Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorAlmanza Montero, Ovidio Amado
dc.contributor.authorAcosta Humánez, Manuel Fernando
dc.date.accessioned2023-04-11T22:01:47Z
dc.date.available2023-04-11T22:01:47Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83694
dc.descriptionilustraciones, fotografías a blanco y negro
dc.description.abstractIn this doctoral thesis, synthesis, characterization, and application of zinc oxide nanoparticles doped with transition metals (M), such as cobalt (Co), chromium (Cr), iron (Fe), manganese (Mn), and nickel (Ni), were studied. Samples were written as Zn1-xMxO. The preparation of these materials were carried out by the sol-gel method, citrate route, at a calcination temperature of 600 °C and a molar doping ratio x of 0.01 to 0.05 (1-5 at. %). Characterization was carried out using various experimental techniques. The chemical analysis was obtained through two techniques: atomic absorption spectroscopy (AAS) and X-ray fluorescence (XRF). The experimental x values were close to the theoretically x values The morphology of the particles was observed by scanning electron microscopy (SEM). By Fourier Transform Infrared Spectroscopy (FTIR) were observed the vibrational modes which were associated to gas adsorption (CO2 and NO3-), functional groups and organic residues. The vibrational mode attributed to the Zn-O bond was broadened with the kind of dopant metal and the molar ratio x, compared to the same signal from the ZnO sample; the FTIR band associated with the Zn-O tetrahedron decreased when x increase. Raman spectroscopy revealed the characteristic vibrational modes of zinc oxide, which had slight shifts with introduction of M doping metal. The E2high mode was the most intense vibrational mode in all samples. The Raman signals were deconvoluted as shown with 2B1low, A1(LO), and E1(LO) vibrational modes. The structural study was performed by X-ray diffraction (XRD). The formation of a single crystalline phase, type wurtzite was evidenced, evolving from its precursor materials. There were slight displacements of the diffraction peaks observed in the doped samples compared to the same peaks in ZnO, showing metals introduction in the crystal structure of zinc oxide. The preferential orientation of the crystals growth, TC(hkl), showed that there was a change in the crystalline growing preferential direction from (101) plane direction for ZnO to (100) plane direction for Co and Cr doped ZnO samples, and (100) and (002) direction planes for Fe and Mn doped ZnO samples. For Ni-ZnO samples, the crystals showed growingh preferential in the (002) plane direction. The lattice parameters of wurtzite structure for synthesized materials were determined using the Rietveld methodology. Lattice parameters a, c, u, c/a, V and R were evaluated for a type wurtzite structure, and these values were within those reported in the literature, showing slight displacements of the crystalline structure compared with an ideal ZnO structure. The same behavior was evidenced with the Zn(M)O4 tetrahedron distortion parameters. Crystal size was evaluated using Scherrer's equation, reporting dimensions of the nanometric order. Using the Williamson-Hall equation, the crystal size and microstrains were determined simultaneously. The microstrains found were associated with the stoichiometric gradient caused by the substitutional doping of metals M. The optical properties of the synthesized materials were determined by photoluminescence and diffuse reflectance ultraviolet-visible spectroscopy (UV-Vis DRS). In the case of photoluminescence, the measured spectra showed the formation of reactive species reported for zinc oxide. Among these, the associated signals were the oxygen and zinc vacancies (VO, VZn), oxygen interstices and antisites (Oi, OZn) and the excitonic transitions. Some samples showed the negatively charged oxygen vacancy (Oi-). By ultraviolet-visible spectroscopy, d-d transition of zinc oxide was reported in all samples. Signals associated with each dopant metal M were present and increased with the x molar ratio value. Symmetry for synthesized samples was tetrahedral for Co, Fe Mn and Ni doped ZnO, and octahedral for Cr and Ni doped ZnO samples. Diffuse reflectance measurements were useful to determine band gap energy values, through the Kubelka-Munk function. The gap values showed that there was no quantum confinement, so the changes in the band gap were associated to metal doping. Most of the samples presented red shifting, being very evident in Co doped ZnO samples. The excitonic transitions, only in Co doped ZnO samples, was in the visible region. The local structure, where the dopant metals in the zinc oxide is housed, was studied by electron paramagnetic resonance (EPR) spectroscopy. In the case of the zinc oxide sample taken as a control, there was no EPR signal that could be associated with free radicals present in the synthesized material. In the case of the cobalt-doped zinc oxide samples, these samples could be fitted with a spin Hamiltonian which contained the matrix elements of the Zeemann interaction and zero-field splitting, in a purely axial configuration, indicating that the atoms of cobalt were introduced into the ZnO structure in that symmetry. In the case of the chromium doped ZnO samples, with a spin value S = 3/2 and g values taken as isotropic, the symmetry where this dopant metal was lodged is axial, with slight rhombic deformations. All signals were associated with chromium ions in the ZnO structure. For the iron-doped zinc oxide samples, the spectra were fitted with a spin Hamiltonian containing a spin value S = 5/2, isotropic g values and dipole interaction parameters responsible for splitting at zero field. The manganese-doped zinc oxide samples were successfully simulated with a spin Hamiltonian containing the electronic Zeemann interactions, hyperfine coupling and fourth-order cubic field splitting parameter, represented by a, F parameters. g-values were taken as isotropic, the zero-field splitting (ZFS) parameters D and E were the same for all doped samples. When nickel doped zinc oxide samples were studied, they were simulated using the spin Hamiltonian considering that g and A values were anisotropic. Given the parameters D and E values, nickel ions would be present in axial symmetry. The presence of surface donors was not observed. The application of the obtained materials was carried out using photodegradation tests of a polluting organic compound: Congo red dye (RC). The degradation curves for all the synthesized materials showed a dye concentration decrease as a time function. This decrease was greater for the cobalt-doped zinc oxide samples. Remaining doped samples presented a similar behavior as like ZnO sample. A high photocatalytic efficiency was presented for Co doped ZnO samples. A pseudo-first order reaction kinetic model was used in order to evaluate reaction rate dye consumption time. Keywords: atomic absorption spectroscopy (AAS), chemical kinetics, Congo red (CR), electron paramagnetic resonance (EPR), Fourier transform infrared spectroscopy (FTIR), metal-doped ZnO, nanoparticles, photocatalysis, photoluminiscence spectroscopy (PLS), Raman spectroscopy, scanning electron microscopy (SEM), sol-gel method, ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), wurtzite, X-ray diffraction (XRD), X-ray fluorescence (XRF), ZnO. (Texto tomado de la fuente)
dc.description.abstractEn esta tesis doctoral, se realizó la síntesis, caracterización y aplicación de nanopartículasde óxido de zinc dopadas con metales de transición (M), tales como cobalto (Co), cromo (Cr),hierro (Fe), manganeso (Mn) y níquel (Ni), resultando en la fórmula nominal no estequiométricaZn1−xMxO. La preparación de estos materiales se llevó a cabo mediante el método sol−gel, rutacitrato, a una temperatura de calcinación de 600 ○C y relación molar de dopado x de 0,01 a 0,05(1−5 % at.). La caracterización fue llevada a cabo mediante diversas técnicas experimentales.El análisis químico, con el cual pudo determinarse la concentración de los metales dopantesy el zinc, así como el valor experimental x de la relación molar de dopado para todas las muestras calcinadas, pudo ser obtenido mediante dos de las técnicas usadas en análisis químico: lasespectroscopías de absorción atómica (AAS) y fluorescencia de rayos X (XRF). Los valores de x experimentales estuvieron cerca a los valores de la relación molar de dopado obtenidos teóricamente.La morfología de las partículas obtenidas se observó mediante microscopía electrónica de barrido(SEM). Por espectroscop´ıa infrarroja con Transformada de Fourier (FTIR) se observaron los modos vibracionales asociados a la adsorción de gases (CO2 y NO2), grupos funcionales y residuosorgánicos mediante el modo característico del grupo −CH2−, en el caso de los materiales calcinados,provenientes de la síntesis. El modo vibracional atribuido al enlace Zn−O se ensanchó con el metaldopante y la relación molar de dopado x, comparado con la misma señal de la muestra ZnO; labanda en FTIR asociada al tetraedro de Zn−O disminuyó con el incremento de x, para cada metaldopante. Por espectroscopía Raman, se evidenciaron los modos vibracionales característicos del óxido de zinc, que tuvieron ligeros desplazamientos con la introducción del metal dopante M. Elmodo Ehigh2fue el modo vibracional más intenso en todas las muestras. Se hizo deconvolución de las señales tal como se mostró con los modos vibracionales 2Blow1, A1(LO) y E1(LO).El estudio estructural se realizó mediante difracción de rayos X (DRX). Se evidenció laformación de una única fase cristalina, tipo wurtzita característica del óxido de zinc, evolucionandodesde sus materiales precursores. Se dieron desplazamientos leves de los picos de difracción observados en las muestras dopadas comparadas con los picos en el ZnO, mostrando la introducciónde los metales en la estructura cristalina del ´oxido de zinc. La orientación preferencial de crecimiento cristalino T C(hkl) mostró que hubo un cambio en la preferencia de crecimientos de loscristales, pasando de la dirección del plano (101) del ZnO a la dirección del plano (100) para elZnO dopado con Co y Cr y la dirección de los planos (100) y (002) en muestras dopadas con Fey Mn. Para las muestras dopadas con Ni los cristales muestran preferencias de crecimiento enla direcci´on del plano (002). Los parámetros de red de la estructura wurtzita de los materialessintetizados se determinaron usando la metodología Rietveld. Los parámetros de red evaluados,como a, c, u, c/a, V y R estuvieron dentro de lo reportado en la literatura para este tipo demateriales, mostrando ligeros desplazamientos de la estructura cristalina del ZnO ideal. De igualmanera ocurrió con los parámetros de distorsión del tetraedro Zn(M)O4. Se evaluó el tama ̃no decristal mediante la ecuación de Scherrer reportando dimensiones del orden nanométrico. Por laecuación de Williamson−Hall se determinaron de manera simultánea el tamaño de cristal y microtensiones. Las microtensiones halladas se asociaron al gradiente estequiométrico causado por eldopado sustitucional de los metales M.Las propiedades ópticas de los materiales sintetizados se determinaron mediante las espectroscopías de fotoluminiscencia y de ultravioleta−visible en reflectancia difusa (UV−Vis DRS). Porultravioleta−visible, en todas las muestras se reportaron las señales asociadas a la transición d−ddel óxido de zinc. Señales asociadas a cada metal dopante M aparecieron y se incrementaron con elvalor de x. La simetría fue tetraédrica para las muestras dopadas con Co, Fe, Mn y Ni, octaédricapara Cr y Ni. En la parte de reflectancia difusa, estas mediciones fueron útiles para determinarlos valores de energía de la banda gap, mediante la función de Kubelka−Munk. Los valores de gapevidenciaron que no hubo confinamiento cuántico, por lo que las modificaciones en la banda gapse debieron al dopado metálico. La mayoría de las muestras presentaron desplazamientos al rojo,siendo muy evidente en las muestras de ZnO con Co. las transiciones excitónicas, sólo en el caso delas muestras de ZnO dopadas con Co, la longitud de onda asociada se incrementó al punto de pasarde la región del UV a la región del visible, con el incremento de la relación molar de dopado x     Para las demás muestras, se tuvieron pequeños aumentos en los valores de la longitud de onda, perodichos valores se mantuvieron en la región del UV, al igual que la muestra de ZnO sin dopar. En elcaso de la fotoluminiscencia, los espectros medidos mostraron la formación de especies reactivas reportadas para el óxido de zinc. Entre estas las señales asociadas estuvieron las vacancias de ox´ıgenoy zinc (VO, VZn), los intersticios y antisitios de oxíıgeno (Oi, OZn) y por supuesto las transicionesexcitónicas. Algunas muestras presentaron el intersticio de oxígeno cargado negativamente (O –i).La estructura local de los metales dopantes en el óxido de zinc se estudió por espectroscopiade resonancia paramagnética electrónica (EPR). En el caso de la muestra de óxido de zinc tomadacomo control, no existió señal EPR alguna que pudiera estar asociada a radicales libres presentesen el material sintetizado. En el caso de las muestras de óxido de zinc dopadas con cobalto, estasmuestras pudieron ser ajustadas con un Hamiltoniano de espín el cual contenía los elementos matriciales de la interacción Zeeman y desdoblamiento a campo cero, en una configuración puramenteaxial, indicando que los átomos de cobalto se introdujeron en la estructura del ZnO en esta simetr´ıa.En el caso de las muestras de ZnO dopadas con cromo, con un valor de esp´ın S = 3/2 y valoresde g tomado como isotrópico, la simetr´ıa donde se alojó este metal dopante es axial, con ligerasdeformaciones rómbicas. Todas las señales se asociaron a los iones de cromo en la estructura delZnO. Para las muestras de óxido de zinc dopadas con hierro, los espectros se ajustaron con unHamiltoniano de espín que contenía un valor de espín S = 5/2, valores isotópicos de g, y valores quedan cuenta de una interacción dipolar responsable del desdoblamiento a campo cero). Las muestrasde óxido de zinc dopadas con manganeso fueron simuladas exitosamente con un Hamiltoniano deesp´ın que contenía las interacciones Zeeman electrónica, acoplamiento hiperfino y parámetro dedesdoblamiento de campo c´ubicó de cuarto orden, representado por los par´ametros a y F. Losvalores de g se tomaron como isotrópicos, los parámetros de desdoblamiento a campo cero (ZFS) Dy E fueron iguales para todas las muestras dopadas. Por último, cuando se estudiaron las muestrasde óxido de zinc dopado con níquel, fueron simuladas usando el Hamiltoniano de espín teniendoen cuenta que los valores de g y A son anisotrópicos. Dados los valores de los parámetros D yE, los iones de níquel estarían presentes en simetría axial. No se observó la presencia de donoressuperficiales.La aplicación de los materiales obtenidos se llevó a cabo usando ensayos de fotodegradaciónde un compuesto orgánico contaminante: colorante rojo Congo (RC). Las curvas de degradaciónde todos los materiales sintetizados mostraron la disminución de la concentración del colorante  en función del tiempo. Dicha disminución fue mayor para las muestras de óxido de zinc dopadocon cobalto. El resto de muestras dopadas presentaron un comportamiento similar a cuando seusó la muestra de ZnO. Una alta eficiencia fotocatalítica se presentó para las muestras de ZnOdopado con Co. El modelo cinético usado para la evaluación de la velocidad de reacción y tiempode consumo del colorante fue el de pseudo−primer orden.
dc.description.sponsorshipConvocatoria Colciencias 647 de 2014. Doctorados nacionales. El objetivo fue fortalecer los programas doctorales en universidades acreditadas del país mediante la financiación de sus estudiantes de doctorado.
dc.description.sponsorshipProyecto aprobado No. 41469 por la Dirección de Investigación y Extensión Sede Bogotá, en la cual pudieron culminarse los objetivos planteados de la tesis doctoral.
dc.format.extentxxxv, 252 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc540 - Química y ciencias afines
dc.subject.ddc530 - Física
dc.titleNanopartículas de Óxido de Zinc Dopadas con Co, Cr, Fe, Mn y Ni. Propiedades Y Aplicación En La Degradación Fotocatalítica De Compuestos Orgánicos Contaminantes
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales
dc.contributor.researchgroupGrupo de Física Aplicada
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ingeniería - Ciencia y Tecnología de Materiales
dc.description.researchareaSoluciones Tecnológicas e Investigación para la Industria
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá,Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAbragam, A., & Bleaney, B. (1970). Electron paramagnetic resonance of transition ions (W. Marshall & D. H. Wilkinson, Eds.). Clarendon Press - Oxford.
dc.relation.referencesAcosta Humánez, M. F. (2014). Estudio por resonancia paramagnética electrónica de nanopartículas de óxido de zinc dopadas con cobalto [Tesis de maestría]. Universidad Nacional de Colombia.
dc.relation.referencesBarrett, C. S., & Massalski, T. B. (1980). Structure of metals. Crystallographic Methods, Principles, and Data (3rd ed.). Pergamon Press.
dc.relation.referencesBarrón Montes, E. (2014). Síntesis y caracterización de nanoestructuras de óxido de zinc [Trabajo de grado]. Instituto Pedagógico Nacional
dc.relation.referencesBindu, P., & Thomas, S. (2014). Estimation of lattice strain in ZnO nanoparticles: X−ray peak profile analysis. Journal of Theoretical Applied Physics, 8 (4), 123–134.
dc.relation.referencesBöttcher, R., Lorenz, M., Pöppl, A., Spemann, D., & Grundmann, M. (2015). Local zincblende coordination in heteroepitaxial wurtzite Zn1−xMgxO:Mn thin films with 0.01 ≤ x ≤ 0.04 identified by electron paramagnetic resonance. Journal of Materials Chemistry C, 3 (45), 11918–11929.
dc.relation.referencesBuchheit, R., F. Acosta-Humánez, F., & Almanza, O. (2016). Electron paramagnetic resonance in Cu−doped ZnO. International Journal of Modern Physics B, 30 (11), 1650066.
dc.relation.referencesFukumura, T., Toyosaki, H., & Yamada, Y. (2005). Magnetic oxide semiconductors. Semiconductor Science and Technology, 20 (4), S103–S111.
dc.relation.referencesGonzález Swacki, N., & Swacka, T. (2010). Basic elements of crystallography. Pan Stanford Publishing.
dc.relation.referencesGrundmann, M. (2006). The physics of semiconductors: An introduction including devices and nanophysics (2nd ed.). Springer.
dc.relation.referencesHarris, D. C. (2007). Quantitative chemical analysis (7th ed.). W. H. Freeman and Company.
dc.relation.referencesHaschke, M. (2014). Laboratory micro−X−ray fluorescence spectroscopy: instrumentation and applications. Springer.
dc.relation.referencesHe, B. B. (2009). Two dimensional X-Ray Diffraction. Wiley.
dc.relation.referencesHench, L. L., & West, J. K. (1990). The sol−gel process. Chemical Reviews, 90 (1), 33–72.
dc.relation.referencesKortüm, G. (1969). Reflectance spectroscopy. Principles, Methods, Applications. Springer-Verlag.
dc.relation.referencesKossut, J., & Gaj, J. A. (Eds.). (2010). Introduction to the Physics of Diluted Magnetic Semiconductors. Springer.
dc.relation.referencesLachheb, H., Puzenat, E., Houas, A., Ksibi, M., Elaloui, E., Guillard, C., & Herrmann, J. M. (2002). Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Applied Catalysis B: Environmental, 39 (1), 75–90.
dc.relation.referencesLam, S. M., Sin, J. C., Abdullah, A. Z., & Mohamed, A. R. (2012). Degradation of wastewaters containing organic dyes photocatalysed by zinc oxide: A review. Desalination and Water Treatment, 41 (1-3), 131–169.
dc.relation.referencesMorkoç, H., & Ozgür, Ü. (Eds.). (2009). Zinc Oxide: Fundamentals, Materials and Device Technology. Wiley.
dc.relation.referencesPankove, J. I. (1971). Optical processes in semiconductors. Dover Publications Inc.
dc.relation.referencesPearton, S. J., Abernathy, C. R., Overberg, M. E., Thaler, G. T., Norton, D. P., Theodoropoulou, N., Hebard, A. F., Park, Y. D., Ren, F., Kim, J., & Boatner, L. A. (2003). Wide band gap ferromagnetic semiconductors and oxides. Journal of applied physics, 93 (1), 1–13.
dc.relation.referencesSamadi, M., Zirak, M., Naseri, A., Khorashadizade, E., & Moshfegh, A. Z. (2015). Recent progress on doped ZnO nanostructures for visible − light photocatalysis. Thin Solid Films, 605, 2–19.
dc.relation.referencesSchrader, B. (Ed.). (2008). Infrared and Raman spectroscopy methods and applications. Wiley VCH.
dc.relation.referencesSkoog, D. A., Holler, F. J., & Crouch, S. R. (2006). Principios de análisis instrumental (6.a ed.). Cencage.
dc.relation.referencesSkoog, D. A., Holler, J., & Nieman, T. (2001). Principios de Análisis Instrumental (5.a ed.). McGraw Hill.
dc.relation.referencesStoll, S., & Schweiger, A. (2006). EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. Journal of Magnetic Resonance, 178, 42–55.
dc.relation.referencesStuart, B. (2004). Infrared Spectroscopy: Fundamentals and Applications. John Wiley & Sons.
dc.relation.referencesAcosta Humánez, M. F. (2009). Síntesis y caracterización de un óxido de lantano tipo perovskita mediante el método sol−gel [Trabajo de grado]. Universidad de Córdoba.
dc.relation.referencesAcosta Humánez, M. F. (2014). Estudio por resonancia paramagnética electrónica de nanopartículas de óxido de zinc dopadas con cobalto [Tesis de maestría]. Universidad Nacional de Colombia.
dc.relation.referencesAcosta Humánez, M. F., Montes Vides, L. A., & Almanza-Montero, O. A. (2016). Sol−gel synthesis of zinc oxide nanoparticle at three different temperatures and its characterization via XRD, IR and EPR. DYNA, 83 (195), 224–228.
dc.relation.referencesAcosta−Humánez, F., Cogollo Pitalúa, R., & Almanza, O. (2013). Electron paramagnetic resonance in Zn1−xCoxO. Journal of Magnetism and Magnetic Materials, 329, 39–42.
dc.relation.referencesAcosta−Humánez, F., Montes−Vides, L., & Almanza, O. (2019). Structural, Optical and EPR Study of Mn−Doped ZnO Nanocrystals. Journal of Low Temperature Physics, 195 (5-6), 391–402.
dc.relation.referencesAcosta−Humánez, F., Vargas−Hernández, C., & Almanza, O. (2014). Effect of sintering temperature on the structure and mean crystallite size of Zn1−xCoxO (x = 0.01 − 0.05) samples. Superficies y Vacío, 27 (2), 43–48.
dc.relation.referencesAljawfi, R. N., & Mollah, S. (2011). Properties of Co/Ni codoped ZnO based nanocrystalline DMS. Journal of Magnetism and Magnetic Materials, 323 (23), 3126–3132.
dc.relation.referencesAPHA, AWWA, & WEF. (1999). Standard methods for examination of water and wastewater (20th ed.). American Public Health Association.
dc.relation.referencesBasolo, F., & Johnson, R. (1980). Química de los compuestos de coordinación. Reverté.
dc.relation.referencesBindu, P., & Thomas, S. (2014). Estimation of lattice strain in ZnO nanoparticles: X−ray peak profile analysis. Journal of Theoretical Applied Physics, 8 (4), 123–134.
dc.relation.referencesBuchheit, R., F. Acosta-Humánez, F., & Almanza, O. (2016). Electron paramagnetic resonance in Cu−doped ZnO. International Journal of Modern Physics B, 30 (11), 1650066.
dc.relation.referencesBuchheit, R., Acosta−Humanez, F., & Almanza, O. (2016). Structural, EPR and optical studies on Cu−doped ZnO nanoparticles synthesized by the sol−gel method at different calcination temperatures. Revista Cubana de Fisica, 33 (1), 4–11.
dc.relation.referencesCaglar, Y. (2013). Sol−gel derived nanostructure undoped and cobalt doped ZnO: Structural, optical and electrical studies. Journal of alloys and compounds, 560, 181–18
dc.relation.referencesChang, R. (2002). Química (7.a ed.). McGraw−Hill.
dc.relation.referencesCochran, W., & Cox, G. (1995). Diseños experimentales. Trillas.
dc.relation.referencesElaziouti, A., Laouedj, N., & Ahmed, B. (2011). ZnO-Assisted Photocatalytic Degradation of Congo Red and Benzopurpurine 4B in Aqueous Solution. Journal of Chemical Engineering & Process Technology, 2, 2–10
dc.relation.referencesHarris, D. C. (2007). Quantitative chemical analysis (7th ed.). W. H. Freeman and Company.
dc.relation.referencesHelrich, K. (Ed.). (1990). Official Methods of Analysis (15th, Vol. 1). Association of Official Analytical Chemists, Inc.
dc.relation.referencesInternational Centre for Diffraction Data. (2004). PDF−2 Database.
dc.relation.referencesLide, D. R. (2003). CRC Handbook of chemistry and physics (84th ed.). CRC Press.
dc.relation.referencesMartin, J. D. (2010). XPowder: Program for Qualitative and Quantitative Powder X−Ray Diffraction Analysis (PXRD).
dc.relation.referencesMartinez Lozano, G. (2007). Análisis de parámetros microestructurales: tamaño de cristalita y microdeformación de Compuestos Tipo Hidrotalcita de Cobalto [Tesis de maestría]. Instituto Politécnico Nacional.
dc.relation.referencesNoriega, R., Goris, L., Rivnay, J., Scholl, J., Thompson, L. M., Palke, A. C., Stebbins, J. F., & Salleo, A. (2009). Transport and structural characterization of solution − processable doped ZnO nanowires. Proceedings of SPIE − The International Society for Optical Engineering, 7411, 74110.
dc.relation.referencesPaşka, O., Ianoş, R., Păcurariu, C., & Brădeanu, A. (2014). Magnetic nanopowder as effective adsorbent for the removal of congo red from aqueous solution. Water Science & Technology, 69 (6), 1234–1240.
dc.relation.referencesPhilips Analytical B.V. (2002). X’Pert HighScore Plus (Version 2.2).
dc.relation.referencesRodríguez−Carvajal, J. (2006). Fullprof Suite software: Crystallographic tools for Rietveld, profile matching and integrated intensity refinements for X−ray and/or neutron data. https: / / www.ill.eu/sites/fullprof/php/programs.html
dc.relation.referencesSadiq, M. (1992). Toxic Metal Chemistry in Marine Environments. Marcel Dekker Inc.
dc.relation.referencesShannon, R. D. (1976). Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta crystallographica A, 32, 751–767.
dc.relation.referencesSkoog, D. A., Holler, F. J., & Crouch, S. R. (2006). Principios de análisis instrumental (6.a ed.). Cencage.
dc.relation.referencesStoll, S. (2021). Easyspin. https://www.easyspin.org/index.html
dc.relation.referencesStoll, S., & Schweiger, A. (2006). EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. Journal of Magnetic Resonance, 178, 42–55.
dc.relation.referencesWilliams, C. H., David, D. J., & Iismaa, O. (1962). The determination of chromic oxide in faeces samples by atomic absorption spectrophotometry. The Journal of Agricultural Science, 59 (3), 381–385.
dc.relation.referencesAcosta Humánez, M. F. (2014). Estudio por resonancia paramagnética electrónica de nanopartículas de óxido de zinc dopadas con cobalto [Tesis de maestría]. Universidad Nacional de Colombia.
dc.relation.referencesAcosta Humánez, M. F., Montes Vides, L. A., & Almanza-Montero, O. A. (2016). Sol−gel synthesis of zinc oxide nanoparticle at three different temperatures and its characterization via XRD, IR and EPR. DYNA, 83 (195), 224–228.
dc.relation.referencesAcosta−Humánez, F., Magon, C. J., Montes−Vides, L., & Almanza, O. (2021). Structural, Optical and EPR Study of Zn1−xFexO Nanocrystals. Journal of Low Temperature Physics, 202 (1–2), 29–47.
dc.relation.referencesAcosta−Humánez, F., Montes−Vides, L., & Almanza, O. (2019). Structural, Optical and EPR Study of Mn−Doped ZnO Nanocrystals. Journal of Low Temperature Physics, 195 (5-6), 391–402.
dc.relation.referencesAcosta−Humánez, F., Vargas−Hernández, C., & Almanza, O. (2014). Effect of sintering temperature on the structure and mean crystallite size of Zn1−xCoxO (x = 0.01 − 0.05) samples. Superficies y Vacío, 27 (2), 43–48.
dc.relation.referencesAkhtari, F., Zorriasatein, S., Farahmandjou, M., & Elahi, S. M. (2018). Synthesis and optical properties of Co2+−doped ZnO network prepared by new precursors. Materials Research Express, 5 (6), 06515.
dc.relation.referencesAlagiri, M., Ponnusamy, S., & Muthamizchelvan, C. (2012). Synthesis and characterization of NiO nanoparticles by sol−gel method. Journal of Materials Science: Materials in Electronics, 23, 728–732.
dc.relation.referencesAlim, K. A., Fonoberov, A., Shamsa, M., & Balandin, A. A. (2005). Micro−raman investigation of optical phonons in ZnO nanocrystals. Journal of Applied Physics, 97 (12), 124313.
dc.relation.referencesAnsari, S. A., Khan, W., Chaman, M., & Naqvi, A. H. (2011). Synthesis, structural and optical properties of Cr doped ZnO nanoparticles. Asian Journal of Chemistry, 23 (12), 5622–5624.
dc.relation.referencesArguello, C. A., Rousseau, D. L., & Porto, S. P. (1969). First−order raman effect in wurtzite−type crystals. Physical Review, 181 (3), 1351–1363.
dc.relation.referencesBa-Abbad, M. M., Kadhum, A. A. H., Mohamad, A. B., S.Takriff, M., & Sopian, K. (2013). The effect of process parameters on the size of ZnO nanoparticles synthesized via the sol−gel technique. Journal of Alloys and Compounds, 550, 63–70.
dc.relation.referencesBuchheit, R., F. Acosta-Humánez, F., & Almanza, O. (2016). Electron paramagnetic resonance in Cu−doped ZnO. International Journal of Modern Physics B, 30 (11), 1650066.
dc.relation.referencesBundesmann, C., Ashkenov, N., Schubert, M., Spemann, D., Butz, T., Kaidashev, E. M., Lorenz, M., & Grundmann, M. (2003). Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li. Applied Physics Letters, 83 (10), 1974–1976.
dc.relation.referencesCuscó, R., Alarcón-Lladó, E., Ibáñeez, J., Artús, L., Jiménez, J., Wang, B., & Callahan, M. J. (2007). Temperature dependence of Raman scattering in ZnO. Physical Review B - Condensed Matter and Materials Physics, 75 (16), 165202.
dc.relation.referencesDamen, T. C., Porto, S., & Tell, B. (1966). Raman Effect in Zinc Oxide. Physical Review, 142 (2), 570–573
dc.relation.referencesDevi, P. G., & Velu, A. S. (2016). Synthesis, structural and optical properties of pure ZnO and Co doped ZnO nanoparticles prepared by the co−precipitation method. Journal of Theoretical and Applied Physics, 10 (3), 233–240.
dc.relation.referencesEl Khalidi, Z., Hartiti, B., Siadat, M., Comini, E., Arachchige, H. M. M. M., Fadili, S., & Thevenin, P. (2019). Acetone sensor based on Ni doped ZnO nanostructures: Growth and sensing capability. Journal of Materials Science: Materials in Electronics, 30 (8), 7681–7690.
dc.relation.referencesElilarassi, R., & Chandrasekaran, G. (2010). Synthesis and optical properties of Ni−doped zinc oxide nanoparticles for optoelectronic applications. Optoelectronic Letters, 6 (1), 0006–0010.
dc.relation.referencesElilarassi, R., Rao, P. S., & Chandrasekaran, G. (2011). Diluted magnetic semiconductor properties in Zn1−xCuxO nanoparticles synthesized by sol gel route. Journal of Sol−Gel Science and Technology, 57 (1), 101–108.
dc.relation.referencesFerraro, J. R., Nakamoto, K., & Brown, C. W. (2003). Introductory Raman Spectroscopy. Elsevier.
dc.relation.referencesGhosh, C. K., Malkhandi, S., Mitra, M. K., & Chattopadhyay, K. K. (2008). Effect of Ni doping on the dielectric constant of ZnO and its frequency dependent exchange interaction. Journal of Physics D: Applied Physics, 41, 245113.
dc.relation.referencesGuo, S., Du, Z., & Dai, S. (2009). Analysis of Raman modes in Mn− doped ZnO nanoparticles. Physica Status Solidi B: basic solid state, 246 (10), 2329–2332.
dc.relation.referencesHassan, M. M., Khan, W., Mishra, P., Islam, S. S., & Naqvi, A. H. (2017). Enhancement in alcohol vapor sensitivity of Cr doped ZnO gas sensor. Materials Research Bulletin, 93, 391–400.
dc.relation.referencesJan, T., Iqbal, J., Ismail, M., Mansoor, Q., Mahmood, A., & Ahmad, A. (2014). Eradication of Multi− drug Resistant Bacteria by Ni Doped ZnO Nanorods: Structural, Raman and optical characteristics. Applied Surface Science, 308, 75–81.
dc.relation.referencesJin, C., Yu, T., Wu, Z., Chen, X., Wu, X., & Zhuge, L. (2012). Effect of growth temperature on characteristics of Cr−doped ZnO nanorods by magnetron sputtering. Applied Physics A: Materials Science & Processing, 109, 173–179.
dc.relation.referencesKefalas, E. T., Panagiotidis, P., Raptopoulu, C. P., Terzis, A., Mavromoustakos, T., & Salifoglou, A. (2005). Mononuclear titanium (IV) - citrate complexes from aqueous solutions: pH - specific synthesis and structural and spectroscopic studies in relevance to aqueous titanium (IV) - citrate speciation. Inorganic Chemistry, 44 (8), 2596–2605.
dc.relation.referencesKotsakis, N., Raptopoulou, C., Tangoulis, V., Terzis, A., Giapintzakis, J., Jakusch, T., Kiss, T., & Salifoglou, A. (2003). Correlations of synthetic, spectroscopic, structural, and speciation studies in the biologically relevant cobalt(II) − citrate system: The tale of the first aqueous dinuclear cobalt(II) − citrate complex. Inorganic Chemistry, 42 (1), 22–31.
dc.relation.referencesLi, J. M. (2010). Highly UV luminescent ZnO microtetrapod − on − nanowire hybrids. Nanotechnology, 21 (17), 175603.
dc.relation.referencesLi, X.-G., Dong, Y.-H., Xian, H., Hernández, W. Y., Meng, M., Zou, H.-H., Ma, A.-J., Zhang, T.-Y., Jiang, Z., Tsubaki, N., & Vernoux, P. (2011). De−NOx in alternative lean/rich atmospheres on La1−xSrxCoO3 perovskites. Energy & Environmental Science, 4 (9), 3351–3354.
dc.relation.referencesLi, Y., Li, Y., Zhu, M., Yang, T., Huang, J., & Jim, Y. H. H. (2010). Structure and magnetic properties of Cr−doped ZnO nanoparticles prepared under high magnetic field. Solid State Communications, 150 (15–16), 751–754.
dc.relation.referencesLiu, H., Yang, J., Hua, Z., Zhang, Y., Yang, L., Xiao, L., & Xie, Z. (2010). The structure and magnetic properties of Cu−doped ZnO prepared by sol−gel method. Applied Surface Science, 256 (13), 4162–4165.
dc.relation.referencesMcCluskey, M. D. (2000). Local vibrational modes of impurities in semiconductors. Applied Physics Reviews, 87 (8), 3593–3616.
dc.relation.referencesMiller, F. A., & Wilkins, C. H. (1952). Infrared Spectra and Characteristic Frequencies of Inorganic Ions. Analytical Chemistry, 24 (8), 1253–1294.
dc.relation.referencesMote, V. D., Huse, V. R., & Dole, B. N. (2012). Synthesis and Characterization of Cr Doped ZnO Nanocrystals. World Journal of Condensed Matter Physics, 2, 208–211.
dc.relation.referencesMoussa, D., El-Said Bakeer, D., Awad, R., & Abdel-Gaber, A. (2017). Physical properties of ZnO nanoparticles doped with Mn and Fe. Journal of Physics: Conference Series, 869 (1), 012021.
dc.relation.referencesNakamoto, K. (2009). Infrared and Raman Spectra of Inorganic and Coordination Compounds (6th ed.). John Wiley & Sons.
dc.relation.referencesNehru, L. C., Swaminathan, V., & Sanjeeviraja, C. (2012). Rapid synthesis of nanocrystalline ZnO by a microwave−assisted combustion method. Powder Technology, 226, 29–33.
dc.relation.referencesPal, B., Sarkar, D., & Giri, P. K. (2015). Structural, optical, and magnetic properties of Ni doped ZnO nanoparticles: Correlation of magnetic moment with defect density. Applied Surface Science, 356, 804–811.
dc.relation.referencesPandiyarajan, T., & Karthikeyan, B. (2012). Cr doping induced structural, phonon and excitonic properties of ZnO nanoparticles. Journal of Nanoparticle Research, 14 (1), 647.
dc.relation.referencesRaja, K., Ramesh, P. S., & Geetha, D. (2014). Synthesis, structural and optical properties of ZnO and Ni-doped ZnO hexagonal nanorods by Co-precipitation method. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 120, 19–24.
dc.relation.referencesRajendran, M., & Rao, S. (1994). Formation of BaTiO3 from citrate precursor. Journal of solid state chemistry, 113, 239–247.
dc.relation.referencesRao, Y., Xu, H., Liang, Y., & Hark, S. (2011). Synthesis, microstructural and magnetic properties of Mn− doped ZnO nanowires. CrystEngComm, 13 (7), 2566–2570.
dc.relation.referencesRavichandrika, K., Kiranmagi, P., & Ravikumar, R. V. S. S. N. (2011). Synthesis, characterization and antibacterial activity of ZnO nanoparticles. International Journal of Pharmacy and Pharmaceutical Sciences, 4, 336–338.
dc.relation.referencesReddy, A. J., Kokila, M., Nagabhushana, H., Rao, J., Shivakumara, C., Nagabhushana, B., & Chakradhar, R. (2011). EPR, thermo and photoluminescence properties of ZnO nanopowders. Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, 81 (1), 59–63.
dc.relation.referencesReddy, A. J., Kokila, M. K., Nagabhushana, H., Chadakhar, R. P. S., Shivakumara, C., Rao, J. L., & Nagabhushana, B. M. (2011). Structural, optical and EPR studies on ZnO:Cu nanopowders prepared via low temperature solution combustion synthesis. Journal of Alloys and Compounds, 509 (17), 5349–5355.
dc.relation.referencesReddy, A. J., Kokila, M. K., Nagabhushana, H., Rao, J. L., Shivakumara, C., Nagabhushana, B. M., & Chakradhar, R. P. S. (2011). Combustion synthesis, characterization and raman studies of ZnO nanopowders. Spectrochimica Acta A: Molecular and biomolecular spectroscopy, 81 (1), 53–58.
dc.relation.referencesReddy, A. J., Kokila, M. K., Nagabhushana, H., Sharma, S. C., Rao, J. L., Shivakumara, C., Nagabhushana, B. M., & Chakradhar, R. P. (2012). Structural, EPR, photo and thermoluminescence properties of ZnO:Fe nanoparticles. Materials Chemistry and Physics, 133 (2-3), 876–883.
dc.relation.referencesRusso, V., Ghidelli, M., Gondoni, P., Casari, C. S., & Li Bassi, A. (2014). Multi−wavelength Raman scattering of nanostructured Al−doped zinc oxide. Journal of Applied Physics, 115 (7), 073508.
dc.relation.referencesSánchez Zeferino, R., Barboza Flores, M., & Pal, U. (2011). Photoluminescence and raman scattering in Ag−doped ZnO nanoparticles. Journal of Applied Physics, 109 (1), 014308.
dc.relation.referencesSaravanan, R., Santhi, K., Sivakumar, N., Narayanan, V., & Stephen, A. (2012). Synthesis and characterization of ZnO and Ni doped ZnO nanorods by thermal decomposition method for spintronics application. Materials Characterization, 67, 10–16.
dc.relation.referencesŠćepanović ,M., Grujić-Brojčin, M., Vojisavljević, K., Bernik, S., & Srećković, T. (2010). Raman study of structural disorder in ZnO nanopowders. Journal of Raman Spectroscopy, 41 (9), 914–921.
dc.relation.referencesSilverstein, R. M., & Webster, F. X. (1997). Spectrometric identification of organic compounds (6th ed.). John Wiley & Sons.
dc.relation.referencesSingh, J., Chanda, A., Gupta, S., Shukla, P., & Chandra, V. (2016). Effect of cobalt doping on structural and optical properties of ZnO nanoparticles. AIP Conference Proceedings, 1731, 050091.
dc.relation.referencesSingh, S., Kumar, E. S., & Rao, M. S. R. (2008). Microstructural, optical and electrical properties of Cr−doped ZnO. Scripta Materalia, 58 (10), 866–869.
dc.relation.referencesSmith, B. C. (2011). Fundamentals of Fourier Transform Infrared Spectroscopy. Taylor & Francis.
dc.relation.referencesSrinivasulu, T., Saritha, K., & Reddy, K. R. (2017). Synthesis and Characterization of Fe−doped ZnO Thin Films Deposited by Chemical Spray Pyrolysis. Modern Electronic Materials, 3 (2), 76–85.
dc.relation.referencesVan Werde, K., Mondelaers, D., Vanhoyland, G., Nelis, D., Van Bael, M. K., Mullens, J., & Van Poucke, L. C. (2002). Thermal descomposition of the ammonium zinc acetate citrate precursor for aqueous chemical solution deposition of ZnO. Journal of Materials Science, 37 (1), 81– 88.
dc.relation.referencesVijayalakshmi, K., & Sivaraj, D. (2015). Enhanced antibacterial activity of Cr doped ZnO nanorods synthesized using microwave processing. RSC Advances, 5 (84), 68461–68469.
dc.relation.referencesVinod, R., Bushiri, M. J., Achary, S. R., & V. Muñoz − Sanjosé. (2015). Quenching and blue shift of UV emission intensity of hydrothermally grown ZnO:Mn nanorods. Materials Science and Engineering B: Advanced functional solid − state materials, 191, 1–6.
dc.relation.referencesWang, W., Zhang, X., Chen, F., Ma, C., Chen, C., Liu, Q., Liao, D., & Li, L. (2005). Homo − and hetero − metallic manganese citrate complexes: Syntheses, crystal structures and magnetic properties. Polyhedron, 24 (13), 1656–1668
dc.relation.referencesWei-Chen, L., Wei-Gang, G., Li-Hua, W., Xiu-Ling, M., Shen-Chang, X., & Zhang-Jing, Z. (2014). Synthesis, crystal structure and characterization of a new zinc citrate complex. Chinese Journal of Structural Chemistry, 33 (4), 591–596.
dc.relation.referencesXiong, G., Pal, U., Serrano, J. G., Ucer, K. B., & Williams, R. T. (2006). Photoluminescence and FTIR study of ZnO nanoparticles: The impurity and defect perspective. Physica Status Solidi (c), 3 (10), 3577–3581.
dc.relation.referencesYadav, H. K., Sreenivas, K., Gupta, V., & Katiyar, R. S. (2009). Structural studies and Raman spectroscopy of forbidden zone boundary phonons in Ni − doped ZnO ceramics. Journal of Raman spectroscopy, 40, 381–386.
dc.relation.referencesZhao, J., Wang, L., Yan, X., Y.Yang, Lei, Y., Zhou, J., Huang, Y., Gu, Y., & Zhang, Y. (2011). Structure and photocatalytic activity of Ni− doped ZnO nanorods. Materials Research Bulletin, 46 (8), 1207–1210.
dc.relation.referencesZhong, H., Wang, X., Cheng, Z., Li, W., & Xu, W. (2006). Effect on Mn+ ion implantation on the Raman spectra of ZnO. Journal of Applied Physics, 99 (10), 103905.
dc.relation.referencesZia, A., Shah, N. A., Ahmed, S., & Khan, E. U. (2014). The influence of cobalt on the physical properties of ZnO nanostructures. Physica Scripta, 89, 105802.
dc.relation.referencesZolfaghari, M. (2019). Propose for raman mode position for Mn− doped ZnO nanoparticles. Physica B: condensed matter, 555, 1–8.
dc.relation.referencesAcosta Humánez, M. F. (2014). Estudio por resonancia paramagnética electrónica de nanopartículas de óxido de zinc dopadas con cobalto [Tesis de maestría]. Universidad Nacional de Colombia.
dc.relation.referencesAcosta Humánez, M. F., Montes Vides, L. A., & Almanza-Montero, O. A. (2016). Sol−gel synthesis of zinc oxide nanoparticle at three different temperatures and its characterization via XRD, IR and EPR. DYNA, 83 (195), 224–228.
dc.relation.referencesAcosta−Humánez, F., Cogollo Pitalúa, R., & Almanza, O. (2013). Electron paramagnetic resonance in Zn1−xCoxO. Journal of Magnetism and Magnetic Materials, 329, 39–42.
dc.relation.referencesAcosta−Humánez, F., Magon, C. J., Montes−Vides, L., & Almanza, O. (2021). Structural, Optical and EPR Study of Zn1−xFexO Nanocrystals. Journal of Low Temperature Physics, 202 (1–2), 29–47.
dc.relation.referencesAcosta−Humánez, F., Montes−Vides, L., & Almanza, O. (2019). Structural, Optical and EPR Study of Mn−Doped ZnO Nanocrystals. Journal of Low Temperature Physics, 195 (5-6), 391–402.
dc.relation.referencesAcosta−Humánez, F., Vargas−Hernández, C., & Almanza, O. (2014). Effect of sintering temperature on the structure and mean crystallite size of Zn1−xCoxO (x = 0.01 − 0.05) samples. Superficies y Vacío, 27 (2), 43–48.
dc.relation.referencesAnsari, S. A., Khan, W., Chaman, M., & Naqvi, A. H. (2011). Synthesis, structural and optical properties of Cr doped ZnO nanoparticles. Asian Journal of Chemistry, 23 (12), 5622–5624.
dc.relation.referencesAryanto, D., Marwoto, P., Sudir, T., Wismogroho, A. S., & Sugianto. (2019). Growth of a−axis−oriented Al−doped ZnO thin film on glass substrate using unbalanced DC magnetron sputtering. Journal of Physics: Conference Series, 1191, 012031.
dc.relation.referencesAtomistic Simulation Group in the Materials Department of Imperial College. (2018). Database of ionic radii. http://abulafia.mt.ic.ac.uk/shannon/ptable.php
dc.relation.referencesBarrett, C. S., & Massalski, T. B. (1980). Structure of metals. Crystallographic Methods, Principles, and Data (3rd ed.). Pergamon Press.
dc.relation.referencesBöttcher, R., Lorenz, M., Pöppl, A., Spemann, D., & Grundmann, M. (2015). Local zincblende coordination in heteroepitaxial wurtzite Zn1−xMgxO:Mn thin films with 0.01 ≤ x ≤ 0.04 identified by electron paramagnetic resonance. Journal of Materials Chemistry C, 3 (45), 11918–11929.
dc.relation.referencesBuchheit, R., F. Acosta-Humánez, F., & Almanza, O. (2016). Electron paramagnetic resonance in Cu−doped ZnO. International Journal of Modern Physics B, 30 (11), 1650066.
dc.relation.referencesBuchheit, R., Acosta−Humanez, F., & Almanza, O. (2016). Structural, EPR and optical studies on Cu−doped ZnO nanoparticles synthesized by the sol−gel method at different calcination temperatures. Revista Cubana de Fisica, 33 (1), 4–11.
dc.relation.referencesCaglar, Y. (2013). Sol−gel derived nanostructure undoped and cobalt doped ZnO: Structural, optical and electrical studies. Journal of alloys and compounds, 560, 181–188.
dc.relation.referencesCaglar, Y., Ilican, S., & Caglar, M. (2017). FESEM, XRD and DRS studies of electrochemically deposited boron doped ZnO films. Materials Science- Poland, 35 (4), 824–829.
dc.relation.referencesColeman, V. A., & Jagadish, C. (2006). Basic Properties and Applications of ZnO. In C. Jagadish & S. J. Pearton (Eds.), Zinc oxide bulk. thin films and nanostructures. Elsevier.
dc.relation.referencesEsteve Cano, V. J. (Ed.). (2014). El método Rietveld (2.a ed.). Universitat Jaume I
dc.relation.referencesFucke, K., & Steed, J. W. (2010). X−ray and Neutron Diffraction in the Study of Organic Crystalline Hydrates. Water, 2 (3), 333–350.
dc.relation.referencesG. −C. Wang & T. −M. Lu. (2014). RHEED Transmission Mode and Pole Figures. Thin Film and Nanostructure Texture Analysis. Springer.
dc.relation.referencesGaudon, M., Toulemonde, O., & Demourgues, A. (2007). Green coloration of Co-doped ZnO explained from structural refinement and bond Considerations. Inorganic Chemistry, 46 (26), 10996–11002.
dc.relation.referencesGonzález Swacki, N., & Swacka, T. (2010). Basic elements of crystallography. Pan Stanford Publishing.
dc.relation.referencesInternational Centre for Diffraction Data. (2004). PDF−2 Database.
dc.relation.referencesIrshad, K., Khan, M. T., & Murtaza, A. (2018). Synthesis and characterization of transition−metals−doped ZnO nanoparticles by sol−gel auto−combustion method. Physica B: condensed matter, 543, 1–6.
dc.relation.referencesKhorsand Zak, A., Abd. Majid, W. H., Abrishami, M. E., & Yousefi, R. (2011). X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods. Solid State Sciences, 13 (1), 251–256.
dc.relation.referencesKim, Y., Page, K., & Seshadri, R. (2007). Synchrotron x−ray study of polycrystalline wurtzite Zn1−xMgxO (0 ≤ x ≤ 0.15): Evolution of crystal structure and polarization. Applied physics letters, 90 (10), 101904.
dc.relation.referencesKisi, E., & Elcombe, M. M. (1989). u parameters for the wurtzite structure of ZnS and ZnO using powder neutron diffraction. Acta crystallographica C, 45 (12), 1867–1870.
dc.relation.referencesKittel, C. (2005). Introduction to Solid State Physics (8th ed.). John Wiley & Sons.
dc.relation.referencesLeszczynski, M., Suski, T., Perlin, P., Teisseyre, H., Gregory, I., Bockowski, M., Jun, J., Pororwski, S., Pakula, K., Baranowski, J. M., Foxon, C. T., & Cheng, T. S. (1996). Lattice parameters gallium nitride. Applied physics letters, 69 (1), 73–75.
dc.relation.referencesLorenz, M., Böttcher, R., Friedländer, S., Pöppl, A., Spemann, D., & Grundmann, M. (2014). Local lattice distortions in oxygen deficient Mn−doped ZnO thin films, probed by electron paramagnetic resonance. Journal of Materials Chemistry C, 2 (25), 4947–4956.
dc.relation.referencesMartinez Lozano, G. (2007). Análisis de parámetros microestructurales: tamaño de cristalita y microdeformación de Compuestos Tipo Hidrotalcita de Cobalto [Tesis de maestría]. Instituto Politécnico Nacional.
dc.relation.referencesMorkoç, H., & Ozgür, Ü. (Eds.). (2009). Zinc Oxide: Fundamentals, Materials and Device Technology. Wiley.
dc.relation.referencesMoussa, D., El-Said Bakeer, D., Awad, R., & Abdel-Gaber, A. (2017). Physical properties of ZnO nanoparticles doped with Mn and Fe. Journal of Physics: Conference Series, 869 (1), 012021.
dc.relation.referencesOrtega Toro, R. (2015). Development and characterization of corn starch films by blending with more hydrophobic compounds [Doctoral dissertation, UNIVERSITAT POLITECNICA DE VALÈNCIA].
dc.relation.referencesPecharsky, V. K., & Zavalij, P. K. (2009). Fundamentals of powder diffraction and structure characterization (2nd ed.). Springer.
dc.relation.referencesRaja, K., Ramesh, P. S., & Geetha, D. (2014). Synthesis, structural and optical properties of ZnO and Ni-doped ZnO hexagonal nanorods by Co-precipitation method. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 120, 19–24.
dc.relation.referencesRamakanth, K. (2007). Basics of X-ray diffraction and its application. I. K. International Publishing House Pvt. Ltd.
dc.relation.referencesRietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2 (2), 65–71.
dc.relation.referencesRodríguez−Carvajal, J. (2018). Fullprof Suite software: Crystallographic tools for Rietveld, profile matching and integrated intensity refinements for X−ray and/or neutron data. https: / / www.ill.eu/sites/fullprof/index.html
dc.relation.referencesRodríguez-Carvajal, J. (1993). Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condensed Matter, 192 (1-2), 55–69.
dc.relation.referencesRodríguez-Carvajal, J. (2001). Recent Developments of the program Fullprof. Commission on Powder Diffraction (IUCr) Newsletter, 26, 12–19.
dc.relation.referencesRodríguez-Carvajal, J., & Roisnel, T. (1998). Fullprof.98 and winPLOTR: new Windows 95/NT applications. Diffraction Commission for Powder Diffraction (IUCR), 20, 35–36.
dc.relation.referencesRogers, K. D., & Daniels, P. (2002). An X-ray diffraction study of the effects of heat treatment on bone mineral microstructure. Biomaterials, 23 (12), 2577–2585.
dc.relation.referencesRoisnel, T., & Rodríguez-Carvajal, J. WinPLOTR: a Windows tool for powder diffraction patterns analysis (R. Delhez & E. Mittenmeijer, Eds.). In: Materials Science Forum, 7th European Powder diffraction conference (EPDIC 7) (R. Delhez & E. Mittenmeijer, Eds.). Ed. by Delhez, R., & Mittenmeijer, E. 2000, 118–123.
dc.relation.referencesRomero, R., Leinen, D., Dalchiele, E. A., J. R. Ramos−Barrado, & Martín, F. (2006). The effects of zinc acetate and zinc chloride precursors on the preferred crystalline orientation of ZnO and Al−doped ZnO thin films obtained by spray pyrolysis. Thin solid films, 515 (4), 1942–1949.
dc.relation.referencesSardela, M. R. (2014). X−ray diffraction and reflectivity. In M. Sardela (Ed.), Practical materials characterization. Springer.
dc.relation.referencesShalini, S., & Balamurugan, D. (2016). Ambient temperature operated acetaldehyde vapour detection of spray deposited cobalt doped zinc oxide thin film. Journal of Colloid and Interface Science, 466, 352–359.
dc.relation.referencesShannon, R. D. (1976). Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta crystallographica A, 32, 751–767.
dc.relation.referencesSrinivasulu, T., Saritha, K., & Reddy, K. R. (2017). Synthesis and Characterization of Fe−doped ZnO Thin Films Deposited by Chemical Spray Pyrolysis. Modern Electronic Materials, 3 (2), 76–85.
dc.relation.referencesSuranarayana, C., & Norton, M. G. (1998). X−ray diffraction: A practical approach. Springer.
dc.relation.referencesT. Prasada Rao & Santhoshkumar, M. (2009). Highly oriented (100) ZnO thin films by spray pyrolysis. Applied Surface Science, 255, 7212–7215.
dc.relation.referencesWarren, B. E. (1990). X-Ray Diffraction. Dover Publications Inc.
dc.relation.referencesYang, Z.-Y. (2009). Local structure distortion and spin Hamiltonian parameters of oxide−diluted magnetic semiconductor Mn−doped ZnO. Chinese Physics B, 18 (3), 1253–1258.
dc.relation.referencesYoung, R. A. (Ed.). (2002). The Rietveld Method. Oxford University Press.
dc.relation.referencesZhang, Z., Zhou, F., & Lavernia, E. J. (2003). On the analysis of grain size in bulk nanocrystalline materials via x-ray diffraction. Metallurgical and Materials Transactions A, 34, 1349–1355.
dc.relation.referencesAcosta−Humánez, F., Montes−Vides, L., & Almanza, O. (2019). Structural, Optical and EPR Study of Mn−Doped ZnO Nanocrystals. Journal of Low Temperature Physics, 195 (5-6), 391–402.
dc.relation.referencesAhmed, S. A. (2017). Structural, optical, and magnetic properties of Mn-doped ZnO samples. Results in Physics, 7, 604–610.
dc.relation.referencesAltintas Yildirim, O., Arslan, H., & Sönmezoglu, S. (2016). Facile synthesis of cobalt-doped zinc oxide thin films for highly efficient visible light photocatalysts. Applied Surface Science, 390, 111–121.
dc.relation.referencesBabu, B., Manjari, V. P., Aswani, T., Rao, G. T., Stella, R. J., & Ravikumar, R. V. (2014). Structural, optical and magnetic properties of Cr3+ doped ZnO nanopowder. Indian Journal of Physics, 88 (7), 683–690.
dc.relation.referencesBaer, D. R., & Thevuthasan, S. (2010). Characterization of Thin Films and Coatings. In P. Martin (Ed.), Handbook of deposition technologies for films and coatings (3rd). Elsevier Ltd.
dc.relation.referencesBalti, I., Mezni, A., Dakhlaoui-Omrani, A., Léone, P., Viana, B., Brinza, O., Smiri, L. S., & Jouini, N. (2011). Comparative study of Ni- and Co-substituted ZnO nanoparticles: Synthesis, optical, and magnetic properties. Journal of Physical Chemistry C, 115 (32), 15758–15766.
dc.relation.referencesBecerra, A. M., & Castro-Luna, A. E. (2005). An investigation on the presence of NiAl2O4 in a stable Ni on alumina catalyst for dry reforming. Journal of Chilean Chemical Society, 50 (2), 465–469.
dc.relation.referencesBehera, D., & Acharya, B. S. (2008). Nano-star formation in Al-doped ZnO thin film deposited by dip-dry method and its characterization using atomic force microscopy, electron probe microscopy, photoluminescence and laser Raman spectroscopy. Journal of Luminescence, 128 (10), 1577–1586.
dc.relation.referencesBiroju, R. K., & Giri, P. K. (2017). Strong visible and near infrared photoluminescence from ZnO nanorods/nanowires grown on single layer graphene studied using sub−band gap excitation. Journal of Applied Physics, 122 (4), 044302.
dc.relation.referencesBuchheit, R., Acosta−Humanez, F., & Almanza, O. (2016). Structural, EPR and optical studies on Cu−doped ZnO nanoparticles synthesized by the sol−gel method at different calcination temperatures. Revista Cubana de Fisica, 33 (1), 4–11.
dc.relation.referencesChandra, S., & Kumar, R. (2004). Synthesis and spectral studies on mononuclear complexes of chromium(III) and manganese(II) with 12−membered tetradentate N2O2 , N2S2 and N4 donor macrocyclic ligands. Transition Metal Chemistry, 29 (3), 269–275.
dc.relation.referencesChauhan, R., Kumar, A., & Chaudhary, R. P. (2012). Structures and optical properties of Zn1−xNixO nanoparticles by coprecipitation method. Research on Chemical Intermediates, 38 (7), 1483–1493.
dc.relation.referencesEl-Hagary, M., Shaaban, E. R., Moustafa, S. H., & Gad, G. M. A. (2019). Variations of energy band gap and magnetic properties upon quantum confinement effects on the Cr doped ZnO nanoparticles. Materials Research Express, 6, 015030.
dc.relation.referencesElilarassi, R., & Chandrasekaran, G. (2011a). Microstructural and photoluminescence properties of Co-doped ZnO films fabricated using a simple solution growth method. Materials Science in Semiconductor Processing, 14 (2), 179–183.
dc.relation.referencesElilarassi, R., & Chandrasekaran, G. (2011b). Synthesis, structural and optical characterization of Ni-doped ZnO nanoparticles. Journal of Materials Science: Materials in Electronics, 22 (7), 751–756.
dc.relation.referencesFabbiyola, S., Kennedy, L. J., Aruldoss, U., Bououdina, M., Dakhel, A. A., & JudithVijaya, J. (2015). Synthesis of Co-doped ZnO nanoparticles via co-precipitation: Structural, optical and magnetic properties. Powder Technology, 286, 757–765.
dc.relation.referencesGaldámez-Martinez, A., Santana, G., Güell, F., Martínez-Alanis, P. R., & Dutt, A. (2020). Photoluminescence of ZnO nanowires: A review. Nanomaterials, 10 (5), 1–23.
dc.relation.referencesGaudon, M., Toulemonde, O., & Demourgues, A. (2007). Green coloration of Co-doped ZnO explained from structural refinement and bond Considerations. Inorganic Chemistry, 46 (26), 10996–11002.
dc.relation.referencesGu, Y., Kuskovsky, I. L., Yin, M., O’Brien, S., & Neumark, G. F. (2004). Quantum confinement in ZnO nanorods. Applied Physics Letters, 85 (17), 3833–3835.
dc.relation.referencesHapke, B. (2012). Theory of Reflectance and Emittance Spectroscopy (2nd). Cambridge University Press.
dc.relation.referencesHe, R., Tang, B., Ton-That, C., Phillips, M., & Tsuzuki, T. (2013). Physical structure and optical properties of Co-doped ZnO nanoparticles prepared by co-precipitation. Journal of Nanoparticle Research, 15 (11), 2030(1–8).
dc.relation.referencesHeitz, R., Hoffmann, A., & Broser, I. (1992). Fe3+ center in ZnO. Physical Review B, 45 (16), 8977–8988.
dc.relation.referencesHuang, L., Hao, Y., & Hu, M. (2018). Optical and magnetic properties of Co−doped ZnO synthesized by magnetic assisted hydrothermal method. Materials Science in Semiconductor Processing, 74, 303–308.
dc.relation.referencesHur, T. B., Jeen, G. S., Hwang, Y. H., & Kim, H. K. (2003). Photoluminescence of polycrystalline ZnO under different annealing conditions. Journal of Applied Physics, 94 (9), 5787–5790.
dc.relation.referencesHusairi, F. S., Azlinda, A., Rusop, M., & Abdullah, S. (2013). Photoluminescence properties of Zinc Oxide nanostructures on different substrates obtained by an immersion method. Microelectronic Engineering, 108, 145–149.
dc.relation.referencesJimenez, J., & Tomm, J. W. (2016). Spectroscopic Analysis of Optoelectronic Semiconductors. Springer.
dc.relation.referencesKayani, Z. N., Abbas, E., Saddiqe, Z., Riaz, S., & Naseem, S. (2018). Photocatalytic, antibacterial, optical and magnetic properties of Fe-doped ZnO nano-particles prepared by sol-gel. Materials Science in Semiconductor Processing, 88, 109–119.
dc.relation.referencesKhokhra, R., Bharti, B., Lee, H. N., & Kumar, R. (2017). Visible and UV photo−detection in ZnO nanostructured thin films via simple tuning of solution method. Scientific Reports, 7 (1), 1–14.
dc.relation.referencesKhorsand Zak, A., Razali, R., Abd Majid, W. H., & Darroudi, M. (2011). Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles. International Journal of Nanomedicine, 6 (1), 1399–1403.
dc.relation.referencesKlingshirn, C. (2005). Semiconductor Optics. Springer.
dc.relation.referencesKnutsen, K. E., Galeckas, A., Zubiaga, A., Tuomisto, F., Farlow, G. C., Svensson, B. G., & Kuznetsov, A. Y. (2012). Zinc vacancy and oxygen interstitial in ZnO revealed by sequential annealing and electron irradiation. Physical Review B - Condensed Matter and Materials Physics, 86 (12), 1–5.
dc.relation.referencesKortüm, G. (1969). Reflectance spectroscopy. Principles, Methods, Applications. Springer-Verlag.
dc.relation.referencesLakshmana Rao, J., Narendra, G. L., & Lakshman, S. V. (1990). Optical absorption spectra of cobalt(II) and nickel(II) ions in lead acetate glasses. Polyhedron, 9 (12), 1475–1477.
dc.relation.referencesLee, E. C., Kim, Y. S., Jin, Y. G., & Chang, K. J. (2001). First-principles study of the compensation mechanism in N-doped ZnO. Physica B: Condensed Matter, 308-310, 912–915.
dc.relation.referencesLi, X., Chen, T. P., Liu, P., Liu, Y., & Leong, K. C. (2013). Effects of free electrons and quantum confinement in ultrathin ZnO films: a comparison between undoped and Al-doped ZnO. Optics Express, 21 (12), 14131(1–8).
dc.relation.referencesLiang, B. B., Hou, L. P., Zou, S. Y., Zhang, L., Guo, Y. C., Liu, Y. T., Farooq, M. U., Shi, L. J., Liu, R. B., & Zou, B. S. (2018). The aggregation of Fe3+ and their d−d radiative transitions in ZnSe:Fe3+ nanobelts by CVD growth. RSC Advances, 8 (6), 3133–3139.
dc.relation.referencesLin, B., Fu, Z., & Jia, Y. (2001). Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Applied Physics Letters, 79 (7), 943–945.
dc.relation.referencesLoan, T. T., Long, N. N., & Ha, L. H. (2009). Photoluminescence properties of Co-doped ZnO nanorods synthesized by hydrothermal method. Journal of Physics D: Applied Physics, 42 (6), 065412.
dc.relation.referencesMa, Q., Lv, X., Wang, Y., & Chen, J. (2016). Optical and photocatalytic properties of Mn doped flower−like ZnO hierarchical structures. Optical Materials, 60, 86–93.
dc.relation.referencesMachado, I. E. C., Prado, L., Gomes, L., Prison, J. M., & Martinelli, J. R. (2004). Optical properties of manganese in barium phosphate glasses. Journal of Non-Crystalline Solids, 348, 113–117.
dc.relation.referencesMcCluskey, M. D. (2018). Defects in ZnO. In J. Stehr, I. Buyanova, & W. Chen (Eds.), Defects in advanced electronic materials and novel low dimensional structures. Elsevier Ltd.
dc.relation.referencesMehedi Hassan, M., Khan, W., Azam, A., & Naqvi, A. H. (2015). Influence of Cr incorporation on structural, dielectric and optical properties of ZnO nanoparticles. Journal of Industrial and Engineering Chemistry, 21, 283–291.
dc.relation.referencesMoussa, D., El-Said Bakeer, D., Awad, R., & Abdel-Gaber, A. (2017). Physical properties of ZnO nanoparticles doped with Mn and Fe. Journal of Physics: Conference Series, 869 (1), 012021.
dc.relation.referencesMurphy, A. B. (2007). Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Solar Energy Materials and Solar Cells, 91 (14), 1326–1337.
dc.relation.referencesNorberg, N. S., Kittilstved, K. R., Amonette, J. E., Kukkadapu, R. K., Schwartz, D. A., & Gamelin, D. R. (2004). Synthesis of Colloidal Mn2+:ZnO Quantum Dots and High−TC Ferromagnetic Nanocrystalline Thin Films. Journal of the American Chemical Society, 126 (30), 9387–9398.
dc.relation.referencesOzgür, Ü., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A., Dogan, S., Avrutin, V., Cho, S.-J., & Morkoç (2005). A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 98 (4), 041301.
dc.relation.referencesPankove, J. I. (1971). Optical processes in semiconductors. Dover Publications Inc.
dc.relation.referencesPudukudy, M., & Yaakob, Z. (2015). Facile Synthesis of Quasi Spherical ZnO Nanoparticles with Excellent Photocatalytic Activity. Journal of Cluster Science, 26 (4), 1187–1201.
dc.relation.referencesPushpa, N., & Kokila, M. K. (2017). Effect of cobalt doping on structural, thermo and photoluminescent properties of ZnO nanopowders. Journal of Luminescence, 190, 100–107.
dc.relation.referencesRaja, K., Ramesh, P. S., & Geetha, D. (2014). Synthesis, structural and optical properties of ZnO and Ni-doped ZnO hexagonal nanorods by Co-precipitation method. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 120, 19–24
dc.relation.referencesRyba-Romanowski, W., Go lab, S., Pisarski, W. A., Podsiad la, D., & Czapla, Z. (1997). Optical spectroscopy of a chromium doped (CH3)2NH2Al(SO4)2⋅ 6 H2O single crystal in the ferroelectric phase. Chemical Physics Letters, 264 (3-4), 323–326
dc.relation.referencesSchwartz, D. A., Norberg, N. S., Nguyen, Q. P., Parker, J. M., & Gamelin, D. R. (2003). Magnetic Quantum Dots: Synthesis, Spectroscopy, and Magnetism of Co2+− and Ni2+−Doped ZnO Nanocrystals. Journal of the American Chemical Society, 125 (43), 13205–13218.
dc.relation.referencesSegets, D., Gradl, J., Taylor, R. K., & Vassilev, V. (2009). Absorbance Spectra for the Determination of ZnO Nanoparticle Size Distribution, Solubility. ACS Nano, 3 (7), 1703–1710.
dc.relation.referencesShatnawi, M., Alsmadi, A. M., Bsoul, I., Salameh, B., Mathai, M., Alnawashi, G., Alzoubi, G. M., Al-Dweri, F., & Bawa’aneh, M. S. (2016). Magnetic and optical properties of Co-doped ZnO nanocrystalline particles. Journal of Alloys and Compounds, 6, 244–252.
dc.relation.referencesSherman, D. M., & Waite, T. D. (1985). Electronic spectra of Fe3+ oxides and oxide hydroxides in the near IR to near UV. American Mineralogist, 70 (11-12), 1262–1269.
dc.relation.referencesSun, J. H., Dong, S. Y., Feng, J. L., Yin, X. J., & Zhao, X. C. (2011). Enhanced sunlight photocatalytic performance of Sn−doped ZnO for Methylene Blue degradation. Journal of Molecular Catalysis A: Chemical, 335 (1-2), 145–150.
dc.relation.referencesSun, Q., Berkelbach, T. C., McClain, J. D., & G. K.-L. Chan. (2017). Gaussian and plane−wave mixed density fitting for periodic systems. The Journal of Chemical Physics, 147 (16), 164119.
dc.relation.referencesTakagahara, T., & Takeda, K. (1992). Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Physical Review B, 46 (23), 15578–15581.
dc.relation.referencesTalib, R. A., Abdullah, M. J., Mohammad, S. M., Ahmed, N. M., & Allam, N. K. (2016). ZnO Nanorods/Polyaniline-Based Inorganic/Organic Heterojunctions for Enhanced Light Sensing Applications. ECS Journal of Solid State Science and Technology, 5 (3), P142–P14
dc.relation.referencesTanaka, A., Onari, S., & Arai, T. (1992). Raman scattering from CdSe microcrystals embedded in a germanate glass matrix. Physical Review B, 45 (12), 6587–6592.
dc.relation.referencesTaran, M. N., Koch-Müller, M., & Feenstra, A. (2009). Optical spectroscopic study of tetrahedrally coordinated Co2+ in natural spinel and staurolite at different temperatures and pressures. American Mineralogist, 94 (11-12), 1647–1652.
dc.relation.referencesTarwal, N. L., Gurav, K. V., Prem Kumar, T., Jeong, Y. K., Shim, H. S., Kim, I. Y., Kim, J. H., Jang, J. H., & Patil, P. S. (2014). Structure, X-ray photoelectron spectroscopy and photoluminescence investigations of the spray deposited cobalt doped ZnO thin films. Journal of Analytical and Applied Pyrolysis, 106, 26–32.
dc.relation.referencesThapa, D., Huso, J., Morrison, J. L., Corolewski, C. D., McCluskey, M. D., & Bergman, L. (2016). Achieving highly-enhanced UV photoluminescence and its origin in ZnO nanocrystalline films. Optical Materials, 58, 382–389.
dc.relation.referencesTürkyılmaz, Ş. Ş, Güy, N., & Özacar, M. (2017). Photocatalytic efficiencies of Ni, Mn, Fe and Ag doped ZnO nanostructures synthesized by hydrothermal method: The synergistic/antagonistic effect between ZnO and metals. Journal of Photochemistry and Photobiology A: Chemistry, 341, 39–50.
dc.relation.referencesVempati, S., Mitra, J., & Dawson, P. (2012). One-step synthesis of ZnO nanosheets: A blue-white fluorophore. Nanoscale Research Letters, 7, 1–10.
dc.relation.referencesVempati, S., Shetty, A., Dawson, P., Nanda, K. K., & Krupanidhi, S. B. (2012). Solution-based synthesis of cobalt-doped ZnO thin films. Thin Solid Films, 524, 137–143.
dc.relation.referencesVolbers, N., Zhou, H., Knies, C., Pfisterer, D., Sann, J., Hofmann, D. M., & Meyer, B. K. (2007). Synthesis and characterization of ZnO:Co2+ nanoparticles. Applied Physics A: Materials Science and Processing, 88 (1), 153–155.
dc.relation.referencesWiens, A. E., Copan, A. V., & Schaefer, H. F. (2019). Multi−fidelity Gaussian process modeling for chemical energy surfaces. Chemical Physics Letters: X, 3, 100022.
dc.relation.referencesWu, B., Li, J., & Li, Q. (2019). Preparation and photoluminescence behavior of Mn−doped nano−ZnO. Optik, 188, 205–211.
dc.relation.referencesWu, X., Wei, Z., Zhang, L., Wang, X., Yang, H., & Jiang, J. (2014). Optical and magnetic properties of Fe doped ZnO nanoparticles obtained by hydrothermal synthesis. Journal of Nanomaterials, 2014, 792102.
dc.relation.referencesXia, H., Wang, J., Wang, H., Zhang, J., Zhang, Y., & Xu, T. (2006). Optical spectroscopy and crystal−field strength of Cr3+ in various solid matrixes. Rare Metals, 25 (1), 51–57.
dc.relation.referencesXu, P. S., Sun, Y. M., Shi, C. S., Xu, F. Q., & Pan, H. B. (2003). The electronic structure and spectral properties of ZnO and its defects. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 199, 286–290.
dc.relation.referencesYu, P. P., & Cardona, M. (2010). Fundamentals of semiconductors: physics and materials properties (4th). Springer.
dc.relation.referencesZak, A. K., Abrishami, M. E., Majid, W. H., Yousefi, R., & Hosseini, S. M. (2011). Effects of annealing temperature on some structural and optical properties of ZnO nanoparticles prepared by a modified sol-gel combustion method. Ceramics International, 37 (1), 393–398.
dc.relation.referencesZak, A. K., Majid, W. H., Darroudi, M., & Yousefi, R. (2011). Synthesis and characterization of ZnO nanoparticles prepared in gelatin media. Materials Letters, 65 (1), 70–73.
dc.relation.referencesZhou, D., & Kittilstved, K. R. (2015). Control over Fe3+ speciation in colloidal ZnO nanocrystals. Journal of Materials Chemistry C, 3 (17), 4352–4358.
dc.relation.referencesAbragam, A., & Bleaney, B. (1970). Electron paramagnetic resonance of transition ions (W. Marshall & D. H. Wilkinson, Eds.). Clarendon Press - Oxford.
dc.relation.referencesAçkgöz, M., Drahus, M. D., Ozarowski, A., Van Tol, J., Weber, S., & Erdem, E. (2014). Local coordination of Fe3+ in ZnO nanoparticles: Multi−frequency electron paramagnetic resonance (EPR) and Newman superposition model analysis. Journal of Physics Condensed Matter, 26, 15583.
dc.relation.referencesAcosta Humánez, M. F. (2014). Estudio por resonancia paramagnética electrónica de nanopartículas de óxido de zinc dopadas con cobalto [Tesis de maestría]. Universidad Nacional de Colombia.
dc.relation.referencesAcosta Humánez, M. F., Montes Vides, L. A., & Almanza-Montero, O. A. (2016). Sol−gel synthesis of zinc oxide nanoparticle at three different temperatures and its characterization via XRD, IR and EPR. DYNA, 83 (195), 224–228.
dc.relation.referencesAcosta−Humánez, F., Cogollo Pitalúa, R., & Almanza, O. (2013). Electron paramagnetic resonance in Zn1−xCoxO. Journal of Magnetism and Magnetic Materials, 329, 39–42.
dc.relation.referencesAcosta−Humánez, F., Magon, C. J., Montes−Vides, L., & Almanza, O. (2021). Structural, Optical and EPR Study of Zn1−xFexO Nanocrystals. Journal of Low Temperature Physics, 202 (1–2), 29–47.
dc.relation.referencesAcosta−Humánez, F., Montes−Vides, L., & Almanza, O. (2019). Structural, Optical and EPR Study of Mn−Doped ZnO Nanocrystals. Journal of Low Temperature Physics, 195 (5-6), 391–402.
dc.relation.referencesAlaria, J., Bouloudenine, M., Schmerber, G., Colis, S., Dinia, A., Turek, P., & Bernard, M. (2006). Pure paramagnetic behavior in Mn-doped ZnO semiconductors. Journal of Applied Physics, 99 (8), 54–56.
dc.relation.referencesBaranov, P. G., Romanov, N. G., Bundakova, A. P., Orlinskii, S. B., Donegá, C. D. M., & Schmidt, J. (2016). Electronic Structure of ZnO Quantum Dots Studied by High-Frequency EPR, ESE, ENDOR and ODMR Spectroscopy. Materials Today: Proceedings, 3 (3), 816–824.
dc.relation.referencesBaranov, P. G., Orlinskii, S. B., de Mello Donegá, C., & Schmidt, J. (2010). High-Frequency EPR and ENDOR Spectroscopy on Semiconductor Quantum Dots. Applied Magnetic Resonance, 39 (1), 151–183.
dc.relation.referencesBencini, A., Bertini, I., Canti, G., Gatteschi, D., & Luchinat, C. (1981). The epr spectra of the inhibitor derivatives of cobalt carbonic anhydrase. Journal of Inorganic Biochemistry, 14 (1), 81–93.
dc.relation.referencesBertini, I., Luchinat, C., & Piccioli, M. (2001). Paramagnetic probes in metalloproteins. In T. L. James, V. Dötsch, & U. Schmitz (Eds.), Nuclear Magnetic Resonance of Biological Macromolecules - Part B (Vol. 339). Elsevier Masson SAS.
dc.relation.referencesBöttcher, R., Lorenz, M., Pöppl, A., Spemann, D., & Grundmann, M. (2015). Local zincblende coordination in heteroepitaxial wurtzite Zn1−xMgxO:Mn thin films with 0.01 ≤ x ≤ 0.04 identified by electron paramagnetic resonance. Journal of Materials Chemistry C, 3 (45), 11918–11929.
dc.relation.referencesBramley, R., & Strach, S. J. (1983). Electron Paramagnetic Resonance Spectroscopy at Zero Magnetic Field. Chemical Reviews, 83 (1), 49–82.
dc.relation.referencesČerný, V. (1992). Experimental and theoretical reasons for inclusion of fourth −order terms into spin hamiltonian of glasses doped by d5 impurities with 6A1 ground states. Philosophical Magazine B: Physics of Condensed Matter; Statistical Mechanics, Electronic, Optical and Magnetic Properties, 65 (3), 401–420.
dc.relation.referencesCoey, J. M. D. (2009). Magnetism and Magnetic Materials. Cambridge University Press.
dc.relation.referencesÇolak, S., & Artürk, C. (2017). Synthesis and Characterization of Undoped and Doped (Mn,Cu,Co) ZnO Nanoparticles: An EPR study. In A. K. Shukla (Ed.), EMR/ESR/EPR Spectroscopy for Characterization of Nanomaterials. Springer.
dc.relation.referencesJanotti, A., & Van De Walle, C. G. (2007). Native point defects in ZnO. Physical Review B - Condensed Matter and Materials Physics, 76 (16), 165202.
dc.relation.referencesJayakumar, O. D., Salunke, H. G., Kadam, R. M., Mohapatra, M., Yaswant, G., & Kulshreshtha, S. K. (2006). Magnetism in Mn-doped ZnO nanoparticles prepared by a co-precipitation method. Nanotechnology, 17 (5), 1278–1285.
dc.relation.referencesKarunakaran, C., Balamurugan, M., & Karthikeyan, M. (2018). Applications of Electron Paramagnetic Resonance. Elsevier Inc.
dc.relation.referencesLimaye, M. V., Singh, S. B., Das, R., Poddar, P., & Kulkarni, S. K. (2011). Room temperature ferromagnetism in undoped and Fe doped ZnO nanorods: Microwave-assisted synthesis. Journal of Solid State Chemistry, 184 (2), 391–400.
dc.relation.referencesLorenz, M., Böttcher, R., Friedländer, S., Pöppl, A., Spemann, D., & Grundmann, M. (2014). Local lattice distortions in oxygen deficient Mn−doped ZnO thin films, probed by electron paramagnetic resonance. Journal of Materials Chemistry C, 2 (25), 4947–4956.
dc.relation.referencesMabbs, F. E., & Collison, D. (Eds.). (1992). Electron Paramagnetic Resonance of d Transition Metal Compounds. Elsevier.
dc.relation.referencesMcCluskey, M. D. (2018). Defects in ZnO. In J. Stehr, I. Buyanova, & W. Chen (Eds.), Defects in advanced electronic materials and novel low dimensional structures. Elsevier Ltd.
dc.relation.referencesMisra, S. K. (2006). New Methods of Simulation of Mn(II) EPR Spectra: Single Crystal, Polycrystalline and Amorphous (Biological) Materials. In C. J. Bender & L. J. Berliner (Eds.), Biological Magnetic Resonance. Computational and Instrumental Methods in EPR. Springer.
dc.relation.referencesMisra, S. K., Andronenko, S. I., Thurber, A., Punnoose, A., & Nalepa, A. (2014). An X− and Q−band Fe3+ EPR study of nanoparticles of magnetic semiconductor Zn1−xFexO. Journal of Magnetism and Magnetic Materials, 363, 82–87.
dc.relation.referencesPoole, C. P. (1983). Electron Spin Resonance. A Comprehensive Treatise on Experimental Techniques (2nd). John Wiley & Sons.
dc.relation.referencesPoole, C. P., & Farach, H. A. (1987). Theory of magnetic resonance (2nd ed.). John Wiley & Sons, Inc.
dc.relation.referencesPopa, A., Toloman, D., Raita, O., Biris, A. R., Borodi, G., Mustafa, T., Watanabe, F., Biris, A. S., Darabont, A., & Giurgiu, L. M. (2011). Co doped ZnO semiconductor materials: Structural, morphological and magnetic properties. Central European Journal of Physics, 9 (6), 1446– 1451.
dc.relation.referencesRaita, O., Popa, A., Toloman, D., Stan, M., Darabont, A., & Giurgiu, L. (2011). Co2+ ions in ZnO powders as seen by magnetic resonance. Applied Magnetic Resonance, 40 (2), 245–250.
dc.relation.referencesReddy, A. J., Kokila, M. K., Nagabhushana, H., Sharma, S. C., Rao, J. L., Shivakumara, C., Nagabhushana, B. M., & Chakradhar, R. P. (2012). Structural, EPR, photo and thermoluminescence properties of ZnO:Fe nanoparticles. Materials Chemistry and Physics, 133 (2-3), 876–883.
dc.relation.referencesSahu, I. D., McCarrick, R. M., & Lorigan, G. A. (2013). Use of electron paramagnetic resonance to solve biochemical problems. Biochemistry, 52 (35), 5967–5984.
dc.relation.referencesShukla, A. K. (Ed.). (2017). EMR/ESR/EPR Spectroscopy for Characterization of Nanomaterials. Springer.
dc.relation.referencesStehr, J. E., Meyer, B. K., & Hofmann, D. M. (2010). Magnetic Resonance of Impurities, Intrinsic Defects and Dopants in ZnO. Applied Magnetic Resonance, 39 (1), 137–150.
dc.relation.referencesStoll, S., & Schweiger, A. (2006). EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. Journal of Magnetic Resonance, 178, 42–55.
dc.relation.referencesSudhakar Reddy, B., Gopal, N. O., Narasimhulu, K. V., Linga Raju, C., Rao, J. L., & Reddy, B. C. (2005). EPR and optical absorption spectral studies on Mn2+ ions doped in potassium thiourea bromide single crystals. Journal of Molecular Structure, 751 (1-3), 161–167.
dc.relation.referencesTelser, J. (2018). EPR Interactions - Zero-field Splittings. In D. Goldfarb & S. Stoll (Eds.), Epr spectroscopy: Fundamentals and methods. John Wiley & Sons, Ltd.
dc.relation.referencesTelser, J. (2006). A perspective on applications of ligand-field analysis: Inspiration from electron paramagnetic resonance spectroscopy of coordination complexes of transition metal ions. Journal of the Brazilian Chemical Society, 17 (8), 1501–1515.
dc.relation.referencesToloman, D., Mesaros, A., Popa, A., Raita, O., Silipas, T. D., Vasile, B. S., Pana, O., & Giurgiu, L. M. (2013). Evidence by EPR of ferromagnetic phase in Mn-doped ZnO nanoparticles annealed at different temperatures. Journal of Alloys and Compounds, 551, 502–507.
dc.relation.referencesVlasenko, L. S. (2010). Magnetic Resonance Studies of Intrinsic Defects in ZnO: Oxygen Vacancy. Applied Magnetic Resonance, 39 (1), 103–111.
dc.relation.referencesWeil, J. A., & Bolton, J. R. (2007). Electron Paramagnetic Resonance. Elementary Theory and Practical Applications (2nd). John Wiley &; Sons, Inc.
dc.relation.referencesWertz, J. E., & Bolton, J. R. (1986). Electron Spin Resonance. Elementary Theory and Practical Applications. Chapman and Hall.
dc.relation.referencesZhou, D., & Kittilstved, K. R. (2015). Control over Fe3+ speciation in colloidal ZnO nanocrystals. Journal of Materials Chemistry C, 3 (17), 4352–4358.
dc.relation.referencesChiu, Y. H., Chang, T. F. M., Chen, C. Y., Sone, M., & Hsu, Y. J. (2019). Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts. Catalysts, 9 (5), 430.
dc.relation.referencesChorkendorff, I., & Niemantsverdriet, J. W. (2003). Concepts of Modern Catalysis and Kinetics (Vol. 2005). Wiley-VCH.
dc.relation.referencesDi Mauro, A., Fragalà, M. E., Privitera, V., & Impellizzeri, G. (2017). ZnO for application in photocatalysis: From thin films to nanostructures. Materials Science in Semiconductor Processing, 69, 44–51.
dc.relation.referencesElaziouti, A., Laouedj, N., & Ahmed, B. (2011). ZnO-Assisted Photocatalytic Degradation of Congo Red and Benzopurpurine 4B in Aqueous Solution. Journal of Chemical Engineering & Process Technology, 2, 2–10.
dc.relation.referencesErdemoğlu, S., Aksu, S. K., Sayilkan, F., Izgi, B., Asiltürk, M., Sayilkan, H., Frimmel, F., & Güçer, Å. (2008). Photocatalytic degradation of Congo Red by hydrothermally synthesized nanocrystalline TiO2 and identification of degradation products by LC − MS. Journal of Hazardous Materials, 155 (3), 469–476.
dc.relation.referencesFox, M. A., & Dulay, M. T. (1993). Heterogeneous Photocatalysis. Chemical Reviews, 93 (1), 341– 357
dc.relation.referencesGaya, U. I. (2014). Heterogeneous Photocatalysis Using Inorganic Semiconductor Solids. Springer.
dc.relation.referencesGüy, N., & Özacar, M. (2016). The influence of noble metals on photocatalytic activity of ZnO for Congo red degradation. International Journal of Hydrogen Energy, 41 (44), 20100–20112.
dc.relation.referencesHerrmann, J. M., Guillard, C., & Pichat, P. (1993). Heterogeneous photocatalysis : an emerging technology for water treatment. Catalysis Today, 17 (1-2), 7–20.
dc.relation.referencesHunger, K. (Ed.). (2003). Industrial Dyes. Chemistry, Properties, Applications. Wiley-VCH.
dc.relation.referencesLachheb, H., Puzenat, E., Houas, A., Ksibi, M., Elaloui, E., Guillard, C., & Herrmann, J. M. (2002). Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Applied Catalysis B: Environmental, 39 (1), 75–90.
dc.relation.referencesLam, S. M., Sin, J. C., Abdullah, A. Z., & Mohamed, A. R. (2012). Degradation of wastewaters containing organic dyes photocatalysed by zinc oxide: A review. Desalination and Water Treatment, 41 (1-3), 131–169
dc.relation.referencesLeskovac, V. (2003). Comprehensive Enzyme Kinetics. Kluwer Academic Publishers.
dc.relation.referencesLi, Y., Li, X., Li, J., & Yin, J. (2006). Photocatalytic degradation of methyl orange by TiO2−coated activated carbon and kinetic study. Water Research, 40 (6), 1119–1126.
dc.relation.referencesMa, H., Wang, M., Yang, R., Wang, W., Zhao, J., Shen, Z., & Yao, S. (2007). Radiation degradation of Congo Red in aqueous solution. Chemosphere, 68 (6), 1098–1104.
dc.relation.referencesNadjia, L., Abdelkader, E., & Ahmed, B. (2011). Photodegradation study of Congo Red in Aqueous Solution using ZnO/UV-A: Effect of pH And Band Gap of other Semiconductor Groups. Journal of Chemical Engineering & Process Technology, 2 (2), 1–7.
dc.relation.referencesOhtani, B. (2010). Photocatalysis A to Z-What we know and what we do not know in a scientific sense. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 11 (4), 157– 178.
dc.relation.referencesRamirez-Canon, A., Medina-Llamas, M., Vezzoli, M., & Mattia, D. (2018). Multiscale design of ZnO nanostructured photocatalysts. Physical Chemistry Chemical Physics, 20 (9), 6648–6656.
dc.relation.referencesSamadi, M., Zirak, M., Naseri, A., Khorashadizade, E., & Moshfegh, A. Z. (2015). Recent progress on doped ZnO nanostructures for visible − light photocatalysis. Thin Solid Films, 605, 2–19.
dc.relation.referencesSaravanan, R., Gupta, V. K., Narayanan, V., & Stephen, A. (2013). Comparative study on photocatalytic activity of ZnO prepared by different methods. Journal of Molecular Liquids, 181, 133–141.
dc.relation.referencesThomas, M., Naikoo, G. A., Sheikh, M. U. D., Bano, M., & Khan, F. (2016). Effective photocatalytic degradation of Congo red dye using alginate/carboxymethyl cellulose/TiO2 nanocomposite hydrogel under direct sunlight irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 327, 33–43.
dc.relation.referencesTürkyılmaz, Ş. Ş, Güy, N., & Özacar, M. (2017). Photocatalytic efficiencies of Ni, Mn, Fe and Ag doped ZnO nanostructures synthesized by hydrothermal method: The synergistic/antagonistic effect between ZnO and metals. Journal of Photochemistry and Photobiology A: Chemistry, 341, 39–50.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembEspectroscopia atómica
dc.subject.lembAtomic spectroscopy
dc.subject.lembEspectroscopia de rayos x
dc.subject.lembX-ray spectroscopy
dc.subject.proposalAtomic absorption spectroscopy (AAS)
dc.subject.proposalChemical kinetics
dc.subject.proposalCongo red (CR)
dc.subject.proposalElectron paramagnetic resonance (EPR)
dc.subject.proposalFourier transform infrared spectroscopy (FTIR)
dc.subject.proposalMetal-doped ZnO
dc.subject.proposalNanoparticles
dc.subject.proposalPhotocatalysis
dc.subject.proposalPhotoluminiscence spectroscopy (PLS)
dc.subject.proposalRaman spectroscopy
dc.subject.proposalScanning electron microscopy (SEM)
dc.subject.proposalSol-gel method
dc.subject.proposalUltraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS)
dc.subject.proposalWurtzite
dc.subject.proposalX-ray diffraction (XRD)
dc.subject.proposalX-ray fluorescence (XRF)
dc.subject.proposalZnO
dc.title.translatedZinc Oxide Nanoparticles Doped with Co, Cr, Fe, Mn and Ni. Properties and Application in Photocatalytic Degradation of Polluting Organic Compounds
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentDataset
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleConvocatoria Colciencias (ahora MinCiencias) No. 647 de 2014
oaire.awardtitleNanopartículas De Óxido De Zinc Dopadas Con Co, Cr, Fe, Mn y Ni. Propiedades Y Aplicación En La Degradación Fotocatalítica De Compuestos Orgánicos Contaminantes
oaire.fundernameDepartamento Administrativo de Ciencia y Tecnología e Innovación
oaire.fundernameDirección de Invesitgación y Extensión Sede Bogotá (DIEB) - Universidad Nacional de Colombia
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dc.contributor.orcidAcosta Humánez, Manuel Fernando [0000-0003-0610-4831]
dc.contributor.cvlacAcosta Humánez, Manuel Fernando [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001117203]
dc.contributor.scopusAcosta Humánez, Manuel Fernando [55509431400]
dc.contributor.researchgateAcosta Humánez, Manuel Fernando [https://www.researchgate.net/profile/Fernando-Acosta-Humanez]
dc.contributor.googlescholarAcosta Humánez, Manuel Fernando [https://scholar.google.com/citations?user=592jpq4AAAAJ&hl=en]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito