Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorFazio, Angelo Raffaele
dc.contributor.advisorReyes Rojas, Edilson Alfonso
dc.contributor.authorMelo Porras, Daniel Gerardo
dc.date.accessioned2023-04-19T21:23:05Z
dc.date.available2023-04-19T21:23:05Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83744
dc.description.abstractHadronic Light by Light (HLbL) scattering is not the biggest hadronic contribution to the muon’s anomalous magnetic moment, but it has the biggest relative uncertainty of all the contributions to that observable. With the tension between the Standard Model value prediction and the measurement at 4.2 σ, theoretical physicists have set their sights on reducing the HLbL contribution’s uncertainty to reduce the tension or push it beyond the discovery threshold. In such scenario, the high energy contribution of HLbL scattering to anomalous magnetic moment of the muon plays an important role. The aim of the research developed in this thesis is to study the HLbL leading order contribution in the maximally symmetric high energy region well above the hadronic threshold limit. This is achieved by performing an operator product expansion of the HLbL tensor, which we do systematically in the background field method. We consider our approach very efficient, also because it allows a straightforward renormalization of the field theoretical results. Our approach is also original and at the best of our knowledge not available in literature. The massless quark loop is the leading term and we compute it without neglecting its tensor structure. To this end, we use a tensor–loop–integral decomposition that does not in- troduce kinematic singularities. The resulting scalar loop integrals with shifted dimensions are computed with their full mass dependence using a Mellin–Barnes representation. Our original method of computation for the quark loop provides an independent check of recent literature results. Furthermore, by conserving the full tensor structure of the amplitude, we are able to perform an explicit check of a proposed kinematic–singularity–free tensor decomposition for the HLbL scattering amplitude that plays a central role in the dispersive computation in the low–energy regime. (Texto tomado de la fuente)
dc.description.abstractLa dispersión HLbL no es la contribución hadrónica más grande para el momento magnético anómalo del muon, pero esta tiene la incertidumbre relativa más grande de todas las contribuciones a ese observable. Con la tensión entre la valor predicho por el Modelo Estándar y las mediciones actualmente en 4.2 σ, los físico teóricos se han centrado en reducir la incertidumbre de la contribución HLbL para reducir la tensión o llevarla más allá del umbral de descubrimiento. En tal escenario, la contribución de alta energía de la dispersión HLbL al momento magnético anómalo del muon juega un papel importante. El objetivo de la investigación desarrollada en esta tesis es estudiar la contribución HLbL de primer orden en la región de alta energía máximamente simétrica muy por encima del límite del umbral hadrónico. Esto se logra al realizar una expansión de productos de operadores del tensor HLbL, la cual realizamos sistemáticamente con el método de campos de fondo. Consideramos nuestra aproximación al problema muy eficiente, entre otras razones, porque esta permite la renormalización directa de los resultados de teoría de campos. Nuestro método es también original y, hasta nuestro mejor conocimiento, no se encuentra en la literatura. El quark loop sin masa es el primer término de la expansión y lo calculamos sin dejar de lado su estructura tensorial. Para lograrlo, usamos un método de descomposición tensorial de integrales de loop que no introduce singularidades cinemáticas. Las integrales escalares de loop resultantes con dimensiones modificadas son calculadas considerando toda su dependencia de la masa y utilizando la representación de Mellin-Barnes. Nuestro método original de cálculo para el quark loop proporciona una verificación independiente de los resultados publicados recientemente en la literatura. Más aún, al conservar la estructura tensorial completa de la amplitud, podemos llevar a cabo una verificación explícita de una descomposición libre de singularidades cinemáticas para la dispersión HLbL que juega un papel central en los cálculos dispersivos del régimen de baja energía.
dc.format.extentix, 113 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc530 - Física::539 - Física moderna
dc.titleShort distance constraints from HLbL contribution to the muon anomalous magnetic moment
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Física
dc.contributor.researchgroupGrupo de Campos y Particulas
dc.description.degreelevelMaestría
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá,Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesD. Hanneke, S. Hoogerheide, and G. Gabrielse. In: Physical Review A 83.052122 (2011)
dc.relation.referencesD. Hanneke, S. Fogwell, and G. Gabrielse. In: Physical Review A 100.120801 (2008)
dc.relation.referencesT. Aoyama, T. Kinoshita, and M.Nio. In: Physical Review D 97.036001 (2018)
dc.relation.referencesG. W. Bennet et al. In: Physical Review D 73.072003 (2006)
dc.relation.referencesB.Abi et al. In: Physical Review Letters 126.141801 (2021)
dc.relation.referencesT. Aoyama et al. In: Physics Reports 887 (2020), pp. 1–166
dc.relation.referencesG. Colangelo et al. In: (2022). arXiv:2203.15810 [hep-ph]. URL: https://doi.org/10.48550/arXiv.2203.15810
dc.relation.referencesJ. Grange et al. In: (2015). arXiv:1501.06858 [physics.ins-det]. URL: https://doi.org/10.48550/arXiv.1501.06858
dc.relation.referencesS. J. Brodsky and E. de Rafael. In: Physical Review 168.1620 (1968)
dc.relation.referencesB. E. Lautrup and E. de Rafael. In: Physical Review 174.1835 (1968)
dc.relation.referencesV.L. Ivanov et al. In: ArXiv 2008.05548 (2020)
dc.relation.referencesE. V. Abakumovaa, M. N. Achasova, and V. E. Blinova. In: Nuclear Instruments and Methods 651 (2011), pp. 21–29
dc.relation.referencesF. Ambrosino et al. In: Physical Letters B 670.285 (2009)
dc.relation.referencesB. Aubert et al. In: Physical Review Letters 103.231801 (2009)
dc.relation.referencesR. Alemany, M. Davier, and A. Hoecker. In: European Physical Journal C2.123 (1998)
dc.relation.referencesG. Abbiendi et al. In: European Physical Journal C 139 (2017), p. 77
dc.relation.referencesP. Banerjee et al. In: European Physical Journal C 80.591 (2020)
dc.relation.referencesSz. Borsanyi et al. In: Nature 593 (2021), pp. 51–55
dc.relation.referencesAlexei Bazavov et al. In: (2023). arXiv:2301.08274 [hep-lat]. URL: https://doi.org/10.48550/arXiv.2301.08274
dc.relation.referencesE. De Rafael. In: Inference Review 6.3 (2021). URL: https://inference-review.com/article/muons-and-new-physics
dc.relation.referencesG. Colangelo, M.Hoferichter, M. Procura, et al. In: JHEP 74 (2015)
dc.relation.referencesG. Colangelo, M. Hoferichter, M. Procura, et al. In: JHEP 161 (2017)
dc.relation.referencesM. Hoferichter et al. In: Physical Review Letters 121.112002 (2018)
dc.relation.referencesG. Colangelo et al. In: Physical Review Letters 118.232001 (2017)
dc.relation.referencesM. Hayakawa, T. Kinoshita, and A. I. Sanda. In: Physical Review Letters 75.790 (1995)
dc.relation.referencesJ. Bijnens, E. de Rafael, and H. Zheng. “Low-Energy Behaviour of Two-Point Functions of Quark Currents”. In: Zeitschrift für Physik C Particles and Fields 62 (1994), pp. 437–454
dc.relation.referencesG. Colangelo, M.Hoferichter, M. Procura, et al. In: JHEP 91 (2014)
dc.relation.referencesJohan Bijnens et al. In: JHEP 2003.0304 (2003). arXiv:hep-ph/0304222. URL: https://doi.org/10.1088/1126-6708/2003/04/055
dc.relation.referencesM. Knecht and A. Nyffeler. In: The European Physical Journal C 21 (2001). arXiv:hep-ph/0106034, 659––678. URL: https://doi.org/10.1007/s100520100755
dc.relation.referencesG. Colangelo et al. In: Physical Review D 101.051501 (2020). arXiv:1910.11881 [hep-ph]. URL: https://doi.org/10.1103/PhysRevD.101.051501
dc.relation.referencesGilberto Colangelo et al. In: JHEP 2020.101 (2020). arXiv:1910.13432 [hep-ph]. URL: https://doi.org/10.1007/JHEP03%282020%29101
dc.relation.referencesGilberto Colangelo et al. In: The European Physical Journal C 81.702 (2021). arXiv:2106.13222 [hep-ph]. URL: https://doi.org/10.1140/epjc/s10052-021-09513-x
dc.relation.referencesJ. Bijnens, N. Hermansson-Truedsson, and A. Rodriguez-Sanchez. In: Physical Letters B 798.134994 (2019). arXiv:1908.03331 [hep-ph]
dc.relation.referencesJ. Bijnens et al. In: Nuclear and Particle Physics Proceedings 312-317 (2020), pp. 180–184
dc.relation.referencesJ. Bijnens, N. Hermansson-Truedsson, and A. Rodríguez-Sánchez. In: Journal of High Energy Physics 04.240 (2021). arXiv:2101.09169v2 [hep-ph]. URL: https://doi.org/10.1007/JHEP04%282021%29240
dc.relation.referencesV. Shtabovenko, R. Mertig, and F. Orellana. In: Computer Physics Communications 256.107478 (2020). arXiv:2001.04407
dc.relation.referencesV. Shtabovenko, R. Mertig, and F. Orellana. In: Computer Physics Communications 207 (2016). arXiv:1601.01167, pp. 432–444
dc.relation.referencesR. Mertig, M. Böhm, and A. Denner. In: Computer Physics Communications 64.3 (1991), pp. 345–359. URL: https://doi.org/10.1016/0010-4655(91)90130-D
dc.relation.referencesB. Ananthanarayan et al. In: Physical Review Letters 127.151601 (2021). arXiv:2012.15108 [hep-th]. URL: https://doi.org/10.1103/PhysRevLett.127.151601
dc.relation.referencesA. I. Davydychev. In: Physics Letters B 263.1 (1991), pp. 107–111. URL: https://doi.org/10.1016/0370-2693(91)91715-8
dc.relation.referencesA. I. Davydychev. In: Journal of Mathematical Physics 32.1052 (1991). URL: doi:10.1063/1.529383
dc.relation.referencesStanley J. Brodsky and J. D. Sullivan. In: Physical Review 156.5 (1967), pp. 1644–1647
dc.relation.referencesJanis Aldins, Stanley J. Brodsky, and Toichiro Kinoshita. In: Physical Review D 1.8 (1970)
dc.relation.referencesMarc Knecht and Nyffeler Andreas. In: Physical Review D 65.073034 (2002)
dc.relation.referencesFred Jegerlehner. STMP – The Anomalous Magnetic Moment of the Muon. Vol. 274. Springer, 2017
dc.relation.referencesF. E. Low. In: Physical Review 110.4 (1958), pp. 974–977
dc.relation.referencesT. Blum et al. In: Physical Review Letters 124.132002 (2020). arXiv:1911.08123 [hep-lat]
dc.relation.referencesE.-H. Chao et al. In: European Physical Journal C 81.651 (2021). arXiv:2104.02632 [hep-lat]
dc.relation.referencesV. Pascalutsa, V. Pauk, and M. Vanderhaeghen. In: Physical Review D 85.116001 (2012). 1204.0740
dc.relation.referencesV. Pauk and M. Vanderhaeghen. In: Physical Review D 90.11 (2014)
dc.relation.referencesJ. Green et al. In: Physical Review Letters 115.222003 (2015). 1507.01577
dc.relation.referencesI. Danilkin and M. Vanderhaeghen. In: Physical Review D 95.014019 (2017). 1611.04646
dc.relation.referencesF. Hagelstein and V. Pascalutsa. In: Physical Review Letters 120.072002 (2018). 1710.04571
dc.relation.references. Peskin and D. Schroeder. An introduction to quantum field theory. Addison–Wesley Publishing Company, 1995
dc.relation.referencesM. Sugawara and A. Kanazawa. In: Physical Review 123.1895 (1961). URL: https://doi.org/10.1103/PhysRev.123.1895
dc.relation.referencesS. Mandelstam. In: Physical Review 112.4 (1958)
dc.relation.referencesRobert Karplus and Maurice Neuman. In: Physical Review 80.3 (1950), pp. 380–385
dc.relation.referencesW. Bardeen and W. Tung. In: Physical Review 173.5 (1968), pp. 1423–1433
dc.relation.referencesR. Tarrach. In: Nuov. Cim. A 28 (1975), 409––422. URL: https://doi.org/10.1007/BF02894857
dc.relation.referencesHarry Bateman et al. Higher Trascendental Functions – Volume 1. McGraw–Hill, 1953
dc.relation.referencesJames D. Bjorken. In: Journal of Mathematical Physics 5.2 (1964), pp. 192–198
dc.relation.references(Particle Data Group) R. L. Workman et al. In: Progress of Theoretical and Experimental Physics 2022.083C01 (2022)
dc.relation.referencesP. Masjuan and P. Sanchez-Puertas. In: Physical Review Letters D95.054026 (2017). arXiv:1701.05829 [hep-ph]
dc.relation.referencesM. Hoferichter et al. In: European Physical Journal C74.3180 (2014)
dc.relation.referencesM. Hoferichter et al. In: JHEP 10.141 (2018). arXiv:1808.04823 [hep-ph]
dc.relation.referencesG. A. Baker. Essentials of Padé Approximants. First. New York: Academic Press, 1975
dc.relation.referencesP. Masjuan and S. Peris. In: Physical Review Letters B686.307 (2010). arXiv:0903.0294 [hep-ph]
dc.relation.referencesC. Hanhart et al. In: European Physical Journal C73.2668 (2013). arXiv:1307.5654 [hep-ph], Erratum: Eur. Phys. J. C75, 242 (2015)
dc.relation.referencesC.-W. Xiao et al. In: European Physical Journal C81.1002 (2021). arXiv:1509.02194 [hep-ph]
dc.relation.referencesSimon Holz et al. In: European Physical Journal C82.434 (2022). arXiv:2202.05846 [hep-ph]
dc.relation.referencesA. D. Martin and T. D. Spearman. Elementary Particle Theory. North Holland Publishing Company, 1970
dc.relation.referencesI. Danilkin, O. Deineka, and M. Vanderhaeghen. In: Physical Review Letters D96.114018 (2017). arXiv:1709.08595 [hep-ph]
dc.relation.referencesO. Deineka, I. Danilkin, and M. Vanderhaeghen. In: European Physical Journal Web Conference 199.02005 (2019). arXiv:1808.04117 [hep-ph]
dc.relation.referencesV. Pauk and M. Vanderhaeghen. In: European Physical Journal C74.3008 (2014). arXiv:1401.0832 [hep-ph]
dc.relation.referencesI. Danilkin and M. Vanderhaeghen. In: Physical Review D 95.014019 (2017). arXiv:1611.04646 [hep-ph]
dc.relation.referencesM. Knecht et al. In: Physical Review Letters B787.111 (2018). arXiv:1808.03848 [hep-ph].
dc.relation.referencesR. N. Cahn. In: Physical Review Letters D35.3342 (1987)
dc.relation.referencesR. N. Cahn. In: Physical Review Letters D37.833 (1988)
dc.relation.references[L3 Collaboration] P. Achard et al. In: Physical Review Letters B526.269 (2002)
dc.relation.references[L3 Collaboration] P. Achard et al. In: JHEP 0703.018 (2007)
dc.relation.referencesP. Roig and P. Sanchez-Puertas. In: Physical Review D 101.074019 (2020). arXiv:1910.02881 [hep-ph]
dc.relation.referencesGernot Eichmann et al. In: (2014). arXiv:1411.7876v2 [hep-ph]
dc.relation.referencesG. P. Lepage and S. J. Brodsky. In: Physics Letters B 87.359 (1979)
dc.relation.referencesG. P. Lepage and S. J. Brodsky. In: Physical Review D 22.2157 (1980)
dc.relation.referencesV. A. Nesterenko and A. V. Radyushkin. In: Soviet Journal of Nuclear Physics 38.284 (1983)
dc.relation.referencesV. A. Novikov et al. In: Nuclear Physics B 237.3 (1984), pp. 525–550
dc.relation.referencesA. S. Gorsky. In: Soviet Journal of Nuclear Physics 46.537 (1987)
dc.relation.referencesA. V. Manohar. In: Physics Letters B 244.101 (1990)
dc.relation.referencesM. Hoferichter et al. In: JHEP 10.141 (2018). arXiv:1808.04823 [hep-ph]
dc.relation.referencesM. Hoferichter et al. In: Physical Review Letters 121.112002 (2018). arXiv:1805.01471 [hep-ph]
dc.relation.referencesKenneth Wilson. In: Physical Review 179.1499 (1969)
dc.relation.referencesSteven Weinberg. The Quantum Theory of Fields. Cambridge University Press, 1996
dc.relation.referencesB. L. Ioffe and A. V. Smilga. In: Nuclear Physics B 232 (1984), pp. 109–142. URL: doi:10.1016/0550-3213(84)90364-X
dc.relation.referencesA. Czarnecki, W. J. Marciano, and A. Vainshtein. In: Physical Review D 67.073006 (2003). arXiv:hep-ph/0212229
dc.relation.referencesV. A. Novikov et al. In: Fortschritte der Physik 32.11 (1984), pp. 585–622
dc.relation.referencesM. A. Shifman, A. I Vainshtein, and V. I. Zakharov. In: Nuclear Physics B 147 (1979), pp. 385–518
dc.relation.referencesM. A. Shifman et al. In: Physics Letters B 77.1 (1978), pp. 80–83. URL: https://doi.org/10.1016/0370-2693(78)90206-X
dc.relation.referencesV. Fock. In: Physikalische Zeitschrift der Sowjetunion 12 (1937), pp. 404–425
dc.relation.referencesM. A. Shifman. In: Nuclear Physics B173.1 (1980), pp. 13–31
dc.relation.referencesR. Strichartz. A guide to distribution theory and Fourier transform. World Scientific Publishing Company, 2003
dc.relation.referencesL. F. Abbott. In: Acta Physica Polonica B13.1–2 (1981). https://www.actaphys.uj.edu.pl/R/13/1/33/pdf, pp. 33–50
dc.relation.referencesY. Aoki et al. In: The European Physical Journal C 82.869 (2022). arXiv:2111.09849v2 [hep-lat]
dc.relation.referencesH. Kluberg-Stern and J. B. Zuber. In: Physical Review D 12.2 (1975), pp. 467–481. URL: https://doi.org/10.1103/PhysRevD.12.467
dc.relation.referencesH. Kluberg-Stern and J. B. Zuber. In: Physical Review D 12.2 (1975), pp. 482–488. URL: https://doi.org/10.1103/PhysRevD.12.482
dc.relation.referencesH. Kluberg-Stern and J. B. Zuber. In: Physical Review D 12.10 (1975), pp. 3159–3180. URL: https://doi.org/10.1103/PhysRevD.12.3159
dc.relation.referencesGiampiero Passarino and Martinus Veltman. In: Nuclear Physics B 160.1 (1979), pp. 151–207. URL: https://doi.org/10.1016/0550-3213(79)90234-7
dc.relation.referencesR. Keith Ellis et al. In: Physics Reports 518.4–5 (2012), pp. 141–250. URL: https://doi.org/10.1016/j.physrep.2012.01.008
dc.relation.referencesDima Bardin and Giampiero Passarino. The Standard Model in the Making: Precision Study of the Elecroweak Interactions. Clarendon Press, Oxford, 1999
dc.relation.referencesÉ. É. Boos and A. I. Davydychev. In: Theoretical and Mathematical Physics 89 (1991), 1052––1064. URL: https://doi.org/10.1007/BF01016805
dc.relation.referencesSumit Banik and Samuel Friot. In: (2022). arXiv:2212.11839 [hep-ph]. URL: https://doi.org/10.48550/arXiv.2212.11839
dc.relation.referencesO. N. Zhdanov and A. K. Tsikh. In: Siberian Mathematical Journal 39.2 (1998), pp. 245–260. URL: https://doi.org/10.1007/BF02677509
dc.relation.referencesOleg Igorevich Marichev. Methods for Computing Integrals of Special Functions. Minsk, 1978
dc.relation.referencesHenri Skoda and Jean-Marie Trepreau, eds. Aspects of Mathematics: Contributions to Complex Analysis and Analytic Geometry. Vol. E26. Springer, 1994, pp. 233–241
dc.relation.referencesKasper J. Larsen and Robbert Rietkerk. In: Computer Physics Communications 222 (2018). arXiv:1701.01040 [hep-th], pp. 250–262. URL: https://doi.org/10.1016/j.cpc.2017.08.025
dc.relation.referencesP. Griffiths and J. Harris. Principles of algebraic geometry. John Wiley and Sons, 1978
dc.relation.referencesM. Passare, A .K. Tsikh, and A. A. Cheshel. In: Theoretical and Mathematical Physics 109 (1996), 1544––1555. URL: https://doi.org/10.1007/BF02073871
dc.relation.referencesE. W. Barnes. In: Proceedings of the London Mathematical Society s2-5 (1907), pp. 59–116
dc.relation.referencesH. M. Srivastava and Per W. Karlsson. Multiple Gaussian Hypergeometric Series. John Wiley and Sons, 1985
dc.relation.referencesJ. Horn. In: Mathematische Annalen 34 (1889), 544––600. URL: https://doi.org/10.1007/BF01443681
dc.relation.referencesSamuel Friot and David Greynat. In: Journal of Mathematical Physics 53.023508 (2012). arXiv:1107.0328 [math-ph]. URL: https://doi.org/10.1063/1.3679686
dc.relation.referencesA. K. Tsikh. Translations of Mathematical Monographs: Multidimensional Residues and Their Applications. Vol. 103. American Mathematical Society, 1992
dc.relation.referencesKhiem Hong Phan and Dzung Tri Tran. In: Progress of Theoretical and Experimental Physics 2019.6 (2019). arXiv:1904.07430 [hep-ph]. URL: https://doi.org/10.1093/ptep/ptz050
dc.relation.referencesLucy Joan Slater. Generalized Hypergeometric Functions. Cambridge University Press, 1966
dc.relation.referencesK. Melnikov and A. Vainshtein. In: Physical Review D 70.113006 (2004). arXiv:hep-ph/0312226. URL: https://doi.org/10.1103/PhysRevD.70.113006
dc.relation.referencesLuigi Cappiello et al. In: Physical Review D 102.016009 (2020). arXiv:1912.02779 [hep-ph]. URL: https://doi.org/10.1103/PhysRevD.102.016009
dc.relation.referencesJosef Leutgeb and Anton Rebhan. In: Physical Review D 101.114015 (2020). arXiv:1912.01596 [hep-ph]. URL: https://doi.org/10.1103/PhysRevD.101.114015
dc.relation.referencesJohan Bijnens, Nils Hermansson-Truedsson, and Antonio Rodríguez-Sánchez. In: (2022). arXiv:2211.17183 [hep-ph]. URL: https://doi.org/10.48550/arXiv.2211.17183
dc.relation.referencesJohan Bijnens, Nils Hermansson-Truedsson, and Antonio Rodríguez-Sánchez. In: EPJ Web of Conferences 274.06010 (2022). arXiv:2211.04068 [hep-ph]. URL: https://doi.org/10.1051/epjconf/202227406010
dc.relation.referencesE. V. Shuryak and A. I. Vainshtein. In: Nuclear Physics B 201.1 (1982), pp. 141–158. URL: https://doi.org/10.1016/0550-3213(82)90377-7
dc.relation.referencesA. J. Macfarlane. In: Communications in Mathematical Physics 2 (1966), pp. 133–146. URL: https://doi.org/10.1007/BF01773348
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembPartículas (física nuclear)
dc.subject.lembParticles (Nuclear physics)
dc.subject.lembEspectroscopia de electrones
dc.subject.lembElectron spectroscopy
dc.subject.proposalAnomalous magnetic moment of the muon
dc.subject.proposalHLbL
dc.subject.proposalMellin-Barnes
dc.subject.proposalOPE
dc.subject.proposalHypergeometric series
dc.subject.proposalMultivariate residues
dc.subject.proposalKinematic singularities
dc.title.translatedLímites de corta distancia de la contribución HLbL al momento magnético anómalo del muon
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito