. M. Vizcaíno Andrés, M. G. Antoni, A. A. Diaz, J. F. Martirena Hernández, and K. L. Scrivener, “Effect of fineness in clinker-calcined clays-limestone cements,” Advances in Cement Research, vol. 27, no. 9, pp. 546–556, Oct. 2015, doi: 10.1680/adcr.14.00095.
dc.relation.referencesL. C. Lopera Agudelo, “Los principales fenómenos en la reacción del cemento hidráulico,” Jun. 2021. https://alion.com.co/reaccion-del-cemento-hidraulico/#:~:text=En%20el%20cemento%2C%20ocurre%20principalmente,la%20reducci%C3%B3n%20en%20la%20resistencia. (accessed Jul. 22, 2022).
dc.relation.referencesD. Jansen, F. Goetz-Neunhoeffer, B. Lothenbach, and J. Neubauer, “The early hydration of Ordinary Portland Cement (OPC): An approach comparing measured heat flow with calculated heat flow from QXRD,” Cem Concr Res, vol. 42, no. 1, pp. 134–138, Jan. 2012, doi: 10.1016/j.cemconres.2011.09.001.
dc.relation.referencesZ. Li, D. Lu, and X. Gao, “Analysis of correlation between hydration heat release and compressive strength for blended cement pastes,” Constr Build Mater, vol. 260, Nov. 2020, doi: 10.1016/j.conbuildmat.2020.120436.
dc.relation.referencesF. Yousuf, X. Wei, and J. Zhou, “Monitoring the setting and hardening behaviour of cement paste by electrical resistivity measurement,” Constr Build Mater, vol. 252, Aug. 2020, doi: 10.1016/j.conbuildmat.2020.118941.
dc.relation.referencesL. Chi, Z. Wang, S. Lu, H. Wang, K. Liu, and W. Liu, “Early assessment of hydration and microstructure evolution of belite-calcium sulfoaluminate cement pastes by electrical impedance spectroscopy,” Electrochim Acta, vol. 389, Sep. 2021, doi: 10.1016/j.electacta.2021.138699.
dc.relation.referencesL. Liu et al., “Study on hydration reaction and structure evolution of cemented paste backfill in early-age based on resistivity and hydration heat,” Constr Build Mater, vol. 272, Feb. 2021, doi: 10.1016/j.conbuildmat.2020.121827.
dc.relation.referencesASTM International, “ASTM C563-20 Standard Guide for Approximation of Optimum SO3 in Hydraulic Cement Using Compressive Strength.” 2020. doi: 10.1520/C0563-20.
dc.relation.referencesInstituto Colombiano de Normas Técnicas (ICONTEC), “GTC 302 Cementos. Guía para determinar el contenido óptimo aproximado de SO3 en el cemento hidráulico.” 2020.
dc.relation.referencesH. Maraghechi, F. Avet, H. Wong, H. Kamyab, and K. Scrivener, “Performance of Limestone Calcined Clay Cement (LC3) with various kaolinite contents with respect to chloride transport,” Materials and Structures/Materiaux et Constructions, vol. 51, no. 5, Oct. 2018, doi: 10.1617/s11527-018-1255-3.
dc.relation.referencesS. Narayanan and G. Muniasamy, “STRENGTH CHARACTERISTICS OF HIGH TICS OF HIGH PERFORMANCE LIME CALCINED CLAY CLAY CEMENT (LC3) CONCRETE,” International Journal of Civil Engineering and Technology (IJCIET), vol. 9, no. 13, pp. 1883–1889, 2018.
dc.relation.referencesV. Shah, A. Parashar, G. Mishra, S. Medepalli, S. Krishnan, and S. Bishnoi, “Influence of cement replacement by limestone calcined clay pozzolan on the engineering properties of mortar and concrete,” Advances in Cement Research, vol. 32, no. 3, pp. 101–111, Aug. 2018, doi: 10.1680/jadcr.18.00073.
dc.relation.referencesApsa and R. Rao, “Performance of Limestone Calcined Clay Cement,” International Journal of Recent Technology and Engineering (IJRTE), vol. 7, no. 6C2, 2019.
dc.relation.referencesG. Mishra, A. C. Emmanuel, and S. Bishnoi, “Influence of temperature on hydration and microstructure properties of limestone-calcined clay blended cement,” Mater Struct, vol. 52, no. 5, Oct. 2019, doi: 10.1617/s11527-019-1390-5.
dc.relation.referencesS. Rengaraju, L. Neelakantan, and R. G. Pillai, “Investigation on the polarization resistance of steel embedded in highly resistive cementitious systems – An attempt and challenges,” Electrochim Acta, vol. 308, pp. 131–141, Jun. 2019, doi: 10.1016/j.electacta.2019.03.200.
dc.relation.referencesJ. Ston and K. Scrivener, “Basic creep of limestone–calcined clay cements: An experimental and numerical approach,” Theoretical and Applied Fracture Mechanics, vol. 103, Oct. 2019, doi: 10.1016/j.tafmec.2019.102270.
dc.relation.referencesF. Avet, E. Boehm-Courjault, and K. Scrivener, “Investigation of C-A-S-H composition, morphology and density in Limestone Calcined Clay Cement (LC3),” Cem Concr Res, vol. 115, pp. 70–79, Jan. 2019, doi: 10.1016/j.cemconres.2018.10.011.
dc.relation.referencesY. Dhandapani and M. Santhanam, “Investigation on the microstructure-related characteristics to elucidate performance of composite cement with limestone-calcined clay combination,” Cem Concr Res, vol. 129, no. December 2019, p. 105959, 2020, doi: 10.1016/j.cemconres.2019.105959.
dc.relation.referencesN. Nair, K. Mohammed Haneefa, M. Santhanam, and R. Gettu, “A study on fresh properties of limestone calcined clay blended cementitious systems,” Constr Build Mater, vol. 254, p. 119326, 2020, doi: 10.1016/j.conbuildmat.2020.119326.
dc.relation.referencesQ. D. Nguyen, T. Kim, and A. Castel, “Mitigation of alkali-silica reaction by limestone calcined clay cement (LC3),” Cem Concr Res, vol. 137, no. June, p. 106176, 2020, doi: 10.1016/j.cemconres.2020.106176.
dc.relation.referencesF. Bahman-Zadeh, A. A. Ramezanianpour, and A. Zolfagharnasab, “Effect of carbonation on chloride binding capacity of limestone calcined clay cement (LC3) and binary pastes,” Journal of Building Engineering, vol. 52, p. 104447, Jul. 2022, doi: 10.1016/j.jobe.2022.104447.
dc.relation.referencesM. Santhanam, R. Pillai, and Y. Dhandapani, “Recent Research on Limestone Calcined Clay Cement (LC3) at IIT Madras,” 2018.
dc.relation.referencesF. A. Zunino Sommariva, “Limestone calcined clay cements (LC3): raw material processing, sulfate balance and hydration kinetics,” École Polytecnhique Fédérale de Lausanne, Lausanne, 2020.
dc.relation.referencesD. Sánchez de Guzmán, Durabilidad y Patología del Concreto, Segunda. Bogotá: Asociación Colombiana de Productores de Concreto - ASOCRETO, 2017.
dc.relation.referencesW. Stumm and J. J. Morgan, AQUATIC CHEMISTRY Chemical Equilibria and Rates in Natural Waters, vol. Third Edition. John Wiley & Sons, INC., 1995.
dc.relation.referencesS. von Greve-Dierfeld et al., Understanding the carbonation of concrete with supplementary cementitious materials: a critical review by RILEM TC 281-CCC, vol. 53, no. 6. 2020. doi: 10.1617/s11527-020-01558-w.
dc.relation.referencesE. F. Félix, R. Carrazedo, and E. Possan, “Análise paramétrica da carbonatação em estruturas de concreto armado via Redes Neurais Artificiais,” Revista ALCONPAT, vol. 7, no. 3, pp. 302–316, 2017, doi: 10.21041/ra.v7i3.245.
dc.relation.referencesK. T. Kunal Tongaria, S. M. S.Mandal, and D. M. Devendra Mohan, “A Review on Carbonation of Concrete and Its Prediction Modelling,” Journal of Environmental Nanotechnology, vol. 7, no. 4, pp. 75–90, 2018, doi: 10.13074/jent.2018.12.184325.
dc.relation.referencesV. Papadakis, C. Vayenas, and M. Fardis, “Fundamental Modeling and Experimental Investigation of Concrete Carbonation,” ACI Mater J, vol. 88, no. 4, pp. 363–373, 1991.
dc.relation.referencesY. F. Houst and F. H. Wittmann, “Influence of porosity and water content on the diffusivity of CO2 and O2 through hydrated cement paste,” Cem Concr Res, vol. 24, no. 6, pp. 1165–1176, 1994, doi: 10.1016/0008-8846(94)90040-X.
dc.relation.referencesP. L. Valdez-Tamez, A. Durán-Herrera, G. Fajardo-San Miguel, and C. A. Juárez-Alvarado, “Influencia de la carbonatación en morteros de cemento Pórtland y ceniza volante,” Ingeniería, investigación y tecnología, vol. 10, no. 1, pp. 39–49, 2009, doi: 10.22201/fi.25940732e.2009.10n1.005.
dc.relation.referencesN. V. Rao and T. Meena, “A review on carbonation study in concrete,” in IOP Conference Series: Materials Science and Engineering, Dec. 2017, vol. 263, no. 3. doi: 10.1088/1757-899X/263/3/032011.
dc.relation.referencesJ. L. Omen Bolaños and O. Bolaños, “Influencia de los materiales cementantes suplementarios (SCMs) en concretos con agregados reciclados (RAC),” Universidad Nacional de Colombia, Bogotá, 2021.
dc.relation.referencesR. Montani, “La carbonatación, enemigo olvidado del concreto,” Instituto Mexicano del Cemento y del Concreto, A.C, 2000. https://www.imcyc.com/revista/2000/dic2000/carbonatacion.htm (accessed Jul. 22, 2022).
dc.relation.referencesN. Singh and S. P. Singh, “Reviewing the Carbonation Resistance of Concrete,” Journal of Materials and Engineering Structures, vol. 3, pp. 35–57, 2016.
dc.relation.referencesB. Šavija and M. Luković, “Carbonation of cement paste: Understanding, challenges, and opportunities,” Constr Build Mater, vol. 117, pp. 285–301, 2016, doi: 10.1016/j.conbuildmat.2016.04.138.
dc.relation.referencesW. Ashraf, “Carbonation of cement-based materials: Challenges and opportunities,” Constr Build Mater, vol. 120, pp. 558–570, Jun. 2016, doi: 10.1016/j.conbuildmat.2016.05.080.
dc.relation.referencesM. Richardson, Fundamentals of Durable Reinforced Concrete. Taylor & Francis Group, 2002.
dc.relation.referencesJ. M. Lizarazo Marriaga, “Elementos básicos de durabilidad del concreto: Corrosión del refuerzo,” En edición., 2018.
dc.relation.referencesK. Tuutti, Corrosion of steel concrete. Stockholm: Swedish Cement and Concrete Research Institute, 1982.
dc.relation.referencesL. Bertolini, “Steel corrosion and service life of reinforced concrete structures,” Structure and Infrastructure Engineering, vol. 4, no. 2, pp. 123–137, Apr. 2008, doi: 10.1080/15732470601155490.
dc.relation.referencesDURAR, Manual de inspección, evaluación y diagnóstico de corrosión de estructuras de hormigón armado, 2nd ed. 1998.
dc.relation.referencesP. R. D. L. Helene, “Contribuição ao estudo da corrosão en armaduras de concreto armado,” Universidade de São Paulo Escola Politécnica, São Paulo, 1993.
dc.relation.referencesPortland Cement Association (PCA), “Types and Causes of Concrete Deterioration,” Portland Cement Association - Concrete Information, vol. PCA R & D Se, pp. 1–16, 2002.
dc.relation.referencesP. Helene and F. Pereira, Manual de Rehabilitación de Estructuras de Hormigón. CYTED, 2003.
dc.relation.referencesJ. Broomfield, Corrosion in concrete steel, no. april. Taylor & Francis Group, 2007.
dc.relation.referencesASTM International, “ASTM C109/C109M-20b Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens),” 2020. 2021. doi: 10.1520/C0109_C0109M-20B.
dc.relation.referencesInstituto Colombiano de Normas Técnicas y Certificación (ICONTEC), “NTC 6270:2018 CEMENTOS. MÉTODO DE ENSAYO PARA MEDIR EL CALOR DE HIDRATACIÓN DE MATERIALES CEMENTANTES HIDRÁULICOS USANDO CALORIMETRÍA DE CONDUCCIÓN ISOTÉRMICA.” 2018.
dc.relation.referencesASTM International, “ASTM C1702: Standard Test Method for Measurement of Heat of Hydration of Hydraulic Cementitious Materials Using Isothermal Conduction Calorimetry,” 2017, doi: 10.1520/C1702-17.
dc.relation.referencesInstituto Colombiano de Normas Técnicas (ICONTEC), “NTC 1377:2021 Concretos. Elaboración y curado de especímenes de concreto para ensayos en el laboratorio.” 2021.
dc.relation.referencesASTM International, “ASTM C192/C192M-19 Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory.” 2019. doi: 10.1520/C0192_C0192M-19.
dc.relation.referencesInstituto Colombiano de Normas Técnicas (ICONTEC), “NTC 673:2021 Concretos. Método de ensayo de resistencia a la compresión de especímenes cilíndricos de concreto.” 2021.
dc.relation.referencesASTM International, “ASTM C39/C39M-21 Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens.” 2021. doi: 10.1520/C0039_C0039M-21.
dc.relation.referencesInstituto Colombiano de Normas Técnicas (ICONTEC), “NTC 6041:2019 CEMENTOS. MÉTODO DE ENSAYO PARA DETERMINAR LA CONTRACCIÓN POR SECADO DEL MORTERO QUE CONTIENE CEMENTO HIDRÁULICO.” 2019.
dc.relation.referencesASTM International, “ASTM C596-18 Standard Test Method for Drying Shrinkage of Mortar Containing Hydraulic Cement.” 2018. doi: 10.1520/C0596-18.
dc.relation.referencesL. N. Peña Leal, “Desarrollo de un sistema semi-adiabático para medir calor de hidratación de pastas de cemento y morteros.,” Universidad Nacional de Colombia, Bogotá, 2011.
dc.relation.referencesBritish Standards Institution (BSI), “BS EN 196-9:2003 Methods of testing cement - Heat of hydration. Semi-adiabatic method.” 2004.
dc.relation.referencesS. D. Peñaranda Sanjuan, “Metodología para la medición de la hidratación del cemento adicionado con ceniza volante a partir de impedancia electroquímica (En edición),” Universidad Nacional de Colombia, Bogotá D.C., 2022.
dc.relation.referencesA. F. Sosa Gallardo and J. L. Provis, “Electrochemical cell design and impedance spectroscopy of cement hydration,” J Mater Sci, vol. 56, no. 2, pp. 1203–1220, Jan. 2021, doi: 10.1007/s10853-020-05397-6.
dc.relation.referencesH. Magar, R. Hassan, and A. Mulchandani, “Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications,” Sensors, vol. 21, 2021, doi: 10.3390/s21196578.
dc.relation.referencesF. Iloro, L. Traveesa, and N. Ortega, “Correlación entre carbonatación natural y acelerada del hormigón con distintos cementos,” in VII Congreso Internacional - 21a Reunión Técnica de la AATH “Ing. Nélida del Valle Castría,” 2016, pp. 333–340.
dc.relation.referencesBritish Standards Institution (BSI), “BS EN 12390-12:2020 Determination of the carbonation resistance of concrete — Accelerated carbonation method.” 2020.
dc.relation.referencesM. D. Newlands, “Development of a simulated natural carbonation test and durability of selected CEM II concretes,” Univesity of Dundee, 2001.
dc.relation.referencesGamry Instruments, “Potentiostat Fundamentals,” 2022. https://www.gamry.com/application-notes/instrumentation/potentiostat-fundamentals/ (accessed Jun. 04, 2022).
dc.relation.referencesGamry Instruments, “Faraday Cage: What Is It? How Does It Work?,” 2022. https://www.gamry.com/application-notes/instrumentation/faraday-cage/ (accessed Jun. 04, 2022).
dc.relation.referencesASTM International, “ASTM C876-15 Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Corrosion Potentials of Uncoated Reinforcing Steel in Concrete.” 2015. doi: 10.1520/C0876-15.
dc.relation.referencesE. Mccafferty, Introduction to Corrosion Science. Springer Sciencie+ Business Media, 2010. doi: 10.1007/978-1-4419-0455-3.
dc.relation.referencesA. M. Aguirre-Guerrero, R. Mejía-De-Gutiérrez, and M. J. R. Montês-Correia, “Corrosion performance of blended concretes exposed to different aggressive environments,” Constr Build Mater, vol. 121, pp. 704–716, Sep. 2016, doi: 10.1016/j.conbuildmat.2016.06.038.
dc.relation.referencesA. F. Barragán Ramos, “Durability Performance Assessment of Fly Ash Concrete Using Fine Recycled Aggregates,” Universidad Nacional de Colombia, Bogotá D.C., 2021.
dc.relation.referencesASTM International, “ASTM G59-97(2020) Standard test method for conducting potentiodynamic polarization resistance measurements.” 2014. doi: 10.1520/G0059-97R14.2.
dc.relation.referencesA. D. Obando Ramírez, “Propuesta de procedimientos de las técnicas: ruido electroquímico, resistencia a la polarización e impedancia electroquímica usadas en la medición de la corrosión del refuerzo en el concreto reforzado,” Universidad Nacional de Colombia, Bogotá D.C., 2013.
dc.relation.referencesF. J. Rodríguez Gómez, “Técnicas electroquímicas de corriente directa para la medición de la velocidad de corrosión,” México D.F.
dc.relation.referencesAmerican Concrete Institute (ACI), “ACI PRC-211.1-91 Selecting Proportions for Normal-Density and High Density Concrete - Guide.” 2002.
dc.relation.referencesICONTEC, “NTC 121:2021 Especificación de desempeño para cemento hidráulico.”
dc.relation.referencesICONTEC, “NTC 5806:2019 ALAMBRE DE ACERO LISO Y GRAFILADO Y MALLAS LECTROSOLDADAS PARA REFUERZO DE CONCRETO.”
dc.relation.referencesInstituto Colombiano de Normas Técnicas (ICONTEC), “NTC 221:2019 Cementos. Método de ensayo para determinar la densidad del cemento hidráulico.” 2019.
dc.relation.referencesASTM International, “ASTM C188-17 Standard Test Method for Density of Hydraulic Cement.” 2017. doi: 10.1520/C0188-17.
dc.relation.referencesInstituto Colombiano de Normas Técnicas (ICONTEC), “NTC 33:2019 Cementos. Método de ensayo para determinar la finura del cemento hidráulico por medio del aparato Blaine de permeabilidad al aire.” 2019.
dc.relation.referencesASTM International, “ASTM C204-18E01 Standard Test Methods for Fineness of Hydraulic Cement by Air-Permeability Apparatus,” 2018, doi: 10.1520/C0204-18E01.
dc.relation.referencesInstituto Colombiano de Normas Técnicas (ICONTEC), “NTC 110:2019 CEMENTOS. CANTIDAD DE AGUA REQUERIDA PARA LA CONSISTENCIA NORMAL DE UNA PASTA DE CEMENTO HIDRÁULICO.” 2019.
dc.relation.referencesASTM International, “ASTM C187-16 Standard Test Method for Amount of Water Required for Normal Consistency of Hydraulic Cement Paste.” 2016. doi: 10.1520/C0187-16.
dc.relation.referencesInstituto Colombiano de Normas Técnicas (ICONTEC), “NTC 118:2019 Cementos. Método de ensayo para determinar el tiempo de fraguado del cemento hidráulico mediante aguja de vicat.” 2019.
dc.relation.referencesASTM International, “ASTM C191-19 Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle.” 2019. doi: 10.1520/C0191-19.
dc.relation.referencesInstituto Colombiano de Normas Técnicas (ICONTEC), “NTC 220:2021 Cementos. Determinación de la resistencia de morteros de cemento hidráulico a la compresión, usando cubos de 50 mm o 2 pulgadas de lado.” 2021.
dc.relation.referencesASTM International, “ASTM C778-17.2 Standard Specification for Standard Sand.” 2017. doi: 10.1520/C0778-17.2.
dc.relation.referencesASTM International, “ASTM C33/C33M-16 Specification for Concrete Aggregates.” 2016. doi: 10.1520/C0033_C0033M-16.
dc.relation.referencesASTM Internnational, “ASTM C40/C40M-20 Standard Test Method for Organic Impurities in Fine Aggregates for Concrete.” 2020. doi: 10.1520/C0040_C0040M-20.
dc.relation.referencesInstituto Colombiano de Normas Técnicas (ICONTEC), “NTC 92:2019 MÉTODO DE ENSAYO PARA LA DETERMINACIÓN DE LA DENSIDAD VOLUMÉTRICA (MASA UNITARIA) Y VACÍOS EN AGREGADOS.” 2019.
dc.relation.referencesASTM International, “ASTM C29/C29M-17A Standard Test Method for Bulk Density (‘Unit Weight’) and Voids in Aggregate.” 2017. doi: 10.1520/C0029_C0029M-17A.
dc.relation.referencesInstituto Colombiano de Normas Técnicas (ICONTEC), “NTC 78:2019 MÉTODO DE ENSAYO PARA DETERMINAR POR LAVADO EL MATERIAL QUE PASA EL TAMIZ 75 µm (No. 200) EN AGREGADOS MINERALES.” 2019.
dc.relation.referencesASTM International, “ASTM C117-17 Standard Test Method for Materials Finer than 75-μm (No. 200) Sieve in Mineral Aggregates by Washing.” ASTM International, 2020. doi: 10.1520/C0117-17.
dc.relation.referencesInstituto Colombiano de Normas Técnicas (ICONTEC), “NTC 1776:2019 MÉTODO DE ENSAYO PARA DETERMINAR EL CONTENIDO TOTAL DE HUMEDAD EVAPORABLE POR SECADO DE LOS AGREGADOS.” 2019.
dc.relation.referencesASTM International, “ASTM C566-19 Standard Test Method for Total Evaporable Moisture Content of Aggregate by Drying,” 2019. doi: 10.1520/C0566-19.
dc.relation.referencesInstituto Colombiano de Normas Técnicas (ICONTEC), “NTC 237:2020 Método de ensayo para determinar la densidad relativa (gravedad especifica) y la absorción del agregado fino.” 2020.
dc.relation.referencesASTM International, “ASTM C128-15 Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate.” 2015. doi: 10.1520/C0128-15.
dc.relation.referencesInstituto Colombiano de Normas Técnicas (ICONTEC), “NTC 176:2019 Método de ensayo para determinar la densidad relativa (gravedad específica) y la absorción del agregado grueso.” 2019.
dc.relation.referencesASTM International, “ASTM C127-15 Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate.” 2016. doi: 10.1520/C0127-15.
dc.relation.referencesASTM International, “ASTM C494/C494M-19 Standard Specification for Chemical Admixtures for Concrete.” 2019. doi: 10.1520/C0494.
dc.relation.referencesInvesa, “Pintura Epóxica,” 2017. https://www.invesa.com/product/pintura-epoxica/ (accessed Aug. 09, 2022).
dc.relation.referencesASTM International, “ASTM C305-14 Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency.” 2014. doi: 10.1520/C0305-14.
dc.relation.referencesASTM International, “ASTM C1437-20 Standard Test Method for Flow of Hydraulic Cement Mortar.” 2020. doi: 10.1520/C1437-20.
dc.relation.referencesASTM International, “ASTM C143/C143M-20 Standard Test Method for Slump of Hydraulic-Cement Concrete.” 2020. doi: 10.1520/C0143_C0143M-20.
dc.relation.referencesASTM International, “ASTM C31/C31M-21 Standard Practice for Making and Curing Concrete Test Specimens in the Field.” 2020. doi: 10.1520/C0031_C0031M-21.
dc.relation.referencesASTM International, “ASTM C511-19 Standard Specification for Mixing Rooms, Moist Cabinets, Moist Rooms, and Water Storage Tanks Used in the Testing of Hydraulic Cements and Concretes.” 2019. doi: 10.1520/C0511-19.
dc.relation.referencesASTM International, “ASTM C642-21 Standard Test Method for Density, Absorption, and Voids in Hardened Concrete.” 2021. doi: 10.1520/C0642-21.
dc.relation.referencesASTM International, “ASTM C1202-19 Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration.” 2019. doi: 10.1520/C1202-19.
dc.relation.referencesDiEs, “Cámaras de estabilidad climáticas carbonatación CO2.” Itagüi, 2022.
dc.relation.referencesW. Navidi, Estadística para ingenieros y científicos. México D.F.: Mc Graw Hill, 2006.
dc.relation.referencesGamry Instruments, “Reference 600+ Potentiostat/Galvanostat/ZRA Operator’s Manual,” 2019. [Online]. Available: www.gamry.com/service-support/
dc.relation.referencesJ. Bermúdez, “Inhibición de la corrosión del acero embebido en mortero de cal al emplear Aloe vera como anticorrosivo,” Universidad Nacional de Colombia, Bogotá D.C., 2020.
dc.relation.referencesASTM International, “ASTM E178-21 Standard Practice for Dealing With Outlying Observations.” 2021. doi: 10.1520/E0178-21.
dc.relation.referencesM. Y. F. Câmara, Y. S. B. Fraga, and V. M. S. Capuzzo, “Hydration of Cement Pastes Using the Cement LC3,” in RILEM Bookseries, vol. 22, Springer Netherlands, 2020, pp. 69–75. doi: 10.1007/978-3-030-22034-1_8.
dc.relation.referencesM. B. Díaz García, L. A. Ruíz, and J. F. Martirena-Hernandez, “Effect of the Addition of Calcined Clay-Limestone-Gypsum in the Hydration of Portland Cement Pastes,” in RILEM Bookseries, vol. 22, Springer Netherlands, 2020, pp. 23–29. doi: 10.1007/978-3-030-22034-1_3.
dc.relation.referencesY. Dhandapani, K. Vignesh, T. Raja, and M. Santhanam, “Development of the microstructure in LC3 systems and its effect on concrete properties,” in RILEM Bookseries, 2018, vol. 16, pp. 131–140. doi: 10.1007/978-94-024-1207-9_21.
dc.relation.referencesR. Downs and H. Yang, “RRUFF Project.” https://rruff.info/ (accessed Jul. 08, 2022).
dc.relation.referencesJ. Lizarazo-Marriaga, C. Higuera, and P. Claisse, “Measuring the effect of the ITZ on the transport related properties of mortar using electrochemical impedance,” Constr Build Mater, vol. 52, pp. 9–16, Feb. 2014, doi: 10.1016/j.conbuildmat.2013.10.077.
dc.relation.referencesG. Y. Koga, B. Albert, and R. Pereira Nogueira, “Revisiting the ASTM C876 standard for corrosion of reinforcing steel: On the correlation between corrosion potential and polarization resistance during the curing of different cement mortars,” Electrochem commun, vol. 94, pp. 1–4, 2018, doi: 10.1016/j.elecom.2018.07.017.
dc.relation.referencesInstituto Colombiano de Normas Técnicas (ICONTEC), “NTC 5551:2007 Concretos. Durabilidad de estructuras de concreto.” 2007.
dc.relation.referencesInternational Standard Organization, “ISO 16204:2012 Durability — Service life design of concrete structures.” 2012.
dc.relation.referencesK. Wanderly, Encyclopedia of Interfacial Chemistry, vol. Seven. Elsevier, 2018.
dc.relation.referencesK. L. Scrivener, A. K. C. Lyon, and F. P. Laugesen, “The Interfacial Transition Zone (ITZ) Between Cement Paste and Aggregate in Concrete,” INTERFACE SCIENCE, vol. 12, pp. 411–421, 2004.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembHormigón
dc.subject.lembConcrete
dc.subject.lembCompuestos cementosos
dc.subject.lembCement composites
dc.subject.proposalCemento con caliza y arcilla calcinada (LC3)
dc.subject.proposalCarbonatación
dc.subject.proposalCorrosión
dc.subject.proposalLimestone calcined clay cement (LC3
dc.subject.proposalCarbonation
dc.subject.proposalCorrosion
dc.title.translatedEvaluation of corrosion resistance due to carbonation in concrete with portland cements blended with limestone and calcined clay
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentDataPaper
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dc.contributor.orcidLuis Felipe Salazar Mayorga [0000-0001-6110-9470]
dc.contributor.cvlacSALAZAR MAYORGA, LUIS FELIPE
dc.contributor.researchgateLuis Felipe Salazar Mayorga


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito