Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorGarzón Alvarado, Diego Alexander
dc.contributor.authorCastañeda Parra, Fahir Dario
dc.date.accessioned2023-04-12T16:26:12Z
dc.date.available2023-04-12T16:26:12Z
dc.date.issued2023-03-31
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83700
dc.descriptionilustraciones, fotografías a color
dc.descriptionilustraciones, fotografías principalmente color
dc.description.abstractBone tissue engineering focuses, in addition to other things, on the understanding of bone structures to promote their formation with scaffolds. The manufacturing processes of scaffolds with variable density are complicated for traditional manufacturing methods, where localized holes are drilled in structures to mimic bone architecture. In recent years, tissue engineering has benefited from advances in the development of additive manufacturing, which allows the creation of complex geometries such as scaffolds. To explore this method, the use of image-based design is proposed. In this thesis, a scaffold with variable internal density is developed, which can be fabricated by additive manufacturing by controlling the external and internal geometry of the structure, porosity, and pore size from diagnostic images. (Texto tomado de la fuente)
dc.description.abstractLa ingeniería de tejidos ósea se encarga, entre otros, de la comprensión de las estructuras de los huesos para tratar de promover su formación con scaffolds. Los procesos de fabricación de scaffolds con densidad variable se dificultan para métodos tradicionales de manufactura en donde se realizan agujeros localizados en estructuras con el objetivo de lograr imitar la arquitectura del hueso. En los últimos años, la Ingeniería de Tejidos se ha visto beneficiada de los avances que se han realizado en el desarrollo de la manufactura aditiva, la cual permite la creación de geometrías complejas como las de los scaffolds. Para incursionar en este método, se propone el uso del diseño basado en imágenes diagnosticas. En esta tesis se desarrolla un scaffold con densidad interna variable, que puede ser llevado a su fabricación por manufactura aditiva controlando geometría externa e interna de la estructura, porosidad y tamaño de poro a partir de imágenes diagnosticas.
dc.format.extentx, 64 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc610 - Medicina y salud
dc.subject.ddc600 - Tecnología (Ciencias aplicadas)
dc.titleDesign of scaffolds for bone tissue regeneration through diagnostic imaging and generative design
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos
dc.contributor.researchgroupGnum Grupo de Modelado y Métodos Numericos en Ingeniería
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesos
dc.description.researchareaIngeniería de tejidos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá,Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesM. A. Velasco, C. A. Narvaez-Tovar, and D. A. Garzon-Alvarado, “Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering.,” Biomed Res Int, vol. 2015, p. 729076, 2015, doi: 10.1155/2015/729076.
dc.relation.referencesJ. A. Buckwalter, M. J. Glimcher, R. R. Cooper, and R. Recker, “Bone biology. I: Structure, blood supply, cells, matrix, and mineralization.,” Instr Course Lect, vol. 45, pp. 371–86, 1996, doi: 10.3390/jfb1010022.
dc.relation.referencesJ. F. A. Barreto, “Regeneración ósea a través de la ingeniería de tejidos: una introducción Osseous Regeneration through Tissue Engineering :,” Redalyc.org, p. 13, 2009, [Online]. Available: http://www.redalyc.org/pdf/1792/179214945008.pdf
dc.relation.referencesK. a Hing, “Bone repair in the twenty-first century: biology, chemistry or engineering?,” Philos Trans A Math Phys Eng Sci, vol. 362, no. 1825, pp. 2821–50, 2004, doi: 10.1098/rsta.2004.1466.
dc.relation.referencesInternational Osteoporosis Foundation, “Osteoporosis en Colombia,” International Osteoporosis Foundation, p. 3, 2012, [Online]. Available: https://www.iofbonehealth.org/sites/default/files/media/PDFs/Regional Audits/2012- Latin_America_Audit-Colombia-ES_0_0.pdf
dc.relation.referencesElespectador.com, “En Colombia se realizan 10.000 reemplazos de cadera o rodilla al año - ELESPECTADOR.COM,” El Espectador, Bogotá, 2009. Accessed: Nov. 25, 2019. [Online]. Available: https://www.elespectador.com/noticias/salud/articulo114216- colombia-se-realizan-10000-reemplazos-de-cadera-o-rodilla-al-ano
dc.relation.referencesN. Ospina Vélez, “Reemplazo articular aumenta en personas jóvenes,” El Colombiano, 2012. Accessed: Nov. 25, 2019. [Online]. Available: https://www.elcolombiano.com/historico/reemplazo_articular_aumenta_en_personas_ jovenes-EBEC_177333
dc.relation.referencesD. Z. Amaro, “Regeneración de tejido : Una solución para la deficiencia ósea,” 2012.
dc.relation.referencesL. J. Bonassar and C. a Vacanti, “Tissue engineering: the first decade and beyond.,” J Cell Biochem Suppl, vol. 30–31, no. September, pp. 297–303, 1998, doi: 10.1002/(SICI)1097- 4644(1998)72.
dc.relation.referencesW. M. Saltzman and T. R. Kyriakides, Cell interactions with polymers_Lanza19.pdf, Third Edit. Elsevier Inc., 2014. doi: 10.1016/B978-0-12-370615-7.50024-X
dc.relation.referencesL. J. Gibson and M. F. Ashby, Cellular Solids, vol. 22, no. 4. Cambridge: Cambridge University Press, 1997. doi: 10.1017/CBO9781139878326.
dc.relation.referencesM. Scheffler and P. Colombo, Cellular Ceramics. Wiley, 2005. doi: 10.1002/3527606696.
dc.relation.referencesL. J. Gibson, M. F. Ashby, G. N. Karam, U. Wegst, and H. R. Shercliff, “The Mechanical Properties of Natural Materials. II. Microstructures for Mechanical Efficiency,” Proceedings: Mathematical and Physical Sciences, vol. 450. Royal Society, pp. 141–162. doi: 10.2307/52663.
dc.relation.referencesJ. G. Skedros and S. L. Baucom, “Mathematical analysis of trabecular ‘trajectories’ in apparent trajectorial structures: the unfortunate historical emphasis on the human proximal femur,” J Theor Biol, vol. 244, no. 1, pp. 15–45, Jan. 2007, doi: 10.1016/j.jtbi.2006.06.029.
dc.relation.referencesC. H. Turner, “On Wolff’s law of trabecular architecture,” J Biomech, vol. 25, no. 1, pp. 1– 9, Jan. 1992, doi: 10.1016/0021-9290(92)90240-2.
dc.relation.referencesL. Esteban-Tejeda et al., “Bone tissue scaffolds based on antimicrobial SiO2-Na2OAl2O3-CaO-B2O3 glass,” J Non Cryst Solids, vol. 432, pp. 73–80, 2016, doi: 10.1016/j.jnoncrysol.2015.05.040.
dc.relation.referencesQ. Fu, Bioactive Glass Scaffolds for Bone Tissue Engineering. Elsevier Ltd., 2019. doi: 10.1016/b978-0-08-102196-5.00015-x.
dc.relation.referencesY. Kim, J. Y. Lim, G. H. Yang, J.-H. Seo, H.-S. Ryu, and G. Kim, “3D-printed PCL/bioglass (BGS-7) composite scaffolds with high toughness and cell-responses for bone tissue regeneration,” Journal of Industrial and Engineering Chemistry, 2019, doi: 10.1016/j.jiec.2019.06.027.
dc.relation.referencesZ. Khurshid et al., Novel Techniques of Scaffold Fabrication for Bioactive Glasses. Elsevier Ltd., 2019. doi: 10.1016/b978-0-08-102196-5.00018-5.
dc.relation.referencesA. M. Deliormanli, “Size-dependent degradation and bioactivity of borate bioactive glass,” Ceram Int, vol. 39, no. 7, pp. 8087–8095, 2013, doi: 10.1016/j.ceramint.2013.03.081.
dc.relation.referencesJ. Wieding, A. Wolf, and R. Bader, “Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone,” J Mech Behav Biomed Mater, vol. 37, pp. 56–68, 2014, doi: 10.1016/j.jmbbm.2014.05.002.
dc.relation.referencesD. W. Rosen, S. Johnston, M. Reed, and H. Wang, “Design of General Lattice Structures for Lightweight and Compliance Applications,” Rapid Manufacturing Conference, no. March, pp. 1–14, 2006.
dc.relation.referencesS. M. Giannitelli, D. Accoto, M. Trombetta, and A. Rainer, “Current trends in the design of scaffolds for computer-aided tissue engineering,” Acta Biomater, vol. 10, no. 2, pp. 580–594, 2014, doi: 10.1016/j.actbio.2013.10.024.
dc.relation.referencesM. A. Wettergreen, B. S. Bucklen, B. Starly, E. Yuksel, W. Sun, and M. A. K. Liebschner, “Creation of a unit block library of architectures for use in assembled scaffold engineering,” Computer-Aided Design, vol. 37, no. 11, pp. 1141–1149, Sep. 2005, doi: DOI: 10.1016/j.cad.2005.02.005.
dc.relation.referencesC. K. Chua, K. F. Leong, C. M. Cheah, and S. W. Chua, “Development of a Tissue Engineering Scaffold Structure Library for Rapid Prototyping . Part 2 : Parametric Library and Assembly Program,” Advanced manufacturing technology, vol. 21, pp. 302–312, 2003.
dc.relation.referencesY. Wang, “Periodic surface modeling for computer aided nano design,” CAD Computer Aided Design, vol. 39, no. 3, pp. 179–189, Mar. 2007, doi: 10.1016/j.cad.2006.09.005.
dc.relation.referencesI. Maskery et al., “Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing,” Polymer (Guildf), vol. 152, pp. 62–71, Sep. 2018, doi: 10.1016/J.POLYMER.2017.11.049.
dc.relation.referencesO. Sigmund and K. Maute, “Topology optimization approaches,” Structural and Multidisciplinary Optimization, vol. 48, no. 6, pp. 1031–1055, Dec. 2013, doi: 10.1007/s00158-013-0978-6.
dc.relation.referencesJ. Wang and R. Rai, “Classification of Bio-Inspired Periodic Cubic Cellular Materials Based on Compressive Deformation Behaviors of 3D Printed Parts and FE Simulations,” in Volume 7: 28th International Conference on Design Theory and Methodology, ASME, Aug. 2016, p. V007T06A003. doi: 10.1115/DETC2016-59729.
dc.relation.referencesS. J. Hollister, R. A. Levy, T.-M. Chu, J. W. Halloran, and S. E. Feinberg, “An image-based approach for designing and manufacturing craniofacial scaffolds,” Int J Oral Maxillofac Surg, vol. 29, no. 1, pp. 67–71, 2000, doi: 10.1034/j.1399-0020.2000.290115.x.
dc.relation.referencesM. Fantini and M. Curto, “Interactive design and manufacturing of a Voronoi-based biomimetic bone scaffold for morphological characterization,” International Journal on Interactive Design and Manufacturing (IJIDeM), vol. 12, no. 2, pp. 585–596, May 2018, doi: 10.1007/s12008-017-0416-x.
dc.relation.referencesS. Krish and Sivam, “A practical generative design method,” Computer-Aided Design, vol. 43, no. 1, pp. 88–100, Jan. 2011, doi: 10.1016/j.cad.2010.09.009.
dc.relation.referencesG. Marchiori et al., “Design of a novel procedure for the optimization of the mechanical performances of 3D printed scaffolds for bone tissue engineering combining CAD, Taguchi method and FEA,” Med Eng Phys, vol. 69, pp. 92–99, 2019, doi: 10.1016/j.medengphy.2019.04.009.
dc.relation.referencesA. Di Luca et al., “Gradients in pore size enhance the osteogenic differentiation of human mesenchymal stromal cells in three-dimensional scaffolds,” Sci Rep, vol. 6, no. February, pp. 1–13, 2016, doi: 10.1038/srep22898.
dc.relation.referencesG. Staffa et al., “Custom made bioceramic implants in complex and large cranial reconstruction: A two-year follow-up,” Journal of Cranio-Maxillofacial Surgery, vol. 40, no. 3, 2012, doi: 10.1016/j.jcms.2011.04.014.
dc.relation.referencesA. R. Smith, “Alpha and the history of digital compositing,” Microsoft Tech Memo 7, vol. 24, pp. 1–10, 1995.
dc.relation.referencesD.-S. Kim and K. Sugihara, “New trends in Voronoi diagrams for CAD/CAM/CAE,” Computer-Aided Design, vol. 41, no. 5, pp. 325–326, May 2009, doi: 10.1016/J.CAD.2008.10.001.
dc.relation.referencesS. Fortune, “Voronoi diagrams and delaunay triangulations,” in Handbook of Discrete and Computational Geometry, Third Edition, 2017, pp. 705–721. doi: 10.1201/9781315119601.
dc.relation.referencesFred A. Mettler.r., Essentials of Radiology, vol. 1. 2005. doi: 10.1136/bmj.1.4647.229-a.
dc.relation.referencesS. Bose, M. Roy, and A. Bandyopadhyay, “Recent advances in bone tissue engineering scaffolds,” Trends Biotechnol, vol. 30, no. 10, pp. 546–554, Oct. 2012, doi: 10.1016/j.tibtech.2012.07.005.
dc.relation.referencesJ. P. Bilezikian, L. G. Raisz, and T. J. Martin, Principles of Bone Biology 3, vol. 1, no. 9. Academic Press, 2008. doi: 10.3174/ajnr.A1712.
dc.relation.referencesD. Alfredo and Q. Rodríguez, “MODELO COMPUTACIONAL DE REMODELAMIENTO ÓSEO MEDIANTE ESTRUCTURAS DISCRETAS,” Universidad Nacional de Colombia, Bogotá, 2021.
dc.relation.referencesM. P. Bendsøe and O. Sigmund, Topology Optimization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. doi: 10.1007/978-3-662-05086-6.
dc.relation.referencesM. P. Bendsøe, “Optimal shape design as a material distribution problem,” Structural Optimization, vol. 1, no. 4, pp. 193–202, 1989, doi: 10.1007/BF01650949.
dc.relation.referencesM. Yliperttula, B. G. Chung, A. Navaladi, A. Manbachi, and A. Urtti, “High-throughput screening of cell responses to biomaterials,” European Journal of Pharmaceutical Sciences, vol. 35, no. 3. pp. 151–160, Oct. 02, 2008. doi: 10.1016/j.ejps.2008.04.012.
dc.relation.referencesR. Dimitriou, E. Jones, D. McGonagle, and P. v Giannoudis, “Bone regeneration: current concepts and future directions,” BMC Med, vol. 9, no. 1, p. 66, Dec. 2011, doi: 10.1186/1741-7015-9-66.
dc.relation.referencesV. Karageorgiou and D. Kaplan, “Porosity of 3D biomaterial scaffolds and osteogenesis,” Biomaterials, vol. 26, no. 27, pp. 5474–5491, 2005, doi: 10.1016/j.biomaterials.2005.02.002.
dc.relation.referencesS. Hofmann et al., “Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds,” Biomaterials, vol. 28, no. 6, pp. 1152– 1162, Feb. 2007, doi: 10.1016/j.biomaterials.2006.10.019.
dc.relation.referencesA. C. Jones, C. H. Arns, D. W. Hutmacher, B. K. Milthorpe, A. P. Sheppard, and M. A. Knackstedt, “The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth,” Biomaterials, vol. 30, no. 7, pp. 1440–1451, Mar. 2009, doi: 10.1016/j.biomaterials.2008.10.056.
dc.relation.referencesY. Wang, U. J. Kim, D. J. Blasioli, H. J. Kim, and D. L. Kaplan, “In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells,” Biomaterials, vol. 26, no. 34, pp. 7082–7094, Dec. 2005, doi: 10.1016/j.biomaterials.2005.05.022.
dc.relation.referencesL. Meinel et al., “Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds,” J Biomed Mater Res A, vol. 71, no. 1, pp. 25–34, Oct. 2004, doi: 10.1002/jbm.a.30117.
dc.relation.referencesL. Meinel et al., “Silk implants for the healing of critical size bone defects,” Bone, vol. 37, no. 5, pp. 688–698, 2005, doi: 10.1016/j.bone.2005.06.010.
dc.relation.referencesL. Meinel et al., “Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds,” Biotechnol Bioeng, vol. 88, no. 3, pp. 379–391, Nov. 2004, doi: 10.1002/bit.20252.
dc.relation.referencesL. Uebersax et al., “Effect of Scaffold Design on Bone Morphology In Vitro.”
dc.relation.referencesX. Liu and P. X. Ma, “Polymeric Scaffolds for Bone Tissue Engineering,” 2004.
dc.relation.referencesW. L. Murphy, R. G. Dennis, J. L. Kileny, and D. J. Mooney, “Salt Fusion: An Approach to Improve Pore Interconnectivity within Tissue Engineering Scaffolds,” 2002.
dc.relation.referencesK. J. L. Burg, S. Porter, and J. F. Kellam, “Biomaterial developments for bone tissue engineering,” Biomaterials, vol. 21, no. 23, pp. 2347–2359, 2000, doi: 10.1016/S0142- 9612(00)00102-2.
dc.relation.referencesD. W. Hutmacher, “Sca!olds in tissue engineering bone and cartilage,” 2000.
dc.relation.referencesJ. Raghunath, J. Rollo, K. M. Sales, P. E. Butler, and A. M. Seifalian, “Biomaterials and scaffold design: key to tissue-engineering cartilage,” Biotechnol Appl Biochem, vol. 46, no. 2, p. 73, Feb. 2007, doi: 10.1042/ba20060134.
dc.relation.referencesK. Rezwan, Q. Z. Chen, J. J. Blaker, and A. R. Boccaccini, “Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering,” Biomaterials, vol. 27, no. 18. pp. 3413–3431, Jun. 2006. doi: 10.1016/j.biomaterials.2006.01.039.
dc.relation.referencesY. Wang, H. J. Kim, G. Vunjak-Novakovic, and D. L. Kaplan, “Stem cell-based tissue engineering with silk biomaterials,” Biomaterials, vol. 27, no. 36. pp. 6064–6082, Dec. 2006. doi: 10.1016/j.biomaterials.2006.07.008.
dc.relation.referencesC. Vepari and D. L. Kaplan, “Silk as a biomaterial,” Progress in Polymer Science (Oxford), vol. 32, no. 8–9. pp. 991–1007, Aug. 2007. doi: 10.1016/j.progpolymsci.2007.05.013.
dc.relation.referencesY. Wang et al., “In vivo degradation of three-dimensional silk fibroin scaffolds,” Biomaterials, vol. 29, no. 24–25, pp. 3415–3428, Aug. 2008, doi: 10.1016/j.biomaterials.2008.05.002.
dc.relation.referencesL. S. Nair and C. T. Laurencin, “Biodegradable polymers as biomaterials,” Progress in Polymer Science (Oxford), vol. 32, no. 8–9. pp. 762–798, Aug. 2007. doi: 10.1016/j.progpolymsci.2007.05.017.
dc.relation.referencesE. Dawson, G. Mapili, K. Erickson, S. Taqvi, and K. Roy, “Biomaterials for stem cell differentiation,” Advanced Drug Delivery Reviews, vol. 60, no. 2. pp. 215–228, Jan. 14, 2008. doi: 10.1016/j.addr.2007.08.037.
dc.relation.referencesC. A. Gersbach, J. E. Phillips, and A. J. García, “Genetic engineering for skeletal regenerative medicine,” Annual Review of Biomedical Engineering, vol. 9. pp. 87–119, 2007. doi: 10.1146/annurev.bioeng.9.060906.151949.
dc.relation.referencesS. Cartmell, “Controlled release scaffolds for bone tissue engineering,” J Pharm Sci, vol. 98, no. 2, pp. 430–441, 2009, doi: 10.1002/jps.21431.
dc.relation.referencesF. Ben-Hatira, K. Saidane, and A. Mrabet, “A finite element modeling of the human lumbar unit including the spinal cord,” J Biomed Sci Eng, vol. 05, no. 03, pp. 146–152, 2012, doi: 10.4236/jbise.2012.53019.
dc.relation.referencesF. A. Pintar N Yoganandan M Pesigan J Reinartz A Sances and J. J. F Cusick, “Cervical Vertebral Strain Measurements Under Axial and Eccentric Loading,” 1995. [Online]. Available: http://biomechanical.asmedigitalcollection.asme.org/
dc.relation.referencesM. P. Lutolf and J. A. Hubbell, “Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering,” Nat Biotechnol, vol. 23, no. 1, pp. 47–55, 2005.
dc.relation.referencesB. D. Boyan, T. W. Hummert, D. D. Dean, and Z. Schwartz, “Role of material surfaces in regulating bone and cartilage cell response,” Biomaterials, vol. 17, no. 2, pp. 137–146, 1996.
dc.relation.referencesB. A. C. Harley, H.-D. Kim, M. H. Zaman, I. V Yannas, D. A. Lauffenburger, and L. J. Gibson, “Microarchitecture of three-dimensional scaffolds influences cell migration behavior via junction interactions,” Biophys J, vol. 95, no. 8, p. 4013—4024, 2008, doi: 10.1529/biophysj.107.122598.
dc.relation.referencesS.-W. Choi, Y. Zhang, M. R. Macewan, and Y. Xia, “Neovascularization in biodegradable inverse opal scaffolds with uniform and precisely controlled pore sizes,” Adv Healthc Mater, vol. 2, no. 1, p. 145—154, 2013, doi: 10.1002/adhm.201200106.
dc.relation.referencesS. J. Hollister, “Porous scaffold design for tissue engineering,” vol. 4, no. July, 2005.
dc.relation.referencesL. R. Madden et al., “Proangiogenic scaffolds as functional templates for cardiac tissue engineering,” Proc Natl Acad Sci U S A, vol. 107, no. 34, p. 15211—15216, 2010, doi: 10.1073/pnas.1006442107.
dc.relation.referencesF. Bai et al., “The effect of pore size on tissue ingrowth and neovascularization in porous bioceramics of controlled architecture in vivo Biomed.” Mater, 2011.
dc.relation.referencesA. P. Roberts and E. J. Garboczi, “ELASTIC MODULI OF MODEL RANDOM THREEDIMENSIONAL CLOSED-CELL CELLULAR SOLIDS,” 2001. [Online]. Available: www.elsevier.com/locate/actamat
dc.relation.referencesY. X. Gan, C. Chen, and Y. P. Shen, “Three-dimensional modeling of the mechanical property of linearly elastic open cell foams,” Int J Solids Struct, vol. 42, no. 26, pp. 6628– 6642, Dec. 2005, doi: 10.1016/j.ijsolstr.2005.03.002.
dc.relation.referencesB. Herath et al., “Mechanical and geometrical study of 3D printed Voronoi scaffold design for large bone defects,” Mater Des, vol. 212, p. 110224, 2021, doi: 10.1016/j.matdes.2021.110224.
dc.relation.referencesS. Gómez, M. D. Vlad, J. López, and E. Fernández, “Design and properties of 3D scaffolds for bone tissue engineering,” Acta Biomater, vol. 42, no. June, pp. 341–350, 2016, doi: 10.1016/j.actbio.2016.06.032.
dc.relation.referencesV. Karageorgiou and D. Kaplan, “Porosity of 3D biomaterial scaffolds and osteogenesis,” Biomaterials, vol. 26, no. 27. Elsevier BV, pp. 5474–5491, 2005. doi: 10.1016/j.biomaterials.2005.02.002.
dc.relation.referencesC. K. Chua, K. F. Leong, C. M. Cheah, and S. W. Chua, “Development of a Tissue Engineering Scaffold Structure Library for Rapid Prototyping . Part 2 : Parametric Library and Assembly Program,” Advanced manufacturing technology, vol. 21, pp. 302–312, 2003.
dc.relation.referencesN. Chantarapanich, P. Puttawibul, S. Sucharitpwatskul, P. Jeamwatthanachai, S. Inglam, and K. Sitthiseripratip, “Scaffold Library for Tissue Engineering : A Geometric Evaluation,” vol. 2012, 2012, doi: 10.1155/2012/407805.
dc.relation.referencesM. A. Wettergreen, B. S. Bucklen, B. Starly, E. Yuksel, W. Sun, and M. A. K. Liebschner, “Creation of a unit block library of architectures for use in assembled scaffold engineering,” Computer-Aided Design, vol. 37, no. 11, pp. 1141–1149, Sep. 2005, doi: DOI: 10.1016/j.cad.2005.02.005.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsMatriz extracelular
dc.subject.decsExtracellular Matrix
dc.subject.decsIngeniería de tejidos
dc.subject.decsTissue Engineering
dc.subject.proposalCellular materials
dc.subject.proposalGenerative design
dc.subject.proposalFinite element method
dc.subject.proposalBone scaffold
dc.subject.proposalMateriales celulares
dc.subject.proposalDiseño generativo
dc.subject.proposalMétodo de elementos finitos
dc.subject.proposalAndamio óseo
dc.title.translatedDiseño de scaffolds para regeneración de tejido óseo mediante imágenes diagnósticas y diseño generativo
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dc.contributor.orcidCastañeda Parra, Fahir Dario [0000-0002-7191-5940]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito