Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorRoa Rojas, Jairo
dc.contributor.authorSarmiento Vanegas, Javier Alberto
dc.date.accessioned2023-03-21T16:59:23Z
dc.date.available2023-03-21T16:59:23Z
dc.date.issued2023-03
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83649
dc.descriptionilustraciones
dc.description.abstractLos materiales tipo perovskita compleja Sm2FeCoO6 y Eu2FeCoO6 se produjeron mediante el método de síntesis de reacción de estado sólido, caracterizando su morfología, composición, estructura, respuesta magnética y eléctrica. A partir de la técnica de difracción de rayos X se caracterizó la estructura para ambos compuestos mostrando que los sistemas cristalizan en estructura ortorrómbica con grupo espacial P nma (#62). El refinamiento Rietvelt mediante el código GSAS-I permitió obtener los parámetros reticulares asociados a cada material. Al realizar la sustitución del catión Sm3+ por Eu3+ hubo una leve inclinación en los octaedros, pues los enlaces B-O1-B evidencian que los ángulos cambiaron de 148,03° a 149,73°, las distancias de los enlaces B-O1 se redujeron de 1,98 ˚A a 1,96 ˚A, al igual que la distancia de los enlaces B-O2 en el plano ecuatorial del octaedro, pasaron de 2,14 ˚A y 1,75 ˚A a 1,98 ˚A y 1,99 ˚A, respectivamente. Los resultados de microscopía electrónica de barrido permitieron visualizar la evolución morfológica a través de micrografías generadas por electrones secundarios, con las micrografías obtenidas por electrones retrodisperados se evidencia que ambos materiales presentan solo una composición. El espectro de dispersión de energía por rayos X sugiere que los materiales en estudio contienen solamente los elementos Sm, Eu, Fe, Co y O, correspondientes a las fórmulas estequiométricas Sm2FeCoO6 y Eu2FeCoO6. Los resultados de magnetización en función de la temperatura indicaron efectos de irreversibilidad en las curvas ZFC y FC problamente producidos por desorden magnetocristalino, desorden catiónico de los iones Fe, Co y distorsiones estructurales de los octaedros. Igualmente, se visualiza que posiblemente ambos compuestos transitan de una fase antiferromagnética a ferromagnética con temperaturas de Néel de 90 K y 260 K para el compuesto con Sm y Eu, respectivamente. Este comportamiento fue comprobado con las curvas de magnetización en función del campo aplicado, donde además se evidencia la presencia de magnetización de remanencia en la histéresis magnética de las isotermas de 50 K, 200 K y 300 K. Las curvas de densidad de corriente en función del campo aplicado muestran un comportamiento a bajos campos similar a un material óhmico, con valores de resistividad ρSm = 2, 247 ± 0, 001 MΩ·cm y ρEu = 6, 919 ± 0, 003 MΩ·cm, en altos campos presentan un comportamiento no lineal semejante a un material tipo semiconductor. Las curvas de resistividad en función de la temperatura permitieron confirmar el comportamiento semiconductor en ambos materiales y obtener la constante de sensibilidad térmica con valores de BSm = 5232, 20 K y BEu = 5238, 74 K. Por último, la respuesta de reflectancia difusa confirma el comportamiento semiconductor a temperatura ambiente, obteniéndose un gap de 1,18 eV y 1,15 eV para el Sm2FeCoO6 y Eu2FeCoO6, respectivamente. (Texto tomado de la fuente)
dc.description.abstractThe complex perovskite-type materials Sm2FeCoO6 and Eu2FeCoO6 were produced by the solid-state reaction synthesis method, characterizing their morphology, composition, struc ture, magnetic and electric response. From X-ray diffraction technique the structure for both compounds was characterized showing that the systems crystallize in orthorhombic structu re with space group P nma (62). Rietvelt refinement using the GSAS-I code allowed us to obtain the lattice parameters associated with each material. Upon substitution of the Sm3+ cation by Eu3+ there was a slight tilt in the octahedra, since the B-O1-B bonds show that the angles changed from 148,03◦ to 149,73◦, the distances of the B-O1 bonds decreased from 1,98 ˚A to 1,96 ˚A, as well as the distance of the B-O2 bonds in the equatorial plane of the octahedron went from 2,14 ˚A and 1,75 ˚A to 1,98 ˚A and 1,99 ˚A, respectively. The scanning electron microscopy results allowed visualizing the morphological evolution through micrographs generated by secondary electrons, with the micrographs obtained by backscattered electrons showing that both materials present only one composition. The X-ray energy dispersion spectra suggest that the materials under study contain only the elements Sm, Eu, Fe, Co and O, corresponding to the stoichiometric formulas Sm2FeCoO6 and Eu2FeCoO6. The results of magnetization as a function of temperature indicated irreversibility effects in the ZFC and FC curves probably produced by magnetocrystalline disorder, cationic disorder of Fe, Co ions and structural distortions of the octahedra. Likewise, it is visualized that possibly both compounds transition from an antiferromagnetic phase to a ferromagnetic phase with N-temperatures of 90 K and 260 K for the compound with Sm and Eu, respectively. This behavior was verified with the magnetization curves as a function of the applied field, where it is also evident the presence of remanence magnetization in the magnetic hysteresis of the 50 K, 200 K and 300 K isotherms. The current density curves as a function of the applied field show a behavior at low fields similar to an ohmic material, with resisti vity values of ρSm = 2, 247 ± 0, 001 MΩ·cm y ρEu = 6, 919 ± 0, 003 MΩ·cm, at high fields they show a nonlinear behavior similar to a semiconductor type material. The resistivity curves as a function of temperature allowed to confirm the semiconductor behavior in both materials and to obtain the thermal sensitivity constant with values of BSm = 5232, 20 K and BEu = 5238, 74 K. Finally, the diffuse reflectance response confirms the semiconducting behavior at room temperature, obtaining a gap of 1,18 eV and 1,15 eV for Sm2FeCoO6 and Eu2FeCoO6, respectively.
dc.format.extentxi, 76 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc530 - Física
dc.titleEfecto del Sm y Eu en las características estructurales, magnéticas y eléctricas de la ferrocobaltita (Sm, Eu)2CoFeO6
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Física
dc.contributor.researchgroupGrupo de Física de Nuevos Materiales - GFNM
dc.description.degreelevelMaestría
dc.description.researchareaFísica de Nuevos Materiales
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesPatrick M Woodward. Octahedral tilting in perovskites. i. geometrical considerations. Acta Crystallographica Section B: Structural Science, 53(1):32–43, 1997.
dc.relation.referencesEmad K Al-Shakarchi and Natheer B Mahmood. Three techniques used to produce BaTiO3 fine powder. Journal of Modern Physics, 2011, 2011.
dc.relation.referencesGraham King and Patrick M Woodward. Cation ordering in perovskites. Journal of Materials Chemistry, 20(28):5785–5796, 2010.
dc.relation.referencesDiana Marcela Arciniegas Jaimes. Estudio de nuevas perovskitas AA′BB′06: influencia de los cationes A y B sobre sus propiedades físicas y estructuras cristalinas y magnéticas. 2018.
dc.relation.referencesGreg Vialle. Inductive activation of magnetite filled shape memory polymers. PhD thesis, Georgia Institute of Technology, 2009.
dc.relation.referencesJosé Ruzzante, Pablo Alonso Castillo, and Roberto Suárez Ántola. passe-muraille realizada por jean-bernard métais. basada en el libro de marcel ayme. 2021.
dc.relation.referencesThomas Wolfram and Sinasi Ellialtioglu. Electronic and optical properties of d-band perovskites. Cambridge University Press, 2006.
dc.relation.referencesYing Zhao and Jiawei Wang. Variable range hopping model based on gaussian disorde red organic semiconductor for seebeck effect in thermoelectric device. Micromachines, 13(5):707, 2022.
dc.relation.referencesCesare Franchini, Michele Reticcioli, Martin Setvin, and Ulrike Diebold. Polarons in materials. Nature Reviews Materials, 6(7):560–586, 2021.
dc.relation.referencesSuk−Joong L Kang. Sintering: densification, grain growth and microstructure. Elsevier, 2004.
dc.relation.referencesT Kikuchi. Single crystal orientation measurement by x-ray methods. Rigaku J, 7(1):27−−35, 1990.
dc.relation.referencesJaime Renau-Piqueras and Magdalena Faura. Principios básicos del microscopio electrónico de barrido. 1994.
dc.relation.referencesYang Leng. Materials characterization: introduction to microscopic and spectroscopic methods. John Wiley & Sons, 2009.
dc.relation.referencesFreddy P Guachún and Víctor J Raposo. Diseno y calibración de un magnetómetro de muestra vibrante: Caracterización de materiales magnéticos. Momento, (56):45–62, 2018.
dc.relation.referencesOB Pavlovska, LO Vasylechko, IV Lutsyuk, NM Koval, Ya A Zhydachevskii, and A Pienika˙zek. Structure peculiarities of micro-and nanocrystalline perovskite ferrites LaxSmxFeo3. Nanoscale Research Letters, 12(1):1–6, 2017.
dc.relation.referencesM Marezio, JP Remeika, and PD Dernier. The crystal chemistry of the rare earth orthoferrites. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 26(12):2008–2022, 1970.
dc.relation.referencesJung-Hoon Lee, Young Kyu Jeong, Jung Hwan Park, Min-Ae Oak, Hyun Myung Jang, Jong Yeog Son, and James F Scott. Spin-canting-induced improper ferroelectricity and spontaneous magnetization reversal in SmFeO3. Physical review letters, 107(11):117201, 2011.
dc.relation.referencesC-Y Kuo, Y Drees, MT Fern´andez-D´ıaz, L Zhao, L Vasylechko, D Sheptyakov, AMT Bell, TW Pi, H-J Lin, M-K Wu, et al. k= 0 magnetic structure and absence of ferroelectricity in SmFeO3. Physical review letters, 113(21):217203, 2014.
dc.relation.referencesJian Kang, Yali Yang, Xiaolong Qian, Kai Xu, Xiaopeng Cui, Yifei Fang, Venkatesh Chandragiri, Baojuan Kang, Bin Chen, Alessandro Stroppa, et al. Spin-reorientation magnetic transitions in mn-doped SmFeO3. IUCrJ, 4(5):598–603, 2017.
dc.relation.referencesEIK Olsson. Computational modelling of SmCoO3 based cathode materials for solid oxide fuel cells. PhD thesis, UCL (University College London), 2017.
dc.relation.referencesEmilia Olsson, Xavier Aparicio-Angles, and Nora H de Leeuw. A DFT+ U study of the structural, electronic, magnetic, and mechanical properties of cubic and orthorhombic SmCoO3. The Journal of chemical physics, 145(22):224704, 2016.
dc.relation.referencesM Topsakal, C Leighton, and RM Wentzcovitch. First-principles study of crystal and electronic structure of rare-earth cobaltites. Journal of Applied Physics, 119(24):244310, 2016.
dc.relation.referencesKenichirou Umemoto, Yasuyoshi Seto, and Yoshio Masuda. Structure and magnetic property of CexEu1- xCoO3 prepared by means of the thermal decomposition of CexEu1−x[Co[CN6]· nH2O. Thermochimica acta, 431(1-2):117–122, 2005.
dc.relation.referencesGR Haripriya, R Pradheesh, MN Singh, AK Sinha, K Sethupathi, and V Sankaranarayanan. Temperature dependent structural studies on the spin correlated system A2FeCoO6 (A= Sm, Eu, Dy and Ho) using synchrotron radiation. AIP Advances, 7(5):055826, 2017.
dc.relation.referencesSonia LC Pinho, Joao S Amaral, Alain Wattiaux, Mathieu Duttine, Marie-Helene Delville, and Carlos FGC Geraldes. Synthesis and characterization of rare-earth orthoferrite LnFeO3 nanoparticles for bioimaging. European Journal of Inorganic Chemistry, 2018(31):3570–3578, 2018.
dc.relation.referencesKhalid Sultan, M Ikram, and K Asokan. Effect of Mn doping on structural, morphological and dielectric properties of EuFeO3 ceramics. RSC advances, 5(114):93867–93876, 2015.
dc.relation.referencesAmber K Choquette, Robert Colby, Eun Ju Moon, Christian M Schlepu`Iˆtz, Mark D Scafetta, David J Keavney, and Steven J May. Synthesis, structure, and spectroscopy of epitaxial EuFeO3 thin films. Crystal growth & design, 15(3):1105–1111, 2015.
dc.relation.referencesNOEL W Thomas. Crystal structure–physical property relationships in perovskites. Acta Crystallographica Section B: Structural Science, 45(4):337–344, 1989.
dc.relation.referencesNetzahualpille Hern´andez Navarro. Materiales tipo perovskita LnxBi1−xFe0,95M0,05O3(Ln: Pr, Nd; M: Co, Mn, Sc; x= 0 − 0,15) para su potencial aplicaci´on en memorias magnetoel´ectricas. 2012.
dc.relation.referencesMeghan C Knapp and Patrick M Woodward. A-site cation ordering in AA’BB’O6 perovskites. Journal of Solid State Chemistry, 179(4):1076–1085, 2006.
dc.relation.referencesJA Jaramillo Palacio, KA Muñoz Pulido, J Arbey Rodríguez, DA Landínez Téllez, and J Roa-Rojas. Electric, magnetic and microstructural features of the La2CoFeO6 lanthanide ferrocobaltite obtained by the modified pechini route. Journal of Advanced Dielectrics, 11(03):2140003, 2021.
dc.relation.referencesGR Haripriya, Harikrishnan S Nair, R Pradheesh, S Rayaprol, V Siruguri, Durgesh Singh, R Venkatesh, V Ganesan, K Sethupathi, and V Sankaranarayanan. Spin reorientation and disordered rare earth magnetism in Ho2FeCoO6. Journal of Physics: Condensed Matter, 29(47):475804, 2017.
dc.relation.referencesLeonardo S de Oliveira, Fernando P Sabino, Daniel Z de Florio, Anderson Janotti, Gustavo M Dalpian, and Jose A Souza. Insulator–metal transition in the Nd2CoFeO6 disordered double perovskite. The Journal of Physical Chemistry C, 124(41):22733– 22742, 2020.
dc.relation.referencesSaad Tariq, Afaq Ahmed, Saher Saad, and Samar Tariq. Structural, electronic and elastic properties of the cubic catio3 under pressure: A dft study. Aip Advances, 5(7):077111, 2015.
dc.relation.referencesHP Correa, IP Cavalcante, DO Souza, EZ Santos, MT D Orlando, H Belich, FJ Silva, EF Medeiro, JM Pires, JL Passamai, et al. Synthesis and structural characterization of the Ca2MnReO6 double perovskite. Cerˆamica, 56:193–200, 2010.
dc.relation.referencesAnjan Kumar Jena. Study of structural and electrical Properties of few Double Perovskite Compounds. PhD thesis, 2014.
dc.relation.referencesDA Landinez Télez, LA Carrero Bermúdez, CE Deluque Toro, R Cardona, and J Roa Rojas. Crystallographic, ferroelectric and electronic properties of the Sr2ZrTiO6 double perovskite. Modern Physics Letters B, 27(20):1350141, 2013.
dc.relation.referencesRebecca Ann Ricciardo. Chemical, Magnetic, and Orbital Order of Polycrystalline and Thin film Double Perovskites. PhD thesis, The Ohio State University, 2009.
dc.relation.referencesThi Hong Quan Vu, Bartosz Bondzior, Dagmara Stefa´nska, Natalia Miniajluk, and Przemys law J Dere´n. Synthesis, structure, morphology, and luminescent properties of Ba2MgWO6: Eu3+ double perovskite obtained by a novel co-precipitation method. Materials, 13(7):1614, 2020.
dc.relation.referencesKartik Samanta and Tanusri Saha-Dasgupta. Rocksalt versus layered ordering in double perovskites: A case study with La2CuSnO6 and La2CuIrO6. Physical Review B, 95(23):235102, 2017.
dc.relation.referencesZC Kang, C Caranoni, I Siny, G Nihoul, and C Boulesteix. Study of the ordering of sc and ta atoms in Pb2ScTaO6 by x-ray diffraction and high resolution electron microscopy. Journal of Solid State Chemistry, 87(2):308–320, 1990.
dc.relation.referencesAbdelrahman A Elbadawi, OA Yassin, Mohamed A Siddig, et al. Effect of the cation size disorder at the a-site on the structural properties of SrAFeTiO6 double perovskites (A= La, Pr or Nd). Journal of Materials Science and Chemical Engineering, 3(05):21, 2015.
dc.relation.referencesSamir F Matar, MA Subramanian, A Villesuzanne, Volker Eyert, and M-H Whangbo. First principles investigation of the electronic structure of La2MnNiO6: An insulating ferromagnet. Journal of magnetism and magnetic materials, 308(1):116–119, 2007.
dc.relation.referencesV. M. Goldschmidt. Geochemistry. International series of monographs on physics. Clarendon Press, 1958.
dc.relation.referencesGarrido Barrios, Luis del Cristo, et al. Predicción de las propiedades estructurales, cohesivas y electrónicas en sistemas tipo perovskitas A2BB′O6 utilizando machine learning (ml) y la teor´ıa funcional de densidad (DFT). Master’s thesis, Universidad del Magdalena, 2021.
dc.relation.referencesAnthony M Glazer. The classification of tilted octahedra in perovskites. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 28(11):3384– 3392, 1972.
dc.relation.referencesJavier Alonso Cuervo Farfán. Producción y propiedades físicas de nuevas perovskitas complejas del tipo RAMOX (R= La, Nd, Sm, Eu; A= Sr, Bi; M= Ti, Mn, Fe).
dc.relation.referencesNicola A Spaldin. Magnetic materials: fundamentals and applications. Cambridge university press, 2010.
dc.relation.referencesDavid Jiles. Introduction to magnetism and magnetic materials. CRC press, 2015.
dc.relation.referencesNouredine Zettili. Quantum mechanics: concepts and applications, 2003.
dc.relation.referencesBernard Dennis Cullity and Chad D Graham. Introduction to magnetic materials. John Wiley & Sons, 2011.
dc.relation.referencesKannan M Krishnan. Fundamentals and applications of magnetic materials. Oxford University Press, 2016.
dc.relation.referencesNarayanasamy Sabari Arul and Vellalapalayam Devaraj Nithya. Revolution of Perovskite. Springer, 2020.
dc.relation.referencesRolf E Hummel. Electrical properties of materials. In Understanding Materials Science, pages 180–216. Springer, 1998.
dc.relation.referencesRaj Kumar Pathria. Statistical mechanics. Elsevier, 2016.
dc.relation.referencesMahesh Lohith K S. Electrical Properties of Materials - Electronic conduction in solids. 02 2018.
dc.relation.referencesUichiro Mizutani. Introduction to the electron theory of metals. Cambridge university press, 2001.
dc.relation.referencesJohn Singleton. Band theory and electronic properties of solids, volume 2. Oxford University Press, 2001.
dc.relation.referencesFrank Herman. Theoretical investigation of the electronic energy band structure of solids. Reviews of Modern Physics, 30(1):102, 1958.
dc.relation.referencesJ Pinochet and G Tarrach. Los semiconductores y sus aplicaciones. Física de sólidos. Facultad de Física, Pontificia Universidad Católica de Chile. Santiago, Chile, 2001.
dc.relation.referencesLaszlo Solymar, Donald Walsh, and Richard RA Syms. Electrical properties of materials. Oxford university press, 2014.
dc.relation.referencesC Quiroga, R Oentrich, I Bonalde, SM Wasim, G Marın, et al. A temperature dependent pre-exponential factor in efros-shklovskii variable range hopping conduction in p-type CuInTe2. Physica E: Low-dimensional Systems and Nanostructures, 18(1-3):292–293, 2003.
dc.relation.referencesNF Mott. The effect of electron interaction on variable-range hopping. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 34(4):643– 645, 1976.
dc.relation.referencesJesús Puente-Córdova, Martín Reyes-Melo, and Beatriz Lopez-Walle. Estudio de los mecanismos de conducción eléctrica en películas delgadas de PVB. 20:55–72, 07 2017.
dc.relation.referencesDong Yu, Congjun Wang, Brian L Wehrenberg, and Philippe Guyot-Sionnest. Variable range hopping conduction in semiconductor nanocrystal solids. Physical review letters, 92(21):216802, 2004.
dc.relation.referencesRM Rubinger, GM Ribeiro, AG De Oliveira, HA Albuquerque, RL Da Silva, CPL Rubinger, WN Rodrigues, and MVB Moreira. Temperature-dependent activation energy and variable range hopping in semi-insulating gaas. Semiconductor science and technology, 21(12):1681, 2006.
dc.relation.referencesNF Mott. Conduction and switching in non-crystalline materials. Contemporary Physics, 10(2):125–138, 1969.
dc.relation.referencesBoris Isaakovich Shklovskii and Alex L Efros. Electronic properties of doped semiconductors, volume 45. Springer Science Business Media, 2013.
dc.relation.referencesDavid Emin. Transport properties of small polarons. Journal of Solid State Chemistry, 12(3-4):246–252, 1975.
dc.relation.referencesJT Devreese. Polarons. arXiv preprint cond-mat/0004497, 2000.
dc.relation.referencesSteven JF Byrnes. Basic theory and phenomenology of polarons. Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, 2008.
dc.relation.referencesIK Naik and Tseng-Ying Tien. Small-polaron mobility in nonstoichiometric cerium dioxide. Journal of Physics and Chemistry of Solids, 39(3):311–315, 1978.
dc.relation.referencesMassimo Capone, Marco Grilli, and Walter Stephan. Small polaron formation in manyparticle states of the hubbard-holstein model: The one-dimensional case. The European Physical Journal B-Condensed Matter and Complex Systems, 11(4):551–557, 1999.
dc.relation.referencesMohamed N Rahaman. Sintering of ceramics. CRC press, 2007.
dc.relation.referencesLuz Amparo Palacio Santos. Métodos de síntesis de nuevos materiales basados en metales de transición. Revista Facultad de Ingeniería Universidad de Antioquia, (32):51−−61, 2004.
dc.relation.referencesAndrei A Bunaciu, Elena Gabriela UdriS¸Tioiu, and Hassan Y Aboul-Enein. X-ray diffraction: instrumentation and applications. Critical reviews in analytical chemistry, 45(4):289−−299, 2015.
dc.relation.referencesVK Pecharsky and PY Zavalij. Fundamentals of powder diffraction and structural characterization of materials (2nd version). 2009.
dc.relation.referencesGA Pérez and HD Colorado. Difracción de rayos x y el método rietveld teoría y software de refinamiento. Universidad del Valle, 2011.
dc.relation.referencesS Petrick Casagrande and Ronald Castillo Blanco. Método de rietveld para el estudio de estructuras cristalinas. Revista de la facultad deficiencias de la UNI, 9, 2004.
dc.relation.referencesFrancisco Alejandro Vargas Fajardo and Alvaro Eduardo Varón Sabogal. Refinamiento ´ estructural por el método de rietveld a tres fases del sistema K2Pr2/3Ta2O7. 2015.
dc.relation.referencesJorge Ignacio Villa Hernández. Estudio de las propiedades estructurales, eléctricas y magnéticas en materiales de tipo perovskita A2BB’O6.
dc.relation.referencesKai He, Nuofu Chen, Congjie Wang, Lishuai Wei, and Jikun Chen. Method for determining crystal grain size by x-ray diffraction. Crystal Research and Technology, 53(2):1700157, 2018.
dc.relation.referencesUwe Holzwarth and Neil Gibson. The scherrer equation versus the’debye-scherrer equation’. Nature nanotechnology, 6(9):534–534, 2011.
dc.relation.referencesJ Il Langford and AJC Wilson. Scherrer after sixty years: a survey and some new results in the determination of crystallite size. Journal of applied crystallography, 11(2):102–113, 1978.
dc.relation.referencesLuc+ia Martínez Goyeneche et al. Determinación del tamaño de partícula mediante difracción de rayos x. 2018.
dc.relation.referencesM Abd Mutalib, MA Rahman, MHD Othman, AF Ismail, and J Jaafar. Scanning electron microscopy (sem) and energy-dispersive x-ray (edx) spectroscopy. In Membrane characterization, pages 161–179. Elsevier, 2017.
dc.relation.referencesAna Violeta Girao, Gianvito Caputo, and Marta C Ferro. Application of scanning electron microscopy–energy dispersive x-ray spectroscopy (sem-eds). In Comprehensive analytical chemistry, volume 75, pages 153–168. Elsevier, 2017.
dc.relation.referencesMel I Mendelson. Average grain size in polycrystalline ceramics. Journal of the American Ceramic society, 52(8):443–446, 1969.
dc.relation.referencesGérard Bergeret and Pierre Gallezot. Particle size and dispersion measurements. Handbook of heterogeneous catalysis, 2:439, 2008.
dc.relation.referencesYoshimasa Takayama, Norio Furushiro, Tatsumi Tozawa, Hajime Kato, and Shigenori Hori. A significant method for estimation of the grain size of polycrystalline materials. Materials Transactions, JIM, 32(3):214–221, 1991.
dc.relation.referencesSimon Foner. Versatile and sensitive vibrating-sample magnetometer. Review of Scientific Instruments, 30(7):548–557, 1959.
dc.relation.referencesSyed Alamdar Hussain Shah. Vibrating sample magnetometery: Analysis and construction. Syed Babar Ali School of Science and Engineering, LUMS, 2013.
dc.relation.referencesYvonne M Mos, Arnold C Vermeulen, Cees JN Buisman, and Jan Weijma. X-ray diffraction of iron containing samples: the importance of a suitable configuration. Geomicrobiology Journal, 35(6):511–517, 2018.
dc.relation.referencesMichael W Lufaso and Patrick M Woodward. Prediction of the crystal structures of perovskites using the software program spuds. Acta Crystallographica Section B: Structural Science, 57(6):725–738, 2001.
dc.relation.referencesAllen C Larson and Robert B Von Dreele. Gsas. Report lAUR, pages 86–748, 1994.
dc.relation.referencesM Dhilip, J Stella Punitha, R Rameshkumar, S Rameshkumar, P Karuppasamy, Muthu Senthil Pandian, P Ramasamy, K Saravana Kumar, V Anbarasu, and K Elangovan. A novel double perovskite oxide Sm2CoFeO6 phosphor for orange leds: structural, magnetic and luminescence properties. Applied Physics A, 128(4):1–9, 2022.
dc.relation.referencesBernard Dennis Cullity. Elements of X-ray Diffraction. Addison-Wesley Publishing, 1956.
dc.relation.referencesDavid A Landínez Téllez and Jairo Roa-Rojas. Linea de irreversibilidad magnética en el compuesto superconductor CaLaBaCu3O7. REVISTA COLOMBIANA DE F´ISICA, 37(1):250, 2005.
dc.relation.referencesXiaoxiong Wang, Jing Yu, Xu Yan, Yunze Long, Keqing Ruan, and Xiaoguang Li. Magnetization and low temperature heat capacity of SmFeO3 single crystal. Journal of Magnetism and Magnetic Materials, 443:104–106, 2017.
dc.relation.referencesZhiqiang Zhou, Li Guo, Haixia Yang, Qiang Liu, and Feng Ye. Hydrothermal synthesis and magnetic properties of multiferroic rare-earth orthoferrites. Journal of alloys and compounds, 583:21–31, 2014.
dc.relation.referencesGuang-Hua Guo and Hai-Bei Zhang. The spin reorientation transition and first-order magnetization process of TbMn6Sn6 compound. Journal of alloys and compounds, 448(1-2):17–20, 2008.
dc.relation.referencesGR Haripriya, R Pradheesh, K Sethupathi, and V Sankaranarayanan. The order of magnetic phase transitions in disordered double perovskite oxides Sm2FeCoO6 and Dy2FeCoO6. AIP Advances, 8(10):101340, 2018.
dc.relation.referencesWeiyao Zhao, Shixun Cao, Ruoxiang Huang, Yiming Cao, Kai Xu, Baojuan Kang, Jincang Zhang, and Wei Ren. Spin reorientation transition in dysprosium-samarium orthoferrite single crystals. Physical Review B, 91(10):104425, 2015.
dc.relation.referencesSC Parida, SK Rakshit, and Ziley Singh. Heat capacities, order–disorder transitions, and thermodynamic properties of rare-earth orthoferrites and rare-earth iron garnets. Journal of Solid State Chemistry, 181(1):101–121, 2008.
dc.relation.referencesVR Estrada Contreras, CE Alarcón Suesca, CE Deluque Toro, DA Landínez Téllez, and J Roa-Rojas. Crystalline, ferromagnetic-semiconductor and electronic features of the terbium-based cobalt-ferrite Tb2FeCoO6. Ceramics International, 47(10):14408– 14417, 2021.
dc.relation.referencesRN Bhowmik and A Saravanan. Surface magnetism, morin transition, and magnetic dynamics in antiferromagnetic α-Fe2O3 (hematite) nanograins. Journal of Applied Physics, 107(5):053916, 2010.
dc.relation.referencesXL Wang, M James, J Horvat, and SX Dou. Spin glass behaviour in ferromagnetic La2CoMnO6 perovskite manganite. Superconductor Science and Technology, 15(3):427, 2002.
dc.relation.referencesNélson Pereira, Maite Mujika, Sergio Arana, Teresa Correia, AMT Silva, Helder T Gomes, Pedro Joao Rodrigues, and Rui Lima. The effect of a static magnetic field on the flow of iron oxide magnetic nanoparticles through glass capillaries. In Visualization and simulation of complex flows in biomedical engineering, pages 181–196. Springer, 2014.
dc.relation.referencesKwan Chi Kao. Charge carrier injection from electrical contacts. Dielectric Phenomena in Solids, 1:327–380, 2004.
dc.relation.referencesJavier A Cuervo Farfán, Críspulo E Deluque Toro, Carlos A Parra Vargas, David A Landínez Téllez, and Jairo Roa-Rojas. Experimental and theoretical determination of physical properties of Sm2Bi2 Fe4O12 ferromagnetic semiconductors. Journal of Materials Chemistry C, 8(42):14925–14938, 2020.
dc.relation.referencesKonstantinos Bavelis, Erion Gjonaj, and Thomas Weiland. Modeling of electrical transport in zinc oxide varistors. Advances in Radio Science, 12(B. 3):29–34, 2014.
dc.relation.referencesAgnes Vojta, Qingzhe Wen, and David R Clarke. Influence of microstructural disorder on the current transport behavior of varistor ceramics. Computational materials science, 6(1):51–62, 1996.
dc.relation.referencesGregg Lavenuta. Negative temperature coefficient thermistors. Sensors-the Journal of Applied Sensing Technology, 14(5):46–55, 1997.
dc.relation.referencesYuqi Lan, Shenyin Yang, Guangming Chen, Sifeng Yang, et al. Characteristics of a type of ntc thermistors for cryogenic applications. Advances in Materials Physics and Chemistry, 10(08):167, 2020.
dc.relation.referencesWoonyoung Lee and Jinseong Park. Ntc thermistors of Y-Al-Mn-Fe-Ni-Cr-O ceramics for wide temperature range measurement. International Journal on Smart Sensing and Intelligent Systems, 7(5):1–4, 2014.
dc.relation.referencesSubhanarayan Sahoo, SKS Parashar, and SM Ali. Catio3 nano ceramic for ntcr thermistor based sensor application. Journal of Advanced Ceramics, 3(2):117–124, 2014.
dc.relation.referencesAntonio Feteira. Negative temperature coefficient resistance (ntcr) ceramic thermistors: an industrial perspective. Journal of the American Ceramic Society, 92(5):967– 983, 2009.
dc.relation.referencesXiang Sun, Zhicheng Li, Weiyi Fu, Shiyuan Chen, and Hong Zhang. Li/fe modified zn0. 3ni0. 7o ntc thermistors with adjustable resistivities and temperature sensitivity. Journal of Materials Science: Materials in Electronics, 29(1):343–350, 2018.
dc.relation.referencesNTC Thermistors. General technical information, 2009.
dc.relation.referencesSM Wasim, L Essaleh, G Mar´ın, C Rinc´on, S Amhil, and J Galibert. Efros-shklovskii type variable range hopping conduction and magnetoresistance in p-type CuGa3Te5. Superlattices and Microstructures, 107:285–292, 2017.
dc.relation.referencesMoumin Rudra, Saswata Halder, Sujoy Saha, Alo Dutta, and TP Sinha. Temperature dependent conductivity mechanisms observed in Pr2NiTiO6. Materials Chemistry and Physics, 230:277–286, 2019.
dc.relation.referencesMHA Pramanik and D Islam. The mott t−1/4 law from the rate equation formalism. Journal of Non-Crystalline Solids, 45(3):325–333, 1981.
dc.relation.referencesSW Koch, M Kira, G Khitrova, and HM Gibbs. Semiconductor excitons in new light. Nature materials, 5(7):523–531, 2006.
dc.relation.referencesJohn O Dimmock. Introduction to the theory of exciton states in semiconductors. In Semiconductors and semimetals, volume 3, pages 259–319. Elsevier, 1967.
dc.relation.referencesRohan Singh. Excitons in Semiconductor Quantum Wells Studied Using TwoDimensional Coherent Spectroscopy. PhD thesis, University of Colorado at Boulder, 2015.
dc.relation.referencesXimena Audrey Velasquez Moya. Síntesis y estudio de las propiedades estructurales y magnéticas del estroncio-rutenato de tierra rara Sr2RuHoO6. Física, 2018.
dc.relation.referencesAlexey Chernikov, Timothy C Berkelbach, Heather M Hill, Albert Rigosi, Yilei Li, Burak Aslan, David R Reichman, Mark S Hybertsen, and Tony F Heinz. Exciton binding energy and nonhydrogenic rydberg series in monolayer ws 2. Physical review letters, 113(7):076802, 2014.
dc.relation.referencesThomas Mueller and Ermin Malic. Exciton physics and device application of twodimensional transition metal dichalcogenide semiconductors. npj 2D Materials and Applications, 2(1):1–12, 2018.
dc.relation.referencesHo-Wa Li, Zhiqiang Guan, Yuanhang Cheng, Taili Lui, Qingdan Yang, Chun-Sing Lee, Song Chen, and Sai-Wing Tsang. On the study of exciton binding energy with direct charge generation in photovoltaic polymers. Advanced Electronic Materials, 2(11):1600200, 2016.
dc.relation.referencesVipin Kumar, Sachin Kr Sharma, TP Sharma, and V Singh. Band gap determination in thick films from reflectance measurements. Optical materials, 12(1):115–119, 1999.
dc.relation.referencesAbigail Ganopol, Leandro Giuliani, and Maríıa Luz Martínez Ricci. Medición del band gap en semiconductores de si y ge. 2002.
dc.relation.referencesBeleño Kelvin, Ivaldo Torres, and Jorge L Diaz. Caracterización del c-si y estimación del gap óptico a través de medidas de transmisión con led convencionales de bajo coste. Bistua: Revista de la Facultad de Ciencias Básicas, 10(1):62–70, 2012.
dc.relation.referencesNeil W Ashcroft and N David Mermin. Solid state physics. Cengage Learning, 2022.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembMagnetismo
dc.subject.lembDiamagnetism
dc.subject.lembCampos magnéticos-efectos fisiológicos
dc.subject.lembMagnetic fields - Physiological effects
dc.subject.proposalPerovskita
dc.subject.proposalPerovskite
dc.subject.proposalFerrocobaltita
dc.title.translatedEffect of Sm and Eu on the structural, magnetic and electrical characteristics of ferrocobaltite (Sm, Eu)2CoFeO6
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dc.contributor.orcidSarmiento Vanegas, Javier


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito