Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorOspina Sánchez, Sonia Amparo
dc.contributor.authorNúñez Campos, César Augusto
dc.date.accessioned2023-04-24T13:54:41Z
dc.date.available2023-04-24T13:54:41Z
dc.date.issued2022-10-07
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83760
dc.descriptionilustraciones
dc.description.abstractA pesar de la importancia del dextrano en varias aplicaciones industriales y la necesidad de masificar su producción, no se tiene muy documentado el mecanismo de expresión y regulación de las dextransacarasas en cepas productoras como el Leuconostoc mesenteroides cepa IBUN 91.2.98. El desarrollo de métodos de secuenciación de segunda generación y el uso de herramientas bioinformáticas permitirán secuenciar, ensamblar y evaluar genomas completos a un costo relativamente bajo guiados por un genoma de referencia de L. mesenteroides subsp. mesenteroides ATCC 8293, para ayudar al proceso de ensamblaje. La secuenciación produjo un total de 1.47 Gb de datos crudos, que después del trimming y control de calidad generaron 1,40 Gb (7.78 X de profundidad) que se usaron para el ensamblaje. Se obtuvo un ensamblaje para el Leuconostoc mesenteroides cepa IBUN 91.2.98 de una longitud de 2,064 Mpb. La longitud del ensamblaje represento el 85% del tamaño estimado del genoma de referencia de L. mesenteroides subsp. mesenteroides ATCC 8293. (Texto tomado de la fuente)
dc.description.abstractDespite the importance of dextran in various industrial applications and the need to massify your production, the mechanism of expression and regulation of dextransucrases in producer strains such as Leuconostoc mesenteroides strain IBUN 91.2.98 has not been well documented. The development of second-generation sequencing methods and the use of bioinformatic tools will make it possible to sequence, assemble, and evaluate complete of genomes at relatively low cost guided by a reference genome of L. mesenteroides subsp. mesenteroides ATCC 8293, to help the assembly process. Sequencing produced a total of 1.47 Gb of raw data, which after trimming and quality control were generated 1.40 Gb (7.78 X deep) which was used for assembly. An assembly for Leuconostoc mesenteroides strain IBUN 91.2.98 with a length of 2,064 Mpb was obtained. The assembly length represented 85% of the estimated size of the reference genome of L. mesenteroides subsp. mesenteroides ATCC 8293.
dc.format.extent59 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc000 - Ciencias de la computación, información y obras generales
dc.subject.ddc500 - Ciencias naturales y matemáticas
dc.subject.ddc520 - Astronomía y ciencias afines
dc.titleEnsamblaje del genoma de Leuconostoc mesenteroides IBUN 91.2.98. por medio de herramientas bioinformáticas
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Química
dc.contributor.researchgroupBiopolímeros y Biofuncionales
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Química
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá,Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesM. N. Ruiz, “Bioinformática: Conceptos y alcances en las fronteras de la ciencia,” p. 88, 2004.
dc.relation.referencesJ. A. Valverde, “Anotación de genoma,” Conogasi, Conoc. para la vida, 2016.
dc.relation.referencesL. Brenes-Guillén, “Ensamblaje de genomas y anotación,” vol. 22, no. 3, p. 2013, 2013.
dc.relation.referencesS. González de la Fuente, “Ensamblaje de novo y anotación génica del genoma de Leishmania major mediante secuenciación masiva,” Uoc Univ. Oberta Catalunya, 2018, [Online]. Available: http://hdl.handle.net/10609/81889
dc.relation.referencesM. Naessens, A. Cerdobbel, and W. Soetaert, “Leuconostoc dextransucrasa y dextrano : producción , propiedades y aplicaciones,” vol. 860, pp. 845–860, 2005.
dc.relation.referencesH. Neubauer, A. Bauché, and B. Mollet, “Molecular characterization and expression analysis of the dextransucrase DsrD of Leuconostoc mesenteroides Lcc4 in homologous and heterologous Lactococcus lactis cultures,” Microbiology, vol. 149, no. 4, pp. 973–982, 2003, doi: 10.1099/mic.0.26029-0.
dc.relation.referencesE. Díaz-Montes, J. Yáñez-Fernández, and R. Castro-Muñoz, “Microfiltration-mediated extraction of dextran produced by Leuconostoc mesenteroides SF3,” Food Bioprod. Process., vol. 119, pp. 317–328, 2020, doi: 10.1016/j.fbp.2019.11.017.
dc.relation.referencesG. S. Park, S. J. Hong, B. K. Jung, C. Lee, C. K. Park, and J. H. Shin, “The complete genome sequence of a lactic acid bacterium Leuconostoc mesenteroides ssp. dextranicum strain DSM 20484T,” J. Biotechnol., vol. 219, pp. 3–4, 2016, doi: 10.1016/j.jbiotec.2015.12.009.
dc.relation.referencesF. Chen, G. Huang, and H. Huang, “Preparation and application of dextran and its derivatives as carriers,” Int. J. Biol. Macromol., vol. 145, pp. 827–834, 2020, doi: 10.1016/j.ijbiomac.2019.11.151.
dc.relation.referencesV. Monchois, R. Willemot, and P. Monsan, “Glucansucrasas : mecanismo de acción y estructura ^ función relaciones,” vol. 23, 1999.
dc.relation.referencesM. Naessens, A. Cerdobbel, W. Soetaert, and E. J. Vandamme, “Leuconostoc dextransucrase and dextran: Production, properties and applications,” J. Chem. Technol. Biotechnol., vol. 80, no. 8, pp. 845–860, 2005, doi: 10.1002/jctb.1322.
dc.relation.referencesF. G. G. Yhon., “Estudio de la enzima dextransacarasa (DS) producida por Leuconostoc mesenteroides cepa IBUN 91.2.98.” Bogotá, p. 46, 2014.
dc.relation.references“Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Ingeniería Química EMMETT ECHEVERRÍA VALENZUELA ASESORADO POR M . Sc . ZENÓN MUCH SANTOS,” 2006.
dc.relation.referencesL. Alejandra and G. Galindo, “Caracterización molecular y funcional del gen codificante para la dextransacarasa de,” pp. 1–36, 2018.
dc.relation.referencesG. S. Park, S. J. Hong, B. K. Jung, C. Lee, C. K. Park, and J. H. Shin, “The complete genome sequence of a lactic acid bacterium Leuconostoc mesenteroides ssp. dextranicum strain DSM 20484T,” J. Biotechnol., vol. 219, pp. 3–4, 2016, doi: 10.1016/j.jbiotec.2015.12.009.
dc.relation.referencesB. H. Chun, K. H. Kim, H. H. Jeon, S. H. Lee, and C. O. Jeon, “Pan-genomic and transcriptomic analyses of Leuconostoc mesenteroides provide insights into its genomic and metabolic features and roles in kimchi fermentation,” Sci. Rep., vol. 7, no. 1, pp. 1–16, 2017, doi: 10.1038/s41598-017-12016-z.
dc.relation.referencesW. Ruppitsch et al., “Genetic diversity of leuconostoc mesenteroides isolates from traditional montenegrin brine cheese,” Microorganisms, vol. 9, no. 8, pp. 1–16, 2021, doi: 10.3390/microorganisms9081612.
dc.relation.referencesP. Zhang, P. Zhang, J. Wu, D. Tao, and R. Wu, “Effects of Leuconostoc mesenteroides on physicochemical and microbial succession characterization of soybean paste, Da-jiang,” Lwt, vol. 115, 2019, doi: 10.1016/j.lwt.2019.04.029.
dc.relation.referencesL. H. Deegan, P. D. Cotter, C. Hill, and P. Ross, “Bacteriocins: Biological tools for bio-preservation and shelf-life extension,” Int. Dairy J., vol. 16, no. 9, pp. 1058–1071, 2006, doi: 10.1016/j.idairyj.2005.10.026.
dc.relation.referencesN. A. Vega Castro and E. A. Reyes Montaño, “Introducción al análisis estructural de proteínas y glicoproteínas,” Introd. al análisis estructural proteínas y glicoproteínas, 2020, doi: 10.36385/fcbog-3-0.
dc.relation.referencesL. Liu et al., “Comparison of next-generation sequencing systems,” J. Biomed. Biotechnol., vol. 2012, 2012, doi: 10.1155/2012/251364.
dc.relation.referencesJ. M. Heather and B. Chain, “The sequence of sequencers: The history of sequencing DNA,” Genomics, vol. 107, no. 1, pp. 1–8, 2016, doi: 10.1016/j.ygeno.2015.11.003.
dc.relation.referencesT. J. Treangen and S. L. Salzberg, “Repetitive DNA and next-generation sequencing: Computational challenges and solutions,” Nat. Rev. Genet., vol. 13, no. 1, pp. 36–46, 2012, doi: 10.1038/nrg3117.
dc.relation.referencesN. B. Larson, A. L. Oberg, A. A. Adjei, and L. Wang, “A Clinician’s Guide to Bioinformatics for Next-Generation Sequencing,” J. Thorac. Oncol., vol. 18, no. 2, pp. 143–157, 2023, doi: 10.1016/j.jtho.2022.11.006.
dc.relation.referencesL. J. Fennell et al., “Comparative analysis of Illumina Mouse Methylation BeadChip and reduced-representation bisulfite sequencing for routine DNA methylation analysis,” Cell Reports Methods, vol. 2, no. 11, p. 100323, 2022, doi: 10.1016/j.crmeth.2022.100323.
dc.relation.referencesY. Guo et al., “Metagenomic next-generation sequencing to identify pathogens and cancer in lung biopsy tissue,” EBioMedicine, vol. 73, p. 103639, 2021, doi: 10.1016/j.ebiom.2021.103639.
dc.relation.referencesM. Yermagambetova, S. Abugalieva, Y. Turuspekov, and S. Almerekova, “Illumina sequencing data of the complete chloroplast genome of rare species Juniperus seravschanica (Cupressaceae) from Kazakhstan,” Data Br., vol. 46, p. 108866, 2023, doi: 10.1016/j.dib.2022.108866.
dc.relation.referencesT. Soni, R. Pandit, D. Blake, C. Joshi, and M. Joshi, “Comparative analysis of two next-generation sequencing platforms for analysis of antimicrobial resistance genes,” J. Glob. Antimicrob. Resist., vol. 31, pp. 167–174, 2022, doi: 10.1016/j.jgar.2022.08.017.
dc.relation.referencesZ. Liang et al., “Combined Illumina and Pacbio sequencing technology on transcriptome analysis reveals several key regulations during the early development of American shad (Alosa sapidissima),” Aquac. Reports, vol. 25, no. July, p. 101264, 2022, doi: 10.1016/j.aqrep.2022.101264.
dc.relation.referencesL. Aguilar-Bultet and L. Falquet, “Secuenciación y ensamblaje de novo de genomas bacterianos: una alternativa para el estudio de nuevos patógenos,” Rev. Salud Anim, vol. 37, no. 2, pp. 125–132, 2015.
dc.relation.referencesH. E. L. Lischer and K. K. Shimizu, “Reference-guided de novo assembly approach improves genome reconstruction for related species,” BMC Bioinformatics, vol. 18, no. 1, pp. 1–12, 2017, doi: 10.1186/s12859-017-1911-6.
dc.relation.referencesB. Wajid and E. Serpedin, “Review of General Algorithmic Features for Genome Assemblers for Next Generation Sequencers,” Genomics, Proteomics Bioinforma., vol. 10, no. 2, pp. 58–73, 2012, doi: 10.1016/j.gpb.2012.05.006.
dc.relation.referencesS. Andrews, “Index of projects fastqc help 3 - Analysis Modules,” 2010.
dc.relation.referencesM. J. Chaisson and G. Tesler, “Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): Application and theory,” BMC Bioinformatics, vol. 13, no. 1, 2012, doi: 10.1186/1471-2105-13-238.
dc.relation.referencesL. T. G. Navarrete, “Garcia Navarrete (2018) Estrategia computacional,” Universidad Nacional de Colombia. 2018.
dc.relation.referencesK. J. McKernan et al., “Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base encoding,” Genome Res., vol. 19, no. 9, pp. 1527–1541, 2009, doi: 10.1101/gr.091868.109.
dc.relation.referencesM. Hernández, N. M. Quijada, D. Rodríguez-Lázaro, and J. M. Eiros, “Bioinformatics of next generation sequencing in clinical microbiology diagnosis,” Rev. Argent. Microbiol., vol. 52, no. 2, pp. 150–161, 2020, doi: 10.1016/j.ram.2019.06.003.
dc.relation.referencesN. Nagarajan and M. Pop, “Sequence assembly demystified,” Nat. Rev. Genet., vol. 14, no. 3, pp. 157–167, 2013, doi: 10.1038/nrg3367.
dc.relation.referencesS. Meader, L. D. W. Hillier, D. Locke, C. P. Ponting, and G. Lunter, “Genome assembly quality: Assessment and improvement using the neutral indel model,” Genome Res., vol. 20, no. 5, pp. 675–684, 2010, doi: 10.1101/gr.096966.109.
dc.relation.referencesE. Port, F. Sun, D. Martin, and M. S. Waterman, “Genomic mapping by end-characterized random clones: a mathematical analysis,” Genomics, vol. 26, no. 1, pp. 84–100, 1995, doi: 10.1016/0888-7543(95)80086-2.
dc.relation.referencesA. Gurevich, V. Saveliev, N. Vyahhi, and G. Tesler, “QUAST: Quality assessment tool for genome assemblies,” Bioinformatics, vol. 29, no. 8, pp. 1072–1075, 2013, doi: 10.1093/bioinformatics/btt086.
dc.relation.referencesJ. Bohlin et al., “Analysis of intra-genomic GC content homogeneity within prokaryotes,” BMC Genojmics, vol. 11, no. 1, 2010, doi: 10.1186/1471-2164-11-464.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsGenoma
dc.subject.decsGenome
dc.subject.decsTecnología de bajo costo
dc.subject.decsLow Cost Technology
dc.subject.proposalreads
dc.subject.proposalcontigs
dc.subject.proposalensamblaje
dc.subject.proposaltecnologías de secuenciación
dc.subject.proposaltraducción
dc.title.translatedAssembly of the genome of Leuconostoc mesenteroides IBUN 91.2.98. through bioinformatics tools
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentInvestigadores
dc.contributor.orcidCésar Augusto Núñez Campos [0000000152190836]
dc.contributor.cvlacNúñez Campos, César Augusto


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito