Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorLuna Tamayo, Patricia
dc.contributor.authorBeltrán Martínez, Oscar David
dc.date.accessioned2023-05-19T20:08:31Z
dc.date.available2023-05-19T20:08:31Z
dc.date.issued2023-05-18
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83838
dc.descriptionilustraciones, fotografías, gráficas, planos
dc.description.abstractEn esta investigación se determinó la influencia de reforzar externamente vigas de concreto sometidas a flexión empleando un compuesto hecho con matriz epóxica y fibras de fique. Para esto se caracterizó mecánicamente la fibra de fique antes y después de ser sometida a un tratamiento alcalino. El tratamiento alcalino usado fue a base de hidróxido de sodio (NaOH), logrando con este procedimiento mejorar las propiedades mecánicas de la fibra de fique. Posteriormente, se caracterizó mecánicamente el tejido de fique, previamente sometido al tratamiento alcalino. Se fabricó una matriz epóxica, la cual fue sometida a ensayos de tensión para determinar sus propiedades mecánicas. Para la fabricación del compuesto epóxico/fique (EF) se emplearon dos tipos de tejidos, un tejido tupido (D) y un tejido ralo (MD), obteniendo mayores prestaciones mecánicas al emplear el tejido tupido, con un contenido de fibras de fique del 10 %, como fracción de peso. Se fabricaron vigas de concreto empleando dos tipos de resistencia a la compresión, una de 17 MPa y la otra de 24 MPa. Estas vigas fueron reforzadas externamente, en la cara inferior del elemento, empleando el compuesto EF. Posteriormente, fueron sometidas al ensayo a flexión de cuatro puntos para evaluar el comportamiento de las vigas reforzadas ante esfuerzos de flexión. Al reforzar estas vigas con el compuesto EF de observó que la resistencia a la flexión aumentó entre un 15 y 20 % para vigas con concreto de 17 MPa y un 10 % para las vigas hechas con concreto de 24 MPa. El módulo de elasticidad de las vigas reforzadas aumentó hasta un 20 % y las deflexiones se redujeron. Se propusieron unas expresiones teóricas para ser comparadas con los resultados obtenidos en el laboratorio, logrando precisión en las ecuaciones determinadas para la evaluación de esfuerzos en vigas compuestas, y una buena aproximación en la ecuación definida para la evaluación del momento nominal de la viga reforzada externamente con EF. (Texto tomado de la fuente)
dc.description.abstractIn this research, the influence of externally reinforcing concrete beams subjected to bending using a composite made with an epoxy matrix and fique fibers was determined. For this, the fique fiber was mechanically characterized before and after being subjected to an alkaline treatment. The alkaline treatment used was based on sodium hydroxide (NaOH), achieving with this procedure to improve the mechanical properties of fique fiber. Subsequently, the fique fabric, previously subjected to alkaline treatment, was mechanically characterized. An epoxy matrix was manufactured, which was subjected to stress tests to determine its mechanical properties. For the manufacture of the epoxy/fique composite (EF) two types of fabrics were used, a dense fabric (D) and a sparse fabric (MD), obtaining greater mechanical performance when using the dense fabric, with a fique fiber content of 10%, as a weight fraction. Concrete beams were manufactured using two types of compressive strength, one of 17 MPa and the other of 24 MPa. These beams were externally reinforced, on the lower face of the element, using the EF compound. Subsequently, they were subjected to the four-point bending test to evaluate the behavior of the reinforced beams under bending stresses. When reinforcing these beams with the EF compound, it was observed that the flexural strength increased between 15 and 20% for beams with 17 MPa concrete and 10% for beams made with 24 MPa concrete. The elastic modulus of the reinforced beams increased up to 20% and deflections were reduced. Some theoretical expressions were proposed to be compared with the results obtained in the laboratory, achieving precision in the equations determined for the evaluation of forces in composite beams, and a good approximation in the equation defined for the evaluation of the nominal moment of the externally reinforced beam. with EF.
dc.format.extent115 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rightsDerechos reservados al autor, 2023
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc690 - Construcción de edificios
dc.titleMaterial compuesto epóxico/fique, como refuerzo externo en elementos de concreto sometidos a flexión
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Estructuras
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Estructuras
dc.description.researchareaMateriales de construcción para estructuras
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAl-mahaidi, R. K. (2018). Rehabilitation of Concrete Structures With Fiber -Reinforced Polymer. 4(9), 420
dc.relation.referencesAladdin, M., Alaa, M., & Ezzat, A. (2018). Performance of sustainable natural yarn reinforced polymer bars for constructions applications. Composites Part A: Applied Science and Manufacturing, 158, 359–368
dc.relation.referencesAlam, M., Hassan, A., & Muda, Z. (2015). Development od Kenaf fibre Reinforced Polymer Laminate for Shear Strengthening or Reinforcel Concrete Beam. Material and Structures, 49
dc.relation.referencesAlberto Pérez Gracia, L. (n.d.). Artículo de Monografía para optar al título de Ingeniero Mecánico Universidad Autónoma Del Caribe. Barranquilla, 2014 EVALUACIÓN DEL COMPORTAMIENTO MECÁNICO DE LOS MATERIALES COMPUESTOS A BASE DE FIBRA DE FIQUE Y FIBRAS SINTÉTICAS. Retrieved from www.uac.edu.co
dc.relation.referencesAli, A., Shaker, K., Nawab, Y., Jabbar, M., Hussain, T., Militky, J., & Baheti, V. (2018, May 1). Hydrophobic treatment of natural fibers and their composites—A review. Journal of Industrial Textiles, Vol. 47, pp. 2153–2183. https://doi.org/10.1177/1528083716654468
dc.relation.referencesAlves, M., Castro, T., & Toledo, R. (2013). The effect of fiber morphology on the tensile strength of natural fibers. Journal of Materials Research and Technology, 2(2), 149–157. https://doi.org/10.1016/j.jmrt.2013.02.003
dc.relation.referencesASTM. (2002). ASTM C 78, Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third Point Loading). 1–10
dc.relation.referencesASTM. (2013). Astm D3039/D3039M, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. Annual Book of ASTM Standards, 1–13. https://doi.org/10.1520/D3039
dc.relation.referencesASTM. (2014). Standard Test Method for Tensile Strength and Young’s Modulus of Fibers. Astm C1557-14, 1–10. https://doi.org/10.1520/C1557-14.2
dc.relation.referencesBrent, A. (2006). Plastic: materials and processing. Upper Saddle River
dc.relation.referencesCastro, C., Palencia, A., Gutiérrez, I., Vargas, G., & Gañán, P. (2007). Determination of optimal alkaline treatment conditions for fique fiber bundles as reinforcement of composites materials. Revista Tecnica de La Facultad de Ingenieria Universidad Del Zulia, 30(2), 136–142
dc.relation.referencesCharlet, K., Eve, S., Jernot, J. P., Gomina, M., & Breard, J. (2009). Tensile deformation of a flax fiber. Procedia Engineering, 1(1), 233–236. https://doi.org/10.1016/j.proeng.2009.06.055
dc.relation.referencesCuéllar, A., & Muñoz, I. (2010). Fibra de guadua como refuerzo de matrices poliméricas. DYNA (Colombia), 77(162), 138–142
dc.relation.referencesDevore, J. (2005). Probabilidad y Estadística Para Ingeniería y Ciencias (6th ed.). México D.F.: Thomson
dc.relation.referencesEcheverri, D., Franco, L., & Velásquez, M. (2015). Fique en Colombia. Retrieved from https://doi.org/10.22430/9789588743820
dc.relation.referencesEstrada, M. (2010). Extraccion y caracterizacion mecanica de las fibras de bambu ( Guadua angustifolia ) para su uso potencial como refuerzo de materiales compuestos . https://doi.org/10.13140/RG.2.1.3984.3046
dc.relation.referencesFaruk, O., Bledzki, K., Fink, P., & Sain, M. (2012). Biocomposites reinforced with natural fiber: 2000-2010. Progress in Polymer Science, 11
dc.relation.referencesGañán, P., & Mondragón, I. (2014). Influence of Compatibilizacion Treatments on the Mechanical Properties of Fique Fiber Reinforced Polypropylene Composites. International Journal of Polymer Science, 53
dc.relation.referencesGangaRao, H. V. S., Taly, N., & Vijay, P. V. (2006). Reinforced Concrete Design with FRP Composites. In Reinforced Concrete Design with FRP Composites. https://doi.org/10.1201/9781420020199
dc.relation.referencesGere, J., & Goodno, B. (2013). Mecánica De Materiales (8th ed.). México D.F.: CENGAGE Learning
dc.relation.referencesGómez, Alvarez, V., Rojo, P., & Vázquez, A. (2012). Fique fibers: Enhancement of the tensile strength of alkali treated fibers during tensile load application. Fibers and Polymers, 13(5), 632–640. https://doi.org/10.1007/s12221-012-0632-8
dc.relation.referencesGómez, S., Ramón, B., & Guzman, R. (2017). Revista UIS Ingenierías (Vol. 17)
dc.relation.referencesHafizah, N. A. K., Bhutta, M. A. R., Jamaludin, M. Y., Warid, M. H., Ismail, M., Rahman, M. S., … Azman, M. (2014). Kenaf fiber reinforced polymer composites for strengthening RC beams. Journal of Advanced Concrete Technology, 12(6), 167–177. https://doi.org/10.3151/jact.12.167
dc.relation.referencesHallonet, A., Ferrier, E., & Michel, L. (2019). Durability and tensile characterizacion of wet lay-up flax/epoxy composites used for external strengthening of RC Structures. Construction and Building Materials, 205, 679–698
dc.relation.referencesHidalgo, M. A., Muñoz, M. F., & Quintana, K. J. (2011). Desempeño mecánico del compuesto polietileno aluminio reforzado con agro fibras contínuas de fique. Revista Latinoamericana de Metalurgia y Materiales, 31(2), 187–194
dc.relation.referencesHidalgo, M., Muñoz, M., & Quintana, K. (2012). Análisis mecánico del compuesto polietileno aluminio reforzado con fibras cortas de fique en disposición bidimensional. Revista Latinoamericana de Metalurgia y Materiales, 32(1), 89–95
dc.relation.referencesIsaza, L., & Acevedo, E. (2016). Comparación de Pruebas de Normalidad. XXI Simposio Internacional de Estadisticas 2015, 77(Zimmerman 2011), 8–11. Retrieved from http://simposioestadistica.unal.edu.co/fileadmin/content/eventos/simposioestadistica/documentos/memorias/Memorias_2016/Posters/16._Pruebas_Normalidad_Cortes_Rave___Hernandez.pdf
dc.relation.referencesJoshi, S. V., Drzal, L. T., Mohanty, A. K., & Arora, S. (2004). Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A: Applied Science and Manufacturing, 35(3), 371–376. https://doi.org/10.1016/j.compositesa.2003.09.016
dc.relation.referencesKu, H., Wang, H., & Trada, M. (2011). A review on the tensile propierties of natural fiber reinforced polymer composites. Composites Part B: Engineering, 42, 856–873
dc.relation.referencesLiu, D., Song, J., Anderson, D., & Chang, P. (2012). Bamboo Fiber and its Reinforced Composites: Structure and Propierties. Cellulose, 19
dc.relation.referencesLópez M., J. (2012). Refuerzo a flexión de vigas de hormigón mediante polímeros reforzados con fibra de carbono
dc.relation.referencesLuna, P. (2020). Mechanical behavior of a composite material using a polyester matrix reinforced with Guadua angustifolia bamboo fibers
dc.relation.referencesLuna, P., Mariño, A., Lizarazo, J., & Beltrán, O. (2017). Dry etching plasma applied to fique fibers: Influence on their mechanical properties and surface appearance. Procedia Engineering, 200, 141–147. https://doi.org/10.1016/j.proeng.2017.07.021
dc.relation.referencesMachado, L., & Dos Santos, J. (2017). Novel fibre metal laminate sandwich composite with sisal woven core. Industrial Crops and Products, 99
dc.relation.referencesMahjoub, R., & Mohamad, J. (2014). Tensile properties of kenaf fiber due to various conditions of chemical fiber surface modifications. Construction and Building Materials, 55, 103–113. https://doi.org/10.1016/j.conbuildmat.2014.01.036
dc.relation.referencesMartínez, L. (2010). Inumerables usos del Fique. FEDEFIQUE
dc.relation.referencesMatallana, R. (2019). El Concreto fundamentos y nuevas tecnologías (1st ed.). Medellín: Constructora Conconcreto
dc.relation.referencesMathWorks. (2016). MatLab 2016a. Natick, Massachusetts: The Math Works Inc
dc.relation.referencesMenna, C., Asprone, D., Durante, M., Zinno, A., Balsamo, A., & Prota, A. (2015). Structural behaviour of masonry panels strengthened with an innovative hemp fibre composite grid. Construction and Building Materials, 100, 111–121. https://doi.org/10.1016/j.conbuildmat.2015.09.051
dc.relation.referencesMera, J., & García, E. (2013). Fabricación de papel artesanal a partir de Fique como fuente de fibra alternativa. Investigación, Tecnología y Ciencia, 15, 31–35
dc.relation.referencesMicrosoft. (2016). Excel 2016. US
dc.relation.referencesMohammed, L., Ansari, M. N. M., Pua, G., Jawaid, M., & Islam, M. S. (2015). A Review on Natural Fiber Reinforced Polymer Composite and Its Applications. International Journal of Polymer Science, 2015. https://doi.org/10.1155/2015/243947
dc.relation.referencesMuñoz, M., Hidalgo, M., & Mina, J. (2018). Effect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-Al/fique composite. Polymers, 10(10). https://doi.org/10.3390/polym10101050
dc.relation.referencesMuñoz, M., & Mina, J. (2014). Fique Fiber an alternative for reinforced pastics. Influence of surface modification. In Biotecnología en el Sector Agropecuario y Agroindustrial (Vol. 12)
dc.relation.referencesPinzón Galvis, S. (2013). Análisis de la resistencia a compresión y fl exión del concreto modifi cado con fi bra de fi que. Retrieved from www.veoverde.com/2009/07/fi
dc.relation.referencesPradeep, P., Raja, J., Ramachandran, M., & Retnam, S. (2015). Mechanical Characterization of jute fiber over glass and carbon fiber reinforced polymer composites. International Journal of Applied Engineering Research, 10(11), 10392–10396
dc.relation.referencesRaju, B., Hiremath, S. R., & Roy Mahapatra, D. (2018, November 15). A review of micromechanics based models for effective elastic properties of reinforced polymer matrix composites. Composite Structures, Vol. 204, pp. 607–619. https://doi.org/10.1016/j.compstruct.2018.07.125
dc.relation.referencesRamón Valencia, F., Lopez-Arraiza, A., Múgica, J. I., Aurrekoetxea, J., Suarez, J. C., & Ramón-Valencia, B. (2015). Influence of seawater immersion in low energy impact behavior of a novel colombian fique fiber reinforced bio-resin laminate. DYNA, 82(194), 170–177. https://doi.org/10.15446/dyna.v82n194.48622
dc.relation.referencesRibot, N. M. H., Ahmad, Z., Mustaffa, N. K., & Alam, S. (2011). Mechanical propertise of Kenaf fiber composite using co-Cured in-line fiber joint. International Journal of Engineering Science and Technology (IJEST), ISSN, 3(4), 975–5462
dc.relation.referencesSegura, J. (2011). Estructuras de concreto I. Bogotá: Universidad Nacional de Colombia
dc.relation.referencesSegurado, J. (2004). Micromecánica computacional de materiales compuestos reforzados con partículas. Universidad Politécnica de Madrid
dc.relation.referencesSen, T., & Reddy, H. (2013). Strengthening of RC Beams in Flexure Using Natural Jute Fibre Textile Reinforced Composite System and its Comparative Study with CFRP and GFRP Strengthening System. International Journal of Sustainable Bult Environment, 2, 41–55
dc.relation.referencesSen, Tara, & Reddy, H. N. J. (2013). Pretreatment of woven jute FRP composite and its use in strengthening of reinforced concrete beams in flexure. Advances in Materials Science and Engineering, 2013. https://doi.org/10.1155/2013/128158
dc.relation.referencesSilva, F. de A., Chawla, N., & Filho, R. D. de T. (2008). Tensile behavior of high performance natural (sisal) fibers. Composites Science and Technology, 68(15–16), 3438–3443. https://doi.org/10.1016/j.compscitech.2008.10.001
dc.relation.referencesSowndharya, D., Kathirvel, M., & Yuvaraj, K. (2019). Strengthening of RC Beam using Numerous Natural Fibre Laminates - a Review. (September)
dc.relation.referencesSpiegel, M. (1997). Estadística (2nd ed.). Madrid: Mc Graw Hill
dc.relation.referencesSreekumar, P. (2008). Matrices for natural-fiber reinforced composites. Woodhead Publishing in Materials, 2
dc.relation.referencesTeles, M. C. A., Altoé, G. R., Netto, P. A., Colorado, H., Margem, F. M., & Monteiro, S. N. (2015). Fique fiber tensile elastic modulus dependence with diameter using the weibull statistical analysis. Materials Research, 18, 193–199. https://doi.org/10.1590/1516-1439.364514
dc.relation.referencesTicoalu, A., Aravinthan, T., & Cardona, F. (1997). Gathering in Chicago. Editor and Publisher, 130(17), 13-X1
dc.relation.referencesTong, F. S., Chin, S. C., Doh, S. I., & Gimbun, J. (2017). Natural Fiber Composites as Potential External Strengthening Material – A Review. Indian Journal of Science and Technology, 10(2). https://doi.org/10.17485/ijst/2017/v10i2/110368
dc.relation.referencesTudjono, S., Lie, H. A., & Hidayat, B. A. (2015). An experimental study to the influence of fiber reinforced polymer (FRP) confinement on beams subjected to bending and shear. Procedia Engineering, 125, 1070–1075. https://doi.org/10.1016/j.proeng.2015.11.164
dc.relation.referencesUribe, J. (2002). Análisis de estructuras. Bogotá: Editorial Escuela Colombiana de Ingeniería
dc.relation.referencesWu, Z., Li, W., & Sakuma, N. (2006). Innovative externally bonded FRP/concrete hybrid flexural members. Composite Structures, 72(3), 289–300. https://doi.org/10.1016/j.compstruct.2004.12.002
dc.relation.referencesWullin, Q., Endo, T., & Hirostsu, T. (2010). Structure and properties of composites of highly crystalline cellulose with polypropylene: Effects of polypropylene molecular weigtht. Materials Research, 5
dc.relation.referencesYan, L., Su, S., & Chouw, N. (2015). Microstructure, flexural properties and durability of coir fibre reinforced concrete beams externally strengthened with flax FRP composites. Composites Part B: Engineering, 80, 343–354. https://doi.org/10.1016/j.compositesb.2015.06.011
dc.relation.referencesZakikhani, P., Zahari, R., & Sultan, M. (2014). Bamboo Fibre Extraction and Reinforced Polymer Composite Material. International Journal of Chemical, Nuclear, Materials Ans Metallurgical Enggineering, 8
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembConstrucciones compuestas
dc.subject.lembComposite construction
dc.subject.lembIngeniería de estructuras
dc.subject.lembStructural engineering
dc.subject.proposalFibras de fique
dc.subject.proposalFique fibers
dc.subject.proposalfibras naturales
dc.subject.proposalnatural fibers
dc.subject.proposalmateriales compuestos
dc.subject.proposalcomposite materials
dc.subject.proposalmatriz epóxica
dc.subject.proposalepoxy matrix
dc.subject.proposalrefuerzo externo
dc.subject.proposalexternal reinforcement
dc.subject.proposalreforzamiento en vigas
dc.subject.proposalbeam reinforcement
dc.title.translatedEpoxy/fique composite material, as external reinforcement in concrete elements subjected to flexion
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito