Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorGarcía Navarrete, Oscar Leonardo
dc.contributor.authorVaca Vargas, Sergio Alejandro
dc.date.accessioned2023-04-19T13:43:41Z
dc.date.available2023-04-19T13:43:41Z
dc.date.issued2023-03-03
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83734
dc.descriptionilustraciones, fotografías a color
dc.description.abstractEl presente proyecto de investigación muestra el desarrollo y evaluación de un sistema automatizado para el cultivo de diferentes especies sobre un esquema acuapónico NFT de recirculación simple. Partiendo de una revisión sistemática para la identificación del estado actual de los sistemas acuapónicos automatizados, tecnificados y tradicionales, se obtuvo un panorama de la orientación investigativa además de las variables críticas dentro del sistema y sus rangos óptimos, ratios pez-planta y manejos de caudales para un intercambio adecuado de nutrientes entre los bloques acuícola e hidropónico. Teniendo en cuenta lo anterior y la principal preocupación del Centro de Biotecnología Agropecuaria CBA Mosquera, el levantamiento de datos del sistema para la estandarización de los ciclos productivos y el costo de los equipos, se planteó el diseño y modelamiento de un sistema automatizado que incluyera la medición de pH, oxígeno disuelto, temperatura, turbidez, nivel y flujo en el tanque acuícola, y la activación de válvulas y bombas bajo los modos de control manual y automático, aplicando tecnologías industriales de bajo y mediano costo. Posteriormente se llevó a cabo la evaluación comparativa del rendimiento de biomasa de Lechuga crespa (Lactuca sativa) cultivada en este medio. Como resultado se encontró que el rendimiento de biomasa fue mayor en un 52,82% en comparación con la siembra tradicional en suelo, además se establecieron estadísticas y rangos fiables de las variables medidas permitiendo dar recomendaciones sobre el manejo de oxigenación y recirculación. Cumpliendo con los objetivos planteados y llegando a una solución estandarizada de bajo-medio costo. (Texto tomado de la fuente)
dc.description.abstractThe present study shows the development and evaluation of an automated system for the growing of different species on a simple recirculation NFT aquaponic scheme. Based on a systematic review to identify the current status of automated, technified and traditional aquaponic systems, an overview of the research orientation was obtained, as well as the critical variables related to the system and their optimal ranges, fish-plant ratios and flow management for an adequate exchange of nutrients between the aquaculture and hydroponic blocks. Taking into account the above and the main concern of the Centro de Biotecnología Agropecuaria CBA Mosquera, the system data collection for the standardization of the productive cycles and the equipment costs, it was proposed the design and modeling of an automated system that included the measurement of pH, dissolved oxygen, temperature, turbidity, level and flow in the aquaculture tank, and the activation of valves and pumps under manual and automatic control modes, applying low and medium cost industrial technologies. Subsequently, the comparative evaluation of the biomass yield of Lactuca sativa (Lactuca sativa) grown in this medium was carried out. As a result, it was found that the biomass yield was higher in 52,82% compared to the traditional planting in soil, in addition, statistics and reliable ranges of the measured variables were established, allowing recommendations on the management of oxygenation and recirculation. Fulfilling the objectives set and reaching a standardized low-medium cost solution.
dc.description.sponsorshipServicio Nacional de Aprendizaje SENA
dc.description.sponsorshipUniversidad Nacional de Colombia
dc.format.extentxvii, 126 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::635 - Cultivos hortícolas (Horticultura)
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::636 - Producción animal
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.titleAutomatización, modelamiento y evaluación de un sistema acuapónico NFT para cultivo de Carpa Roja (Cyprinus carpio) y Lechuga Crespa (Lactuca sativa)
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Agrícola
dc.contributor.projectmemberColorado Gomez, Mario Andrés
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería Agrícola
dc.description.researchareaAutomatización y control de sistemas biológicos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá,Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesJ. Van Rijn, “Waste treatment in recirculating aquaculture systems,” Aquac. Eng., 2013, doi: 10.1016/j.aquaeng.2012.11.010.
dc.relation.referencesW. Kloas et al., “A new concept for aquaponic systems to improve sustainability, increase productivity, and reduce environmental impacts,” Aquac. Environ. Interact., 2015, doi: 10.3354/aei00146.
dc.relation.referencesJ. E. Rakocy, “Aquaponics-Integrating Fish and Plant Culture,” in Aquaculture Production Systems, 2012.
dc.relation.referencesC. Maucieri, C. Nicoletto, R. Junge, Z. Schmautz, P. Sambo, and M. Borin, “Hydroponic systems and water management in aquaponics: A review,” Italian Journal of Agronomy. 2018, doi: 10.4081/ija.2017.1012.
dc.relation.referencesS. R. Paudel, “Nitrogen transformation in engineered aquaponics with water celery (Oenanthe javanica) and koi carp (Cyprinus carpio): Effects of plant to fish biomass ratio,” Aquaculture, 2020, doi: 10.1016/j.aquaculture.2020.734971.
dc.relation.referencesA. Endut, A. Jusoh, N. Ali, W. B. Wan Nik, and A. Hassan, “A study on the optimal hydraulic loading rate and plant ratios in recirculation aquaponic system,” Bioresour. Technol., vol. 101, no. 5, pp. 1511–1517, 2010, doi: 10.1016/j.biortech.2009.09.040.
dc.relation.referencesW. A. Lennard and B. V. Leonard, “A comparison of three different hydroponic sub-systems (gravel bed, floating and nutrient film technique) in an Aquaponic test system,” Aquac. Int., 2006, doi: 10.1007/s10499-006-9053-2.
dc.relation.referencesP. M. Cusqui Sandoval and A. J. Oswaldo Israel, “Implementación de un sistema electrónico automatizado para cultivos de invernadero,” 2013.
dc.relation.referencesL. A. López Vargas, “Diseño de un sistema de control de temperatura on/off para aplicaciones en invernadero utilizando energía solar y gas natural,” 2011.
dc.relation.referencesN. B. Iglesias, “Estudio de condiciones térmicas y lumínicas y determinación de alternativas tecnológicas para el ahorro de energía en invernaderos de la Patagonia Norte – Argentina,” 2005.
dc.relation.referencesR. Junge, B. König, M. Villarroel, T. Komives, and M. H. Jijakli, “Strategic points in aquaponics,” Water (Switzerland). 2017, doi: 10.3390/w9030182.
dc.relation.referencesC. Maucieri et al., “Life cycle assessment of a micro aquaponic system for educational purposes built using recovered material,” J. Clean. Prod., 2018, doi: 10.1016/j.jclepro.2017.11.097.
dc.relation.referencesB. König, J. Janker, T. Reinhardt, M. Villarroel, and R. Junge, “Analysis of aquaponics as an emerging technological innovation system,” J. Clean. Prod., 2018, doi: 10.1016/j.jclepro.2018.01.037.
dc.relation.referencesZ. Hu, J. W. Lee, K. Chandran, S. Kim, A. C. Brotto, and S. K. Khanal, “Effect of plant species on nitrogen recovery in aquaponics,” Bioresour. Technol., vol. 188, pp. 92–98, 2015, doi: https://doi.org/10.1016/j.biortech.2015.01.013.
dc.relation.referencesH. W. Palm et al., “Towards commercial aquaponics: a review of systems, designs, scales and nomenclature,” Aquaculture International. 2018, doi: 10.1007/s10499-018-0249-z.
dc.relation.referencesY. Wei, W. Li, D. An, D. Li, Y. Jiao, and Q. Wei, “Equipment and Intelligent Control System in Aquaponics: A Review,” IEEE Access. 2019, doi: 10.1109/ACCESS.2019.2953491.
dc.relation.referencesZ. M. Gichana, D. Liti, H. Waidbacher, W. Zollitsch, S. Drexler, and J. Waikibia, “Waste management in recirculating aquaculture system through bacteria dissimilation and plant assimilation,” Aquaculture International. 2018, doi: 10.1007/s10499-018-0303-x.
dc.relation.referencesR. Ghamkhar, C. Hartleb, F. Wu, and A. Hicks, “Life cycle assessment of a cold weather aquaponic food production system,” J. Clean. Prod., vol. 244, p. 118767, 2020, doi: https://doi.org/10.1016/j.jclepro.2019.118767.
dc.relation.referencesI. Pinheiro et al., “Aquaponic production of Sarcocornia ambigua and Pacific white shrimp in biofloc system at different salinities,” Aquaculture, vol. 519, p. 734918, 2020, doi: https://doi.org/10.1016/j.aquaculture.2019.734918.
dc.relation.referencesZ. Schmautz et al., “Tomato productivity and quality in aquaponics: Comparison of three hydroponic methods,” Water (Switzerland), 2016, doi: 10.3390/w8110533.
dc.relation.referencesJ. Dalsgaard, I. Lund, R. Thorarinsdottir, A. Drengstig, K. Arvonen, and P. B. Pedersen, “Farming different species in RAS in Nordic countries: Current status and future perspectives,” Aquac. Eng., 2013, doi: 10.1016/j.aquaeng.2012.11.008.
dc.relation.referencesJ. Suhl et al., Prospects and challenges of double recirculating aquaponic systems (DRAPS) for intensive plant production, vol. 1227. 2018.
dc.relation.referencesH. R. Roosta and M. Hamidpour, “Effects of foliar application of some macro- and micro-nutrients on tomato plants in aquaponic and hydroponic systems,” Sci. Hortic. (Amsterdam)., vol. 129, no. 3, pp. 396–402, 2011, doi: https://doi.org/10.1016/j.scienta.2011.04.006.
dc.relation.referencesY. Fang et al., “Improving nitrogen utilization efficiency of aquaponics by introducing algal-bacterial consortia,” Bioresour. Technol., 2017, doi: 10.1016/j.biortech.2017.08.116.
dc.relation.referencesB. S. Cerozi and K. Fitzsimmons, “Phosphorus dynamics modeling and mass balance in an aquaponics system,” Agric. Syst., 2017, doi: 10.1016/j.agsy.2017.01.020.
dc.relation.referencesD. Karimanzira, K. J. Keesman, W. Kloas, D. Baganz, and T. Rauschenbach, “Dynamic modeling of the INAPRO aquaponic system,” Aquac. Eng., 2016, doi: 10.1016/j.aquaeng.2016.10.004.
dc.relation.referencesC. Lee and Y. J. Wang, “Development of a cloud-based IoT monitoring system for Fish metabolism and activity in aquaponics,” Aquac. Eng., 2020, doi: 10.1016/j.aquaeng.2020.102067.
dc.relation.referencesT. I. Conference and S. T. Engineering, “Real Time Monitoring of the Environmental parameters of an Aquaponic System Based on Internet of Things,” pp. 943–948, 2017.
dc.relation.referencesA. R. Yanes, P. Martinez, and R. Ahmad, “Towards automated aquaponics: A review on monitoring, IoT, and smart systems,” Journal of Cleaner Production. 2020, doi: 10.1016/j.jclepro.2020.121571.
dc.relation.referencesM. Petticrew, “Petticrew_2001_Myths_Misconceptions,” vol. 322, no. January, 2001.
dc.relation.referencesJ. Mori and R. Smith, “Transmission of waterborne fish and plant pathogens in aquaponics and their control with physical disinfection and filtration: A systematized review,” Aquaculture. 2019, doi: 10.1016/j.aquaculture.2019.02.009.
dc.relation.referencesC. Nicoletto et al., “Extension of Aquaponic Water Use for NFT Baby-Leaf Production: Mizuna and Rocket Salad,” Agronomy, 2018, doi: 10.3390/agronomy8050075.
dc.relation.referencesL. Silva, D. Valdés-Lozano, E. Escalante, and E. Gasca-Leyva, “Dynamic root floating technique: An option to reduce electric power consumption in aquaponic systems,” J. Clean. Prod., vol. 183, pp. 132–142, 2018, doi: 10.1016/j.jclepro.2018.02.086.
dc.relation.referencesK. Velichkova, I. Sirakov, S. Stoyanova, and Y. Staykov, “Cultivation of lettuce (Lactuca sativa L.) and rainbow trout (oncorhynchus mykiss w.) in the aquaponic recirculation system,” J. Cent. Eur. Agric., 2019, doi: 10.5513/JCEA01/20.3.2223.
dc.relation.referencesW. Lennard and J. Ward, “A comparison of plant growth rates between an NFT hydroponic system and an NFT aquaponic system,” Horticulturae, 2019, doi: 10.3390/horticulturae5020027.
dc.relation.referencesR. A. Jordan, E. F. Ribeiro, F. C. de Oliveira, L. O. Geisenhoff, and E. A. S. Martins, “Yield of lettuce grown in hydroponic and aquaponic systems using different substrates,” Rev. Bras. Eng. Agric. e Ambient., 2018, doi: 10.1590/1807-1929/agriambi.v22n8p525-529.
dc.relation.referencesA. S. Oladimeji, S. O. Olufeagba, V. O. Ayuba, S. G. Sololmon, and V. T. Okomoda, “Effects of different growth media on water quality and plant yield in a catfish-pumpkin aquaponics system,” J. King Saud Univ. - Sci., vol. 32, no. 1, pp. 60–66, 2020, doi: 10.1016/j.jksus.2018.02.001.
dc.relation.referencesL. O. Geisenhoff, R. A. Jordan, R. C. Santos, F. C. De Oliveira, and E. P. Gomes, “Effect of different substrates in aquaponic lettuce production associated with intensive tilapia farming with water recirculation systems,” Eng. Agric., 2016, doi: 10.1590/1809-4430-Eng.Agric.v36n2p291-299/2016.
dc.relation.referencesA. C. P. Cani, R. V. de Azevedo, R. N. Pereira, M. A. de Oliveira, M. A. Chaves, and L. G. T. Braga, “Phytodepuration of the effluents in a closed system of fish production,” Rev. Bras. Saude e Prod. Anim., 2013, doi: 10.1590/S1519-99402013000200012.
dc.relation.referencesJ. Suhl et al., “The potential of double recirculating aquaponic systems for intensive tomato production,” Acta Hortic., 2019, doi: 10.17660/ActaHortic.2019.1242.100.
dc.relation.referencesP. Sreejariya, T. Raynaud, L. Dabbadie, and A. Yakupitiyage, “Effect of water recirculation duration and shading on lettuce (Lactuca sativa) growth and leaf nitrate content in a commercial aquaponic system,” Turkish J. Fish. Aquat. Sci., 2016, doi: 10.4194/1303-2712-v16_2_11.
dc.relation.referencesA. P. Shete et al., “Optimization of hydraulic loading rate in aquaponic system with Common carp (Cyprinus carpio) and Mint (Mentha arvensis),” Aquac. Eng., vol. 72–73, pp. 53–57, 2016, doi: https://doi.org/10.1016/j.aquaeng.2016.04.004.
dc.relation.referencesJ. Suhl et al., “Advanced aquaponics: Evaluation of intensive tomato production in aquaponics vs. conventional hydroponics,” Agric. Water Manag., vol. 178, pp. 335–344, 2016, doi: https://doi.org/10.1016/j.agwat.2016.10.013.
dc.relation.referencesDeveloponics, “One-Loop vs Multi-Loop Aquaponics,” 2020. http://www.developonics.com/aquaponics/%0A (accessed Feb. 14, 2020).
dc.relation.referencesH. Monsees, W. Kloas, and S. Wuertz, “Decoupled systems on trial: Eliminating bottlenecks to improve aquaponic processes,” PLoS One, 2017, doi: 10.1371/journal.pone.0183056.
dc.relation.referencesF. S. David, D. C. Proença, D. L. Flickinger, G. W. Bueno, and W. C. Valenti, “Carbon budget in integrated aquaculture systems with Nile tilapia (Oreochromis niloticus) and Amazon river prawn (Macrobrachium amazonicum),” Scopus, 2021, doi: 10.1111/are.15384.
dc.relation.referencesS. Udin, M. Ekram-Ul-Azim, A. Wahab, and M. C. Verdegem, “The potential of mixed culture of genetically improved farmed tilapia (Oreochromis niloticus) and freshwater giant prawn (Macrobrachium rosenbergii) in periphyton-based systems,” Aquac. Res., vol. 37, no. 3, pp. 241–247, 2006, doi: https://doi.org/10.1111/j.1365-2109.2005.01424.x.
dc.relation.referencesC. Maucieri et al., “Effect of stocking density of fish on water quality and growth performance of European Carp and leafy vegetables in a low-tech aquaponic system,” PLoS One, 2019, doi: 10.1371/journal.pone.0217561.
dc.relation.referencesH. T. Nhan, N. T. Tai, P. T. Liem, V. N. Ut, and H. Ako, “Effects of different stocking densities on growth performance of Asian swamp eel Monopterus albus, water quality and plant growth of watercress Nasturtium officinale in an aquaponic recirculating system,” Aquaculture, 2019, doi: 10.1016/j.aquaculture.2018.12.067.
dc.relation.referencesB. Delaide, G. Delhaye, M. Dermience, J. Gott, H. Soyeurt, and M. H. Jijakli, “Plant and fish production performance, nutrient mass balances, energy and water use of the PAFF Box, a small-scale aquaponic system,” Aquac. Eng., 2017, doi: 10.1016/j.aquaeng.2017.06.002.
dc.relation.referencesS. Khalil, “Growth performance, nutrients and microbial dynamic in aquaponics systems as affected by water temperature,” Eur. J. Hortic. Sci., 2018, doi: 10.17660/eJHS.2018/83.6.7.
dc.relation.referencesG. C. Hundley, F. K. S. P. Navarro, O. P. R. Filho, and R. D. Navarro, “Integration of nile tilapia (Oreochromis niloticus L.) production origanum majorana l. and ocimum basilicum L. using aquaponics technology,” Acta Sci. - Technol., 2018, doi: 10.4025/actascitechnol.v40i1.35460.
dc.relation.referencesT. A. Babatunde, K. Ibrahim, B. Abdulkarim, N. H. Wagini, and S. A. Usman, “Co-production and biomass yield of amaranthus (Amaranthus hybridus) and tilapia (Oreochromis niloticus) in gravel-based substrate filter aquaponic,” Int. J. Recycl. Org. Waste Agric., 2019, doi: 10.1007/s40093-019-00297-5.
dc.relation.referencesP. A. Patil, K. Dube, A. K. Verma, N. K. Chadha, J. K. Sundaray, and P. Jayasankar, “Growth performance of goldfish, Carassius auratus and basil, Ocimum basilicum in media bed aquaponics,” Indian Journal of Fisheries. 2019, doi: 10.21077/ijf.2019.66.1.78353-15.
dc.relation.referencesJ. de F. Lima, S. S. Duarte, A. M. Bastos, and T. Carvalho, “Performance of an aquaponics system using constructed semi-dry wetland with lettuce (Lactuca sativa L.) on treating wastewater of culture of amazon river shrimp (macrobrachium amazonicum),” Environ. Sci. Pollut. Res., 2019, doi: 10.1007/s11356-019-04496-5.
dc.relation.referencesR. Calone et al., “Improving water management in European catfish recirculating aquaculture systems through catfish-lettuce aquaponics,” Sci. Total Environ., 2019, doi: 10.1016/j.scitotenv.2019.06.167.
dc.relation.referencesP. Boonrawd, S. Nuchitprasitchai, and Y. Nilsiam, “Aquaponics Systems Using Internet of Things,” 2020, doi: 10.1007/978-3-030-44044-2_5.
dc.relation.referencesM. N. Mamatha and S. N. Namratha, “Design & implementation of indoor farming using automated aquaponics system,” 2017 IEEE Int. Conf. Smart Technol. Manag. Comput. Commun. Control. Energy Mater. ICSTM 2017 - Proc., vol. 2, no. August, pp. 396–401, 2017, doi: 10.1109/ICSTM.2017.8089192.
dc.relation.referencesJ. P. Mandap et al., “Oxygen Monitoring and Control System Using Raspberry Pi as Network Backbone,” TENCON 2018 - 2018 IEEE Reg. 10 Conf., no. October, pp. 1381–1386, 2018.
dc.relation.referencesS. E. Wortman, “Crop physiological response to nutrient solution electrical conductivity and pH in an ebb-and-flow hydroponic system,” Sci. Hortic. (Amsterdam)., vol. 194, pp. 34–42, 2015, doi: https://doi.org/10.1016/j.scienta.2015.07.045.
dc.relation.referencesS. Y. Choi and A. M. Kim, “Development of indoor aquaponics control system using a computational thinking-based convergence instructional model,” Univers. J. Educ. Res., 2019, doi: 10.13189/ujer.2019.071509.
dc.relation.referencesS. Goddek and O. Körner, “A fully integrated simulation model of multi-loop aquaponics: A case study for system sizing in different environments,” Agric. Syst., vol. 171, pp. 143–154, 2019, doi: https://doi.org/10.1016/j.agsy.2019.01.010.
dc.relation.referencesW. Vernandhes, N. S. Salahuddin, A. Kowanda, and S. P. Sari, “Smart aquaponic with monitoring and control system based on IoT,” Proc. 2nd Int. Conf. Informatics Comput. ICIC 2017, vol. 2018-Janua, pp. 1–6, 2018, doi: 10.1109/IAC.2017.8280590.
dc.relation.referencesD. Karimanzira and T. Rauschenbach, “Enhancing aquaponics management with IoT-based Predictive Analytics for efficient information utilization,” Inf. Process. Agric., vol. 6, no. 3, pp. 375–385, 2019, doi: https://doi.org/10.1016/j.inpa.2018.12.003.
dc.relation.referencesA. M. Nagayo, C. Mendoza, E. Vega, R. K. S. Al Izki, and R. S. Jamisola, “An automated solar-powered aquaponics system towards agricultural sustainability in the Sultanate of Oman,” 2017 IEEE Int. Conf. Smart Grid Smart Cities, ICSGSC 2017, pp. 42–49, 2017, doi: 10.1109/ICSGSC.2017.8038547.
dc.relation.referencesA. Neori et al., “Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture,” Aquaculture, vol. 231, no. 1, pp. 361–391, 2004, doi: https://doi.org/10.1016/j.aquaculture.2003.11.015.
dc.relation.referencesH. Monsees, J. Suhl, M. Paul, W. Kloas, D. Dannehl, and S. Würtz, “Lettuce (Lactuca sativa, variety Salanova) production in decoupled aquaponic systems: Same yield and similar quality as in conventional hydroponic systems but drastically reduced greenhouse gas emissions by saving inorganic fertilizer,” PLoS One, 2019, doi: 10.1371/journal.pone.0218368.
dc.relation.referencesS. Wongkiew, Z. Hu, K. Chandran, J. W. Lee, and S. K. Khanal, “Nitrogen transformations in aquaponic systems: A review,” Aquacultural Engineering. 2017, doi: 10.1016/j.aquaeng.2017.01.004.
dc.relation.referencesK. H. Dijkgraaf, S. Goddek, and K. J. Keesman, “Modeling innovative aquaponics farming in Kenya,” Aquac. Int., 2019, doi: 10.1007/s10499-019-00397-z.
dc.relation.referencesP. A. Schwartz, T. S. Anderson, and M. B. Timmons, “Predictive equations for butterhead lettuce (Lactuca sativa, cv. flandria) root surface area grown in aquaponic conditions,” Horticulturae, 2019, doi: 10.3390/horticulturae5020039.
dc.relation.referencesS. Pedersen and T. Wik, “A comparison of topologies in recirculating aquaculture systems using simulation and optimization,” Aquac. Eng., vol. 89, p. 102059, 2020, doi: https://doi.org/10.1016/j.aquaeng.2020.102059.
dc.relation.referencesM. Manju, V. Karthik, S. Hariharan, and B. Sreekar, “Real time monitoring of the environmental parameters of an aquaponic system based on internet of things,” 2017, doi: 10.1109/ICONSTEM.2017.8261342.
dc.relation.referencesR. Lefers, A. Alam, F. Scarlett, and T. Leiknes, “Aquaponics water use and nutrient cycling in a seawater-cooled controlled environment agriculture system,” 2020, doi: 10.17660/ActaHortic.2020.1271.54.
dc.relation.referencesL. F. Hernández, “Diseño, construcción y evaluación de un sistema acuapónico automatizado de tipo tradicional y doble recirculación en el cultivo de Tilapia Roja (Oreochromis Mossambicus) y Lechuga Crespa (Lactuca Sativa),” p. 127, 2017, [Online]. Available: http://bdigital.unal.edu.co/62310/1/1057592154.2018.pdf.
dc.relation.referencesU. Knaus and H. W. Palm, “Effects of the fish species choice on vegetables in aquaponics under spring-summer conditions in northern Germany (Mecklenburg Western Pomerania),” Aquaculture, 2017, doi: 10.1016/j.aquaculture.2017.01.020.
dc.relation.referencesH. Wu, Y. Zou, J. Lv, and Z. Hu, “Impacts of aeration management and polylactic acid addition on dissolved organic matter characteristics in intensified aquaponic systems,” Chemosphere, vol. 205, pp. 579–586, 2018, doi: https://doi.org/10.1016/j.chemosphere.2018.04.089.
dc.relation.referencesB. Marques, R. Calado, and A. I. Lillebø, “New species for the biomitigation of a super-intensive marine fish farm effluent: Combined use of polychaete-assisted sand filters and halophyte aquaponics,” Sci. Total Environ., vol. 599–600, pp. 1922–1928, 2017, doi: https://doi.org/10.1016/j.scitotenv.2017.05.121.
dc.relation.referencesD. Tanikawa, Y. Nakamura, H. Tokuzawa, Y. Hirakata, M. Hatamoto, and T. Yamaguchi, “Effluent treatment in an aquaponics-based closed aquaculture system with single-stage nitrification–denitrification using a down-flow hanging sponge reactor,” Int. Biodeterior. Biodegradation, vol. 132, pp. 268–273, 2018, doi: https://doi.org/10.1016/j.ibiod.2018.04.016.
dc.relation.referencesS. M. Pinho, D. Molinari, G. L. de Mello, K. M. Fitzsimmons, and M. G. Coelho Emerenciano, “Effluent from a biofloc technology (BFT) tilapia culture on the aquaponics production of different lettuce varieties,” Ecol. Eng., vol. 103, pp. 146–153, 2017, doi: 10.1016/j.ecoleng.2017.03.009.
dc.relation.referencesE. G. Durigon et al., “Biofloc technology (BFT): Adjusting the levels of digestible protein and digestible energy in diets of Nile tilapia juveniles raised in brackish water,” Aquac. Fish., vol. 5, no. 1, pp. 42–51, 2020, doi: https://doi.org/10.1016/j.aaf.2019.07.001.
dc.relation.referencesL. Collazos and J. Arias., “Fundamentals of bioflocs technology ( BFT ). An alternative for fish farming in Colombia . A review .,” Orinoquia, vol. 19, pp. 77–86, 2015.
dc.relation.referencesY. Zou, Z. Hu, J. Zhang, H. Xie, C. Guimbaud, and Y. Fang, “Effects of pH on nitrogen transformations in media-based aquaponics,” Bioresour. Technol., 2016, doi: 10.1016/j.biortech.2015.12.079.
dc.relation.referencesJ. Suhl, B. Oppedijk, D. Baganz, W. Kloas, U. Schmidt, and B. van Duijn, “Oxygen consumption in recirculating nutrient film technique in aquaponics,” Sci. Hortic. (Amsterdam)., vol. 255, pp. 281–291, 2019, doi: 10.1016/j.scienta.2019.05.033.
dc.relation.referencesF. Li et al., “Effects of Rice-Fish Co-culture on Oxygen Consumption in Intensive Aquaculture Pond,” Rice Sci., vol. 26, no. 1, pp. 50–59, 2019, doi: https://doi.org/10.1016/j.rsci.2018.12.004.
dc.relation.referencesZ. Khiari, K. Alka, S. Kelloway, B. Mason, and N. Savidov, “Integration of Biochar Filtration into Aquaponics: Effects on Particle Size Distribution and Turbidity Removal,” Agric. Water Manag., vol. 229, p. 105874, 2020, doi: https://doi.org/10.1016/j.agwat.2019.105874.
dc.relation.referencesM. Colorado and M. Ospina, “Acuaponia, Herramienta de formación en tiempos de paz,” p. 66, 2019, [Online]. Available: https://hdl.handle.net/11404/5555.
dc.relation.referencesE. C. Legarda et al., “Integrated recirculating aquaculture system for mullet and shrimp using biofloc technology,” Aquaculture, vol. 512, p. 734308, 2019, doi: https://doi.org/10.1016/j.aquaculture.2019.734308.
dc.relation.referencesE. Ayipio, D. E. Wells, A. McQuilling, and A. E. Wilson, “Comparisons between aquaponic and conventional hydroponic crop yields: A meta-analysis,” Sustainability (Switzerland). 2019, doi: 10.3390/su11226511.
dc.relation.referencesA. Graber and R. Junge, “Aquaponic Systems: Nutrient recycling from fish wastewater by vegetable production,” Desalination, vol. 246, no. 1, pp. 147–156, 2009, doi: https://doi.org/10.1016/j.desal.2008.03.048.
dc.relation.referencesA. E. Ghaly, M. Kamal, and N. S. Mahmoud, “Phytoremediation of aquaculture wastewater for water recycling and production of fish feed,” Environ. Int., 2005, doi: 10.1016/j.envint.2004.05.011.
dc.relation.referencesU. Yogev, A. Barnes, and A. Gross, “Nutrients and energy balance analysis for a conceptual model of a three loops off grid, aquaponics,” Water (Switzerland), 2016, doi: 10.3390/w8120589.
dc.relation.referencesB. Baßmann, H. Harbach, S. Weißbach, and H. W. Palm, “Effect of plant density in coupled aquaponics on the welfare status of African catfish, Clarias gariepinus,” J. World Aquac. Soc., 2020, doi: 10.1111/jwas.12574.
dc.relation.referencesK. K. T. Nuwansi, A. K. Verma, G. Rathore, M. H. Chandrakant, G. P. W. A. Prabhath, and R. M. Peter, “Effect of hydraulic loading rate on the growth of koi carp (Cyprinus carpio var. koi.) and Gotukola (Centella asiatica (L.)) using phytoremediated aquaculture wastewater in aquaponics,” Aquac. Int., 2020, doi: 10.1007/s10499-019-00485-0.
dc.relation.referencesT. Hussain et al., “Effect of water flow rates on growth of Cyprinus carpio var. koi (Cyprinus carpio L., 1758) and spinach plant in aquaponic system,” Aquac. Int., 2014, doi: 10.1007/s10499-014-9821-3.
dc.relation.referencesZ. S. Juhi, N. A. A. A. Mubin, M. G. G. Jonik, S. Salleh, and M. Mohammad, “Impact of short-term light variability on the photobiology of turbid water corals,” J. Sea Res., vol. 175, p. 102088, 2021, doi: https://doi.org/10.1016/j.seares.2021.102088.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembAcuicultura
dc.subject.lembAquaculture
dc.subject.lembCultivo hidropónico
dc.subject.lembHydroponics
dc.subject.proposalacuaponía
dc.subject.proposalaquaponics
dc.subject.proposalautomatización
dc.subject.proposalautomation
dc.subject.proposaldiseño
dc.subject.proposaldesign
dc.subject.proposalproceso
dc.subject.proposalprocess
dc.subject.proposalevaluación
dc.subject.proposalevaluation
dc.subject.proposalrendimiento
dc.subject.proposalperformance
dc.subject.proposalrevisión
dc.subject.proposalreview
dc.subject.proposalcontrol
dc.subject.proposalcontrol
dc.subject.proposalComparación
dc.subject.proposalcomparison
dc.title.translatedAutomation, modeling and evaluation of an NFT aquaponic system for culture of Red Carp (Cyprinus carpio) and Crespa Lettuce (Lactuca sativa)
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentInvestigadores
dc.contributor.orcidhttps://orcid.org/0000-0003-2006-4813
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001549579
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=Y7rrWsMAAAAJ&hl=es&authuser=2


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito