Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.contributor.advisorBotero Cadavid, Juan Fernando
dc.contributor.advisorGarcia Sucerquia, Jorge
dc.contributor.authorPatiño-Jurado, Brayan
dc.date.accessioned2023-05-23T14:53:40Z
dc.date.available2023-05-23T14:53:40Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83841
dc.descriptioniustraciones, diagramas
dc.description.abstractThe undertaken research work for this thesis dissertation aims for the development of a fiber optics sensing platform, which allows for the effective detection of chemical and biological species at low concentrations. This work is presented as an alternative solution to the problem posed by a lack of new portable rapid-detection technology in Colombia for the in-situ measurement of low concentrations of certain substances such as the Bovine serum albumin or Mycobacterium tuberculosis sample or the toxic ions mercury in the drinking water. In response to the robust and rapid techniques generally require complex sample preparation procedures, expensive and bulky instruments, and professionally trained personnel, which limits their portability and making them more difficult to implement in the field for vulnerable populations in remote areas. This thesis dissertation firstly presents the detailed review of the state of the art of problems involved in the detection and monitoring of chemical species such as mercury in water and biological species such as the Anti-BSA and Mycobacterium tuberculosis. Then, the evaluation, modeling, designing and fabrication of cost-effective optics fiber sensors based on interferometric principles is presented in order to determine the ability to functionalize these sensing structures with chemical or biological specific recognition substances. A reliable functionalization and activation protocol was studied, implemented, and evaluated in order to obtain a sensing surface on the optical fiber structures highly selective to detect the substances at low concentrations. Finally, the implementation and integration of the functionalized optical fiber sensor within a designed platform was evaluated with the aim of demonstrating that the rapid and sensible optical response can be processed to determine and display instantly the concentration of substance. The results of this thesis dissertation were reported on six manuscripts published in peerreview indexed journals, five presentations in international conferences, and a patent filed to the Colombian Superintendence of Industry and Commerce. These products constitute the core of the present thesis.
dc.description.abstractEl trabajo investigativo llevado a cabo para la producción de esta tesis de doctorado tiene como objetivo fundamental el desarrollo de una plataforma de sensado soportado en tecnología de fibra óptica que permite la detección de especies químicas y biológicas a bajas concentraciones. Este trabajo se presenta como una alternativa de solución al problema que plantea la falta tecnología portátil de sensado en Colombia, que permita hacer medición in situ y en no más de un minuto de bajas concentraciones de sustancias, particularmente de muestras biológicas como la albúmina de suero bovino o la especie Mycobacterium tuberculosis y los niveles de mercurio en el agua. En respuesta a que las técnicas actuales robustas y rápidas de detección y análisis de sustancias, a baja concentraciones, requieren por lo general de equipos costosos, personal especializado y son poco portátiles, lo que difícilmente contribuye a su aplicación en campo y limita la posibilidad de llegar a las poblaciones vulnerables. En el desarrollo de esta tesis, que parte de una revisión detallada del estado del arte de la problemática de detección y monitoreo de especies químicas como el mercurio en agua y de especies biológica como la Mycobacterium tuberculosis, se evalúan, modelan, diseñan y construyen sensores interferométricos de bajo costo a fibra óptica que pueden ser funcionalizados para hacer reconocimiento químico o biológico específico de la sustancia a detectar. Se estudian, se implementan y se evalúan protocolos de activación y funcionalización que dotan de selectividad en la detección a los sensores desarrollados. Adicionalmente, se evalúa la implementación de los sensores interferométricos en una plataforma diseñada que permite procesar en segundos la respuesta óptica y la transduce en una medida de la concentración de sustancia. Los resultados de esta tesis de doctorado fueron consolidados en seis manuscritos publicados en revistas indexadas de circulación internacional, cinco presentaciones en eventos internacionales y una solicitud de patente ante la Superintendencia de Industria y Comercio de Colombia. Estos productos constituyen el núcleo de la presente tesis. (Texto tomado de la fuente)
dc.format.extentxx, 128 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicada
dc.titleFiber optics sensing platform for monitoring biological and chemical species at low-concentrations
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias - Doctorado en Ciencias - Física
dc.contributor.researchgroupOptica y Procesamiento Opto-Digital
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ciencias - Física
dc.description.researchareaBiosensores a fibra óptica
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedRedCol
dc.relation.indexedLaReferencia
dc.relation.referencesM. M. Rahman and R. S. Giasuddin, “Tuberculosis,” in Anwer Khan Modern Medical College Journal, vol. 3, no. 2, 2012, pp. 3–5
dc.relation.referencesWorld Health Organization, REPORTE DE TUBERCULOSIS GLOBAL 2017 OMS. 2017.
dc.relation.referencesWorld Health Organization, “Global tuberculosis report 2018 - Geneva,” 2018. doi: 10.1016/j.pharep.2017.02.021.
dc.relation.referencesG. Liu, Y. Cai, and N. O’Driscoll, Environmental Chemistry and Toxicology of Mercury. John Wiley & Sons, Ltd, 2011.
dc.relation.referencesS. L. Zuber and M. C. Newman, Mercury pollution: A transdisciplinary treatment, 1st ed. CRC Press, 2016
dc.relation.referencesM. L. Ospina Martinez, M. E. Martines Duran, O. E. Pacheco Garcia, and H. Quijada Bonilla, “Protocolo de vigilancia En salud pública en Tuberculosis.,” Ministerio de Salud y Protección Social Colombia., 2016.
dc.relation.referencesT. E. I.-C. DEPARTAMENTO ADMINISTRATIVO DE CIENCIA, “EVALUACION DEL GRADO DE CONTAMINACIÓN POR MERCURIO Y OTRAS SUSTANCIAS TÓXICAS, Y SU AFECTACIÓN EN LA SALUD HUMANA EN LAS POBLACIONES DE LA CUENCA DEL RIO ATRATO, COMO CONSECUENCIA DE LAS ACTIVIDADES DE MINERÍA,” Minist. salud, 2018, [Online]. Available: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/SA/protoc olo-sentencia-t622-vcolciencias.pdf.
dc.relation.referencesF. A. Díaz-Arriaga, “Mercurio en la minería del oro: Impacto en las fuentes hídricas destinadas para consumo humano,” Rev. Salud Publica, 2014, doi: 10.15446/rsap.v16n6.45406.
dc.relation.referencesM. de Salud, “Plan-estrategico-fin-tuberculosis-colombia-2016-2025,” Bibl. Digit. Minist. Salud, 2015.
dc.relation.referencesEl Ministerio de Ambiente y Desarrollo, “Plan de Acción Sectorial Ambiental de Mercurio,” 2018. [Online]. Available: http://www.minambiente.gov.co/images/PLAN_NACIONAL_AMBIENTAL_MERCURIO.pdf.
dc.relation.referencesA. R. Arévalo Barea, “El avance de la tuberculosis multiagresiva en los paises que no gerencian los adelantos que brinda la tecnología,” Rev. Médica La Paz, vol. 21, no. 1, pp. 3–4, 2015.
dc.relation.referencesM. Jaramillo-Grajales et al., “Diagnóstico de tuberculosis: desde lo tradicional hasta el desarrollo actual,” Med. y Lab., 2015, doi: 10.36384/01232576.129.
dc.relation.referencesJ. D. Park and W. Zheng, “Human exposure and health effects of inorganic and elemental mercury,” J. Prev. Med. Public Heal., 2012, doi: 10.3961/jpmph.2012.45.6.344.
dc.relation.referencesK. H. Kim, E. Kabir, and S. A. Jahan, “A review on the distribution of Hg in the environment and its human health impacts,” Journal of Hazardous Materials. 2016, doi: 10.1016/j.jhazmat.2015.11.031.
dc.relation.referencesI. N. de Salud, “Es hora de actuar. Pon fin a la Tuberculosis,” Boletín Epidemiológico Sem., Mar. 2019
dc.relation.referencesJ. M. Hernández Sarmiento et al., “Tuberculosis in indigenous communities of antioquia, Colombia: Epidemiology and beliefs,” J. Immigr. Minor. Heal., 2013, doi: 10.1007/s10903-012-9688-1.
dc.relation.referencesS. S. de Salud y Protección Social de Antioquia, “SITUACIÓN DE LA TUBERCULOSIS EN EL DEPARTAMENTO DE ANTIOQUIA 2015 - 2016,” Boletín Inf. para la acción, May 2017
dc.relation.referencesC. A. Ugarte Gil, Tuberculosis: Un enfoque de Derechos Humanos, 1st ed., vol. 26, no. 1. Colegio Médico del Perú, 2009.
dc.relation.referencesN. Gil, “Los Agentes Comunitarios en Salud como enlaces entre la comunidad y los servicios de salud: una experiencia hacia la eliminación de la tuberculosis en poblaciones vulnerables de Colombia 2012 - 2016,” reponameRepositorio Inf. la Organ. Int. para las Migr. OIM, 2017, Accessed: Jan. 22, 2023. [Online]. Available: https://repository.iom.int/handle/20.500.11788/1688.
dc.relation.referencesC. Y. Chen et al., “A Critical Time for Mercury Science to Inform Global Policy,” Environ. Sci. Technol., 2018, doi: 10.1021/acs.est.8b02286.
dc.relation.referencesM. Gaioli, D. Amoedo, and B. D. González, “Impacto del mercurio sobre la salud humana y el ambiente,” Archivos Argentinos de Pediatria. 2012, doi: 10.5546/aap.2012.259.
dc.relation.referencesI. C. Casas, E. Gómez, L. M. Rodríguez, S. L. Girón, and J. C. Mateus, “Hacia un plan nacional para el control de los efectos del mercurio en la salud en Colombia,” Biomedica, 2015, doi: 10.7705/biomedica.v35i0.2458.
dc.relation.referencesR. A. Benavides, “Desafios, más allá de la producción limpia y la responsabilidad social minera, en Colombia,” Medio Ambient. Derecho. Rev. electrónica derecho Ambient. Medio Ambient. Derecho. Rev. electrónica derecho Ambient., 2012.
dc.relation.referencesWHO, “WHO | Global tuberculosis report 2019,” 2020. doi: .1037//0033- 2909.I26.1.78.
dc.relation.referencesM. Lippmann, Environmental Toxicants: Human Exposures and Their Health Effects: Third Edition, 3rd ed. John Wiley & Sons Inc, 2008
dc.relation.references“Methylmercury. A Review of health hazards and side effects associated with the emission of mercury compounds into natural systems,” Food Cosmet. Toxicol., 1973, doi: 10.1016/s0015-6264(73)80437-7.
dc.relation.referencesP. Cordy et al., “Mercury contamination from artisanal gold mining in Antioquia, Colombia: The world’s highest per capita mercury pollution,” Sci. Total Environ., 2011, doi: 10.1016/j.scitotenv.2011.09.006.
dc.relation.referencesJ. Pinedo-Hernández, J. Marrugo-Negrete, and S. Díez, “Speciation and bioavailability of mercury in sediments impacted by gold mining in Colombia,” Chemosphere, 2015, doi: 10.1016/j.chemosphere.2014.09.044.
dc.relation.referencesW. H. O. WHO, “Mercury in Drinking-water, Background document for development of WHO Guidelines for Drinking-water Quality,” 2005.
dc.relation.referencesK. H. Kim and R. J. C. Brown, Mercury: Sources, applications and health impacts, 1st ed. Nova Science Publishers, Incorporated, 2013.
dc.relation.referencesT. M. Doherty et al., “Effect of sample handling on analysis of cytokine responses to Mycobacterium tuberculosis in clinical samples using ELISA, ELISPOT and quantitative PCR,” J. Immunol. Methods, vol. 298, no. 1–2, pp. 129–141, Mar. 2005, doi: 10.1016/j.jim.2005.01.013.
dc.relation.referencesM.-C. Dombret, “Tuberculosis pulmonar del adulto,” EMC - Tratado Med., 2018, doi: 10.1016/s1636-5410(17)87873-9.
dc.relation.referencesR. McNerney et al., “Tuberculosis diagnostics and biomarkers: Needs, challenges, recent advances, and opportunities,” Journal of Infectious Diseases. 2012, doi: 10.1093/infdis/jir860.
dc.relation.referencesC. Boehme et al., “Detection of mycobacterial lipoarabinomannan with an antigencapture ELISA in unprocessed urine of Tanzanian patients with suspected tuberculosis,” Trans. R. Soc. Trop. Med. Hyg., vol. 99, no. 12, pp. 893–900, Dec. 2005, doi: 10.1016/j.trstmh.2005.04.014.
dc.relation.referencesC. R. Friedman, M. Y. Stoeckle, W. D. Johnson, and L. W. Riley, “Double-repetitiveelement PCR method for subtyping Mycobacterium tuberculosis clinical isolates.,” J. Clin. Microbiol., vol. 33, no. 5, 1995.
dc.relation.referencesP. K. Mehta et al., “Immuno-PCR, a new technique for the serodiagnosis of tuberculosis,” Journal of Microbiological Methods, vol. 139. pp. 218–229, 2017, doi: 10.1016/j.mimet.2017.05.009.
dc.relation.referencesB. Jackson, V. Taylor, R. A. Baker, and E. Miller, “Low-level mercury speciation in freshwaters by isotope dilution GC-ICP-MS,” Environ. Sci. Technol., 2009, doi: 10.1021/es802656p.
dc.relation.referencesG. Nageswaran, Y. S. Choudhary, and S. Jagannathan, “Inductively Coupled Plasma Mass Spectrometry,” in Spectroscopic Methods for Nanomaterials Characterization, Elsevier, 2017, pp. 163–194.
dc.relation.referencesM. Ghaedi, M. R. Fathi, A. Shokrollahi, and F. Shajarat, “Highly selective and sensitive preconcentration of mercury ion and determination by cold vapor atomic absorption spectroscopy,” Anal. Lett., 2006, doi: 10.1080/00032710600622167.
dc.relation.referencesS. Akman, B. Demirata-Ozturk, and N. Tokman, “Atomic Absorption Spectroscopy,” in Food Toxicants Analysis: Techniques, Strategies and Developments, 1st ed., Elsevier, Ed. 2007, pp. 637–665.
dc.relation.referencesH. Morita, H. Tanaka, and S. Shimomura, “Atomic fluorescence spectrometry of mercury: principles and developments,” Spectrochim. Acta Part B At. Spectrosc., 1995, doi: 10.1016/0584-8547(94)00116-D.
dc.relation.referencesJ. L. Todolí and J. M. Mermet, “Sample introduction systems for the analysis of liquid microsamples by ICP-AES and ICP-MS,” Spectrochimica Acta - Part B Atomic Spectroscopy. 2006, doi: 10.1016/j.sab.2005.12.010.
dc.relation.referencesF. X. Han, W. D. Patterson, Y. Xia, B. B. M. Sridhar, and F. Su, “Rapid determination of mercury in plant and soil samples using inductively coupled plasma atomic emission spectroscopy, a comparative study,” Water. Air. Soil Pollut., 2006, doi: 10.1007/s11270-006-3003-5.
dc.relation.referencesQ. Hu, G. Yang, Y. Zhao, and J. Yin, “Determination of copper, nickel, cobalt, silver, lead, cadmium, and mercury ions in water by solid-phase extraction and the RPHPLC with UV-Vis detection,” Anal. Bioanal. Chem., 2003, doi: 10.1007/s00216-003- 1828-y.
dc.relation.referencesN. Kallithrakas-Kontos and S. Foteinis, “Recent Advances in the Analysis of Mercury in Water - Review,” Curr. Anal. Chem., 2015, doi: 10.2174/157341101201151007120324.
dc.relation.referencesY. C. Maya, I. Del Villar, A. B. Socorro, J. M. Corres, and J. F. Botero-Cadavid, “Optical Fiber Immunosensors Optimized with Cladding Etching and ITO Nanodeposition,” 2018, doi: 10.1109/IPCon.2018.8527306.
dc.relation.referencesB. Patino-Jurado, J. F. Botero-Cadavid, and J. Garcia-Sucerquia, “Optical Fiber Point-Source for Digital Lensless Holographic Microscopy,” J. Light. Technol., vol. 37, no. 22, 2019, doi: 10.1109/JLT.2019.2921307.
dc.relation.referencesB. Patino-Jurado, J. F. Botero-Cadavid, and J. Garcia-Sucerquia, “Step-Index Optical Fibers with 0.88 Numerical Aperture,” J. Light. Technol., vol. 37, no. 15, 2019, doi: 10.1109/JLT.2019.2919669.
dc.relation.referencesB. Patiño-Jurado, J. F. Botero-Cadavid, and J. García-Sucerquia, “Analysis of the dependence of the numerical aperture on cone angle in a tapered step-index optical fiber,” in Optics InfoBase Conference Papers, 2018, vol. Part F123-, doi: 10.1364/LAOP.2018.Tu4A.6.
dc.relation.referencesColombia Ministerio de Salud y Protección Social, “Plan Decenal de Salud Pública, PDSP, 2012 - 2021: La salud en Colombia la construyes tú,” Minist. salud, 2013, doi: 10.1177/1757975912453861.
dc.relation.referencesM. M. Veiga and B. G. Marshall, “The Colombian artisanal mining sector: Formalization is a heavy burden,” Extr. Ind. Soc., 2019, doi: 10.1016/j.exis.2018.11.001.
dc.relation.referencesF. A. Fajardo Rodríguez, “Convenio de Minamata sobre el mercurio - implicaciones jurídicas de la ratificación : el caso de la Ley 1658 de 2013,” Univ. los Andes, pp. 1– 26, 2015, Accessed: Jan. 24, 2023. [Online]. Available: http://hdl.handle.net/1992/17816.
dc.relation.referencesM. C. Beltrán Márquez, “Comercialización de oro por parte de mineros de subsistencia en el municipio de Caucasia, Antioquia y problemática asociada.” Universidad Externado de Colombia, 2020, Accessed: Jan. 24, 2023. [Online]. Available: https://bdigital.uexternado.edu.co/handle/001/3601.
dc.relation.referencesS. Vallejos et al., “A selective and highly sensitive fluorescent probe of Hg2+ in organic and aqueous media: The role of a polymer network in extending the sensing phenomena to water environments,” Sensors Actuators, B Chem., 2011, doi: 10.1016/j.snb.2011.05.041.
dc.relation.referencesK. Thyagarajan and A. Ghatak, “Optical Fiber,” in Fiber Optic Essentials, 1st ed., John Wiley & Sons, 2007, p. 256.
dc.relation.referencesE. Udd and W. B. Spillman, Fiber Optic Sensors: An Introduction for Engineers and Scientists: Second Edition. 2011.
dc.relation.referencesK. T. V. Grattan and T. Sun, “Fiber optic sensor technology: An overview,” Sensors Actuators, A Phys., 2000, doi: 10.1016/S0924-4247(99)00368-4.
dc.relation.referencesH. E. Joe, H. Yun, S. H. Jo, M. B. G. Jun, and B. K. Min, “A review on optical fiber sensors for environmental monitoring,” International Journal of Precision Engineering and Manufacturing - Green Technology. 2018, doi: 10.1007/s40684-018-0017-6.
dc.relation.referencesB. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol., 2003, doi: 10.1016/S1068-5200(02)00527-8.
dc.relation.references“Optical Fiber Sensors: Advanced Techniques and Applications - Google Libros.” https://books.google.com.co/books?hl=es&lr=&id=Vk-3BgAAQBAJ&oi=fnd&pg=PP1&dq=optical+fiber+sensors&ots=YllgpH534-&sig=K-E9UUFH31zpX2fwjPU3VQQLBQk&redir_esc=y#v=onepage&q=optical fiber sensors&f=false (accessed May 02, 2021).
dc.relation.referencesR. A. Perez-Herrera and M. Lopez-Amo, “Fiber optic sensor networks,” Opt. Fiber Technol., vol. 19, no. 6 PART B, pp. 689–699, Dec. 2013, doi: 10.1016/j.yofte.2013.07.014.
dc.relation.referencesB. H. Lee et al., “Interferometric fiber optic sensors,” Sensors. 2012, doi: 10.3390/s120302467.
dc.relation.referencesA. Ukil, H. Braendle, and P. Krippner, “Distributed temperature sensing: Review of technology and applications,” IEEE Sensors Journal, vol. 12, no. 5. pp. 885–892, 2012, doi: 10.1109/JSEN.2011.2162060.
dc.relation.referencesZ. Ding et al., “Distributed optical fiber sensors based on optical frequency domain reflectometry: A review,” Sensors, vol. 18, no. 4, p. 1072, 2018.
dc.relation.referencesH. K. Hisham and H. K. Hisham, “Optical Fiber Sensing Technology: Basics, Classifications and Applications,” Am. J. Remote Sens., vol. 6, no. 1, pp. 1–5, 2018, doi: 10.11648/j.ajrs.20180601.11.
dc.relation.referencesP. Lu et al., “Distributed optical fiber sensing: Review and perspective,” Applied Physics Reviews, vol. 6, no. 4. American Institute of Physics Inc., Dec. 01, 2019, doi: 10.1063/1.5113955.
dc.relation.referencesK. K. K. Annamdas and V. G. M. Annamdas, “Review on developments in fiber optical sensors and applications,” in Fiber Optic Sensors and Applications VII, Apr. 2010, vol. 7677, p. 76770R, doi: 10.1117/12.849799.
dc.relation.referencesD. Tosi, E. Schena, C. Molardi, and S. Korganbayev, “Fiber optic sensors for sub-centimeter spatially resolved measurements: Review and biomedical applications,” Opt. Fiber Technol., vol. 43, pp. 6–19, Jul. 2018, doi: 10.1016/j.yofte.2018.03.007.
dc.relation.referencesN. Sabri, S. A. Aljunid, M. S. Salim, and S. Fouad, “Fiber optic sensors: Short review and applications,” Springer Ser. Mater. Sci., vol. 204, pp. 299–311, 2015, doi: 10.1007/978-981-287-128-2_19.
dc.relation.referencesA. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sensors and Actuators, B: Chemical, vol. 125, no. 2. Elsevier, pp. 688–703, Aug. 08, 2007, doi: 10.1016/j.snb.2007.03.010.
dc.relation.referencesS. Minakuchi and N. Takeda, “Photonic Sensors Review Recent Advancement in Optical Fiber Sensing for Aerospace Composite Structures ,” Photonic Sensors, vol. 3, no. 4, pp. 345–354, 2013, doi: 10.1007/s13320-013-0133-4.
dc.relation.referencesB. Patino-Jurado, J. F. Botero-Cadavid, and J. Garcia-Sucerquia, “Optical Fiber Point-Source for Digital Lensless Holographic Microscopy,” J. Light. Technol., vol. 37, no. 22, 2019, doi: 10.1109/JLT.2019.2921307.
dc.relation.referencesJ. Li, H. Yan, H. Dang, and F. Meng, “Structure design and application of hollow core microstructured optical fiber gas sensor: A review,” Optics and Laser Technology, vol. 135. Elsevier Ltd, p. 106658, Mar. 01, 2021, doi: 10.1016/j.optlastec.2020.106658.
dc.relation.referencesA. G. Leal-Junior, C. Marques, A. Frizera, and M. J. Pontes, “Multi-interface level in oil tanks and applications of optical fiber sensors,” Opt. Fiber Technol., vol. 40, pp. 82–92, Jan. 2018, doi: 10.1016/j.yofte.2017.11.006.
dc.relation.referencesB. Li, H. Xin, Y. Zhang, and Y. Li, “Optical Fiber Technologies for Nanomanipulation and Biodetection: A Review,” J. Light. Technol. Vol. 39, Issue 1, pp. 251-262, vol. 39, no. 1, pp. 251–262, Jan. 2021, Accessed: May 02, 2021. [Online]. Available: https://www.osapublishing.org/abstract.cfm?uri=jlt-39-1-251.
dc.relation.referencesG. Rajan, “Introduction to Optical Fiber Sensors,” in Optical Fiber Sensors, CRC Press, 2018, pp. 1–12.
dc.relation.referencesP. Roriz, A. Ramos, J. L. Santos, and J. A. Simões, “Fiber optic intensity-modulated sensors: A review in biomechanics,” Photonic Sensors, vol. 2, no. 4. Springer, pp. 315–330, Dec. 13, 2012, doi: 10.1007/s13320-012-0090-3.
dc.relation.referencesY. Zhao, H. Zhao, R. qing Lv, and J. Zhao, “Review of optical fiber Mach–Zehnder interferometers with micro-cavity fabricated by femtosecond laser and sensing applications,” Optics and Lasers in Engineering, vol. 117. Elsevier Ltd, pp. 7–20, Jun. 01, 2019, doi: 10.1016/j.optlaseng.2018.12.013.
dc.relation.referencesZ. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express, 2008, doi: 10.1364/OE.16.002252.
dc.relation.referencesB. Culshaw, “The optical fibre Sagnac interferometer: An overview of its principles and applications,” in Measurement Science and Technology, Jan. 2006, vol. 17, no. 1, p. R1, doi: 10.1088/0957-0233/17/1/R01.
dc.relation.referencesA. Méndez, “Fiber Bragg grating sensors: a market overview,” in Third European Workshop on Optical Fibre Sensors, Jul. 2007, vol. 6619, p. 661905, doi: 10.1117/12.738334.
dc.relation.referencesP. Pilla et al., “Long Period Grating coated with high refractive index layer,” in Proceedings of WFOPC2005 - 4th IEEE/LEOS Workshop on Fibres and Optical Passive Components, 2005, vol. 2005, pp. 370–375, doi: 10.1109/WFOPC.2005.1462157.
dc.relation.referencesJ. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors Actuators, B Chem., vol. 54, no. 1, pp. 3–15, Jan. 1999, doi: 10.1016/S0925-4005(98)00321-9.
dc.relation.referencesI. Del Villar et al., “Optical sensors based on lossy-mode resonances,” Sensors and Actuators, B: Chemical, vol. 240. Elsevier B.V., pp. 174–185, Mar. 01, 2017, doi: 10.1016/j.snb.2016.08.126.
dc.relation.referencesH. K. Kim, H. G. Park, B. Y. Kim, and S. K. Kim, “Polarimetric fiber laser sensors,” Opt. Lett., vol. 18, no. 4, p. 317, Feb. 1993, doi: 10.1364/ol.18.000317.
dc.relation.references“A Polarization-Modulated Fiber-Optic Sensor for Simultaneous Measurement of Two Parameters--《Acta Optica Sinica》2001年01期.” https://en.cnki.com.cn/Article_en/CJFDTotal-GXXB200101021.htm (accessed May 02, 2021).
dc.relation.referencesH. E. Joe, H. Yun, S. H. Jo, M. B. G. Jun, and B. K. Min, “A review on optical fiber sensors for environmental monitoring,” International Journal of Precision Engineering and Manufacturing - Green Technology, vol. 5, no. 1. Korean Society for Precision Engineering, pp. 173–191, Jan. 01, 2018, doi: 10.1007/s40684-018-0017-6.
dc.relation.referencesX. Sang, C. Yu, T. Mayteevarunyoo, K. Wang, Q. Zhang, and P. L. Chu, “Temperature-insensitive chemical sensor based on a fiber Bragg grating,” Sensors Actuators, B Chem., vol. 120, no. 2, pp. 754–757, Jan. 2007, doi: 10.1016/j.snb.2006.03.046.
dc.relation.referencesM. P. DeLisa et al., “Evanescent wave long-period fiber bragg grating as an immobilized antibody biosensor,” Anal. Chem., vol. 72, no. 13, pp. 2895–2900, Jul. 2000, doi: 10.1021/ac9912395.
dc.relation.referencesS. Sridevi, K. S. Vasu, S. Asokan, and A. K. Sood, “Sensitive detection of C-reactive protein using optical fiber Bragg gratings,” Biosens. Bioelectron., vol. 65, pp. 251–256, Mar. 2015, doi: 10.1016/j.bios.2014.10.033.
dc.relation.referencesB. Zhang and M. Kahrizi, “High-temperature resistance Fiber Bragg grating temperature sensor fabrication,” IEEE Sens. J., vol. 7, no. 4, pp. 586–591, Apr. 2007, doi: 10.1109/JSEN.2007.891941.
dc.relation.referencesY. Ouyang, J. Liu, X. Xu, Y. Zhao, and A. Zhou, “Phase-Shifted Eccentric Core Fiber Bragg Grating Fabricated by Electric Arc Discharge for Directional Bending Measurement,” Sensors, vol. 18, no. 4, p. 1168, Apr. 2018, doi: 10.3390/s18041168.
dc.relation.referencesY. J. Rao, “In-fibre Bragg grating sensors,” Measurement Science and Technology, vol. 8, no. 4. Institute of Physics Publishing, pp. 355–375, Apr. 01, 1997, doi: 10.1088/0957-0233/8/4/002.
dc.relation.references“Fiber Bragg Gratings - 2nd Edition.” https://www.elsevier.com/books/fiber-bragg-gratings/kashyap/978-0-12-372579-0 (accessed May 02, 2021).
dc.relation.referencesD. J. Webb et al., “Spectral Characteristics of Tapered LPG Device as a Sensing Element for Refractive Index and Temperature,” J. Light. Technol. Vol. 24, Issue 2, pp. 870-, vol. 24, no. 2, pp. 870-, Feb. 2006, Accessed: May 02, 2021. [Online]. Available: https://www.osapublishing.org/abstract.cfm?uri=jlt-24-2-870.
dc.relation.referencesO. V. Ivanov, “Fabrication of long-period fiber gratings by twisting a standard single-mode fiber,” Opt. Lett., vol. 30, no. 24, p. 3290, Dec. 2005, doi: 10.1364/OL.30.003290.
dc.relation.referencesZ. M. Zheng, Y. Sen Yu, X. Y. Zhang, Q. Guo, and H. B. Sun, “Femtosecond Laser Inscribed Small-Period Long-Period Fiber Gratings with Dual-Parameter Sensing,” IEEE Sens. J., vol. 18, no. 3, pp. 1100–1103, Feb. 2018, doi: 10.1109/JSEN.2017.2761794.
dc.relation.referencesS. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: Characteristics and application,” Meas. Sci. Technol., vol. 14, no. 5, p. R49, Mar. 2003, doi: 10.1088/0957-0233/14/5/201.
dc.relation.referencesT. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Characterization of infrared surface plasmon resonances generated from a fiber-optical sensor utilizing tilted Bragg gratings,” J. Opt. Soc. Am. B, vol. 25, no. 4, p. 481, Apr. 2008, doi: 10.1364/josab.25.000481.
dc.relation.referencesS. A. Meyer, B. Auguié, E. C. Le Ru, and P. G. Etchegoin, “Combined SPR and SERS microscopy in the Kretschmann configuration,” J. Phys. Chem. A, vol. 116, no. 3, pp. 1000–1007, Jan. 2012, doi: 10.1021/jp2107507.
dc.relation.referencesM. Li, S. K. Cushing, and N. Wu, “Plasmon-enhanced optical sensors: A review,” Analyst. 2015, doi: 10.1039/c4an01079e.
dc.relation.referencesJ. Cao, Y. Sun, Y. Kong, and W. Qian, “The Sensitivity of Grating-Based SPR Sensors with Wavelength Interrogation,” Sensors, vol. 19, no. 2, p. 405, Jan. 2019, doi: 10.3390/s19020405.
dc.relation.referencesJ. Homola and M. Piliarik, “Surface Plasmon Resonance (SPR) Sensors,” Springer, Berlin, Heidelberg, 2006, pp. 45–67.
dc.relation.referencesJ. N. Dash and R. Jha, “Highly sensitive D shaped PCF sensor based on SPR for near IR,” Opt. Quantum Electron., vol. 48, no. 2, pp. 1–7, Feb. 2016, doi: 10.1007/s11082-016-0423-3.
dc.relation.referencesN. Cennamo, G. D’Agostino, M. Pesavento, and L. Zeni, “High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of l-nicotine,” Sensors Actuators, B Chem., vol. 191, pp. 529–536, Feb. 2014, doi: 10.1016/j.snb.2013.10.067.
dc.relation.referencesP. Zubiate, C. R. Zamarreño, I. Del Villar, I. R. Matias, and F. J. Arregui, “High sensitive refractometers based on lossy mode resonances (LMRs) supported by ITO coated D-shaped optical fibers,” Opt. Express, vol. 23, no. 6, p. 8045, Mar. 2015, doi: 10.1364/oe.23.008045.
dc.relation.referencesC. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matías, and F. J. Arregui, “Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings,” Sensors Actuators, B Chem., vol. 155, no. 1, pp. 290–297, Jul. 2011, doi: 10.1016/j.snb.2010.12.037.
dc.relation.referencesA. Ozcariz, M. Dominik, M. Smietana, C. R. Zamarreño, I. Del Villar, and F. J. Arregui, “Lossy mode resonance optical sensors based on indium-gallium-zinc oxide thin film,” Sensors Actuators, A Phys., vol. 290, pp. 20–27, May 2019, doi: 10.1016/j.sna.2019.03.010.
dc.relation.referencesS. K. Mishra, S. P. Usha, and B. D. Gupta, “A lossy mode resonance-based fiber optic hydrogen gas sensor for room temperature using coatings of ITO thin film and nanoparticles,” Meas. Sci. Technol., vol. 27, no. 4, p. 045103, Feb. 2016, doi: 10.1088/0957-0233/27/4/045103.
dc.relation.referencesA. B. Socorro, J. M. Corres, I. Del Villar, F. J. Arregui, and I. R. Matias, “Fiber-optic biosensor based on lossy mode resonances,” Sensors Actuators, B Chem., vol. 174, pp. 263–269, Nov. 2012, doi: 10.1016/j.snb.2012.07.039.
dc.relation.referencesS. P. Usha, S. K. Mishra, and B. D. Gupta, “Fiber optic hydrogen sulfide gas sensors utilizing ZnO thin film/ZnO nanoparticles: A comparison of surface plasmon resonance and lossy mode resonance,” Sensors Actuators, B Chem., vol. 218, pp. 196–204, Oct. 2015, doi: 10.1016/j.snb.2015.04.108.
dc.relation.referencesP. Sanchez, C. R. Zamarreno, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Considerations for lossy-mode resonance-based optical fiber sensor,” IEEE Sens. J., vol. 13, no. 4, pp. 1167–1171, 2013, doi: 10.1109/JSEN.2012.2227717.
dc.relation.referencesY. J. Rao, “Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors,” Opt. Fiber Technol., vol. 12, no. 3, pp. 227–237, Jul. 2006, doi: 10.1016/j.yofte.2006.03.004.
dc.relation.referencesP. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, and O. Frazão, “Fabry-Pérot cavities based on chemical etching for high temperature and strain measurement,” Opt. Commun., vol. 285, no. 6, pp. 1159–1162, Mar. 2012, doi: 10.1016/j.optcom.2011.11.097.
dc.relation.referencesC. R. Liao, T. Y. Hu, and D. N. Wang, “Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing,” Opt. Express, vol. 20, no. 20, p. 22813, Sep. 2012, doi: 10.1364/oe.20.022813.
dc.relation.referencesL. Li et al., “Integration of miniature Fabry-Perot fiber optic sensor with FBG for the measurement of temperature and strain,” Opt. Commun., vol. 284, no. 6, pp. 1612–1615, Mar. 2011, doi: 10.1016/j.optcom.2010.11.010.
dc.relation.referencesY. Zhang, H. Shibru, K. L. Cooper, and A. Wang, “Miniature fiber-optic multicavity Fabry–Perot interferometric biosensor,” Opt. Lett., vol. 30, no. 9, p. 1021, May 2005, doi: 10.1364/ol.30.001021.
dc.relation.referencesL. Li, L. Xia, Z. Xie, and D. Liu, “All-fiber Mach-Zehnder interferometers for sensing applications,” Opt. Express, vol. 20, no. 10, p. 11109, May 2012, doi: 10.1364/oe.20.011109.
dc.relation.referencesY. Cardona-Maya, I. Del Villar, A. B. Socorro, J. M. Corres, I. R. Matias, and J. F. Botero-Cadavid, “Wavelength and Phase Detection Based SMS Fiber Sensors Optimized with Etching and Nanodeposition,” J. Light. Technol., 2017, doi: 10.1109/JLT.2017.2719923.
dc.relation.referencesM. Shao, X. Qiao, H. Fu, H. Li, Z. Jia, and H. Zhou, “Refractive index sensing of sMS fiber structure based mach-Zehnder interferometer,” IEEE Photonics Technol. Lett., vol. 26, no. 5, pp. 437–439, Mar. 2014, doi: 10.1109/LPT.2013.2295375.
dc.relation.referencesQ. Rong, X. Qiao, R. Wang, H. Sun, M. Hu, and Z. Feng, “High-sensitive fiber-optic refractometer based on a core-diameter-mismatch mach-zehnder interferometer,” IEEE Sens. J., vol. 12, no. 7, pp. 2501–2505, 2012, doi: 10.1109/JSEN.2012.2194700.
dc.relation.referencesZ. Tian et al., “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett., vol. 20, no. 8, pp. 626–628, Apr. 2008, doi: 10.1109/LPT.2008.919507.
dc.relation.referencesO. Frazão et al., “All-fiber Mach-Zehnder curvature sensor based on multimode interference combined with a long-period grating,” Opt. Lett., vol. 32, no. 21, p. 3074, Nov. 2007, doi: 10.1364/ol.32.003074.
dc.relation.referencesH. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express, vol. 15, no. 9, p. 5711, Apr. 2007, doi: 10.1364/OE.15.005711.
dc.relation.referencesB. J. Vakoc, G. S. Kino, and M. J. F. Digonnet, “A Novel Fiber-Optic Sensor Array Based on the Sagnac Interferometer,” J. Light. Technol. Vol. 17, Issue 11, pp. 2316-, vol. 17, no. 11, pp. 2316-, Nov. 1999, Accessed: May 02, 2021. [Online]. Available: https://www.osapublishing.org/abstract.cfm?uri=jlt-17-11-2316.
dc.relation.referencesX. Fang, “A variable-loop sagnac interferometer for distributed impact sensing,” J. Light. Technol., vol. 14, no. 10, pp. 2250–2254, Oct. 1996, doi: 10.1109/50.541215.
dc.relation.referencesJ. Blake, P. Tantaswadi, and R. T. De Carvalho, “In-line sagnac interferometer current sensor,” IEEE Trans. Power Deliv., vol. 11, no. 1, pp. 116–121, 1996, doi: 10.1109/61.484007.
dc.relation.referencesE. Udd, “<title>Fiber-Optic Acoustic Sensor Based On The Sagnac Interferometer</title>,” in Single Mode Optical Fibers, Nov. 1983, vol. 0425, pp. 90–95, doi: 10.1117/12.936219
dc.relation.referencesA. N. Starodumov, L. A. Zenteno, D. Monzon, and E. De La Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett., vol. 70, no. 1, pp. 19–21, Jan. 1997, doi: 10.1063/1.119290.
dc.relation.referencesE. De la Rosa, L. A. Zenteno, A. N. Starodumov, and D. Monzon, “All-fiber absolute temperature sensor using an unbalanced high-birefringence Sagnac loop,” Opt. Lett., vol. 22, no. 7, p. 481, Apr. 1997, doi: 10.1364/ol.22.000481.
dc.relation.referencesP. L. Swart, “Long-period grating Michelson refractometric sensor,” Meas. Sci. Technol., vol. 15, no. 8, pp. 1576–1580, Jul. 2004, doi: 10.1088/0957-0233/15/8/025.
dc.relation.referencesZ. Tian, S. S.-H. Yam, and H.-P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett., vol. 33, no. 10, p. 1105, May 2008, doi: 10.1364/ol.33.001105.
dc.relation.referencesH. Sun, M. Shao, L. Han, J. Liang, R. Zhang, and H. Fu, “Large core-offset based in-fiber Michelson interferometer for humidity sensing,” Opt. Fiber Technol., vol. 55, p. 102153, Mar. 2020, doi: 10.1016/j.yofte.2020.102153.
dc.relation.referencesD. Wu, T. Zhu, and M. Liu, “A high temperature sensor based on a peanut-shape structure Michelson interferometer,” Opt. Commun., vol. 285, no. 24, pp. 5085–5088, Nov. 2012, doi: 10.1016/j.optcom.2012.06.091.
dc.relation.referencesE. Udd and W. B. Spillman, Fiber Optic Sensors: An Introduction for Engineers and Scientists: Second Edition. 201
dc.relation.referencesG. Kostovski, P. R. Stoddart, and A. Mitchell, “The optical fiber tip: An inherently light-coupled microscopic platform for micro- and nanotechnologies,” Advanced Materials. 2014, doi: 10.1002/adma.201304605.
dc.relation.referencesE. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Kratschmer, “Near Field Scanning Optical Microscopy (NSOM): Development and Biophysical Applications,” Biophys. J., 1986, doi: 10.1016/S0006-3495(86)83640-2.
dc.relation.referencesM. Garcia-Parajo, E. Cambril, and Y. Chen, “Simultaneous scanning tunneling microscope and collection mode scanning near-field optical microscope using gold coated optical fiber probes,” Appl. Phys. Lett., 1994, doi: 10.1063/1.112024.
dc.relation.referencesB. I. Yakobson, A. LaRosa, H. D. Hallen, and M. A. Paesler, “Thermal/optical effects in NSOM probes,” Ultramicroscopy, 1995, doi: 10.1016/0304-3991(95)00121-2.
dc.relation.referencesP. Hoffmann, B. Dutoit, and R. P. Salathé, “Comparison of mechanically drawn and protection layer chemically etched optical fiber tips,” Ultramicroscopy, vol. 61, no. 1–4, pp. 165–170, 1995, doi: 10.1016/0304-3991(95)00122-0.
dc.relation.referencesG. A. Valaskovic, M. Holton, and G. H. Morrison, “Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes,” Appl. Opt., 1995, doi: 10.1364/AO.34.001215.
dc.relation.referencesZ. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express, 2008, doi: 10.1364/OE.16.002252.
dc.relation.referencesR. S. Taylor, C. Hnatovsky, E. Simova, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Femtosecond laser fabrication of nanostructures in silica glass,” Opt. Lett., 2003, doi: 10.1016/j.ijmedinf.2006.12.004.
dc.relation.referencesY. Ju, H. Sato, and H. Soyama, “Fabrication of the tip of GaAs microwave probe by wet etching,” in ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference, 2005, pp. 1919–1922.
dc.relation.referencesH. Nikbakht, H. Latifi, M. Oraie, and T. Amini, “Fabrication of tapered tip fibers with a controllable cone angle using dynamical etching,” J. Light. Technol., vol. 33, no. 23, pp. 4707–4711, 2015, doi: 10.1109/JLT.2015.2453365.
dc.relation.referencesP. Lambelet, A. Sayah, M. Pfeffer, C. Philipona, and F. Marquis-Weible, “Chemically etched fiber tips for near-field optical microscopy: a process for smoother tips,” Appl. Opt., vol. 37, no. 31, p. 7289, 1998, doi: 10.1364/AO.37.007289.
dc.relation.referencesA. Barucci et al., “Optical fibre nanotips fabricated by a dynamic chemical etching for sensing applications,” J. Appl. Phys., 2015, doi: 10.1063/1.4906854.
dc.relation.referencesP. Burgos et al., “Near-field scanning optical microscopy probes: A comparison of pulled and double-etched bent NSOM probes for fluorescence imaging of biological samples,” J. Microsc., 2003, doi: 10.1046/j.1365-2818.2003.01197.x.
dc.relation.referencesY. K. Cheong, K. S. Lim, W. H. Lim, W. Y. Chong, R. Zakaria, and H. Ahmad, “Note: Fabrication of tapered fibre tip using mechanical polishing method,” Rev. Sci. Instrum., vol. 82, no. 8, pp. 26–29, 2011, doi: 10.1063/1.3627374.
dc.relation.referencesJ. P. Clarkin, R. J. Timmerman, and J. H. Shannon, “Shaped fiber tips for medical and industrial applications,” in Optical fibers and sensors for medical applications IV, 2004, vol. 5317, pp. 70–81.
dc.relation.referencesR. M. Verdaasdonk and C. Borst, “{R}ay tracing of optically modified fiber tips. 2: laser scalpels,” Appl. Opt., 1991, doi: 10.1364/AO.30.002172.
dc.relation.referencesR. M. Verdaasdonk and C. Borst, “Ray tracing of optically modified fiber tips. 1: spherical probes,” Appl. Opt., vol. 30, no. 16, pp. 2159–2171, 1991.
dc.relation.referencesL. Lilge, L. Vesselov, and W. Whittington, “Thin cylindrical diffusers in multimode Ge-doped silica fibers,” Lasers Surg. Med., 2005, doi: 10.1002/lsm.20150.
dc.relation.referencesA. Klini et al., “Reproducible optical fiber tips for photon scanning tunneling microscopy with very small (<5°) cone angle,” J. Light. Technol., vol. 16, no. 7, pp. 1220–1227, 1998, doi: 10.1109/50.701400.
dc.relation.referencesS. I. Hosain, Y. Lacroute, and J. P. Goudonnet, “A simple low-cost highly reproducible method of fabricating optical fiber tips for a photon scanning tunneling microscope,” Microw. Opt. Technol. Lett., 1996, doi: 10.1002/(SICI)1098-2760(19961205)13:5<243::AID-MOP1>3.0.CO;2-G.
dc.relation.referencesP. Wang, L. Bo, Y. Semenova, Q. Wu, G. Farrell, and G. Brambilla, “A multimode fiber tip based temperature sensor,” Adv. Photonics 2013 (2013), Pap. SM2D.4, p. SM2D.4, Jul. 2013, doi: 10.1364/SENSORS.2013.SM2D.4.
dc.relation.referencesP.-K. Wei and Y.-H. Tai, “Sensitive liquid refractive index sensors using tapered optical fiber tips,” Opt. Lett. Vol. 35, Issue 7, pp. 944-946, vol. 35, no. 7, pp. 944–946, Apr. 2010, doi: 10.1364/OL.35.000944.
dc.relation.referencesV. Bhardwaj and V. K. Singh, “Optical fiber cone taper tip sensor for refractive index measurement,” Indian J. Pure Appl. Phys., vol. 55, no. 5, pp. 345–348, 2017, Accessed: Jul. 12, 2021. [Online]. Available: http://14.139.47.23/index.php/IJPAP/article/view/10721.
dc.relation.referencesD. R. Turner, “Etch procedure for optical fibers,” 4469554, 1984.
dc.relation.referencesM. Tao, Y. Jin, N. Gu, and L. Huang, “A method to control the fabrication of etched optical fiber probes with nanometric tips,” J. Opt. A Pure Appl. Opt., vol. 12, no. 1, 2010, doi: 10.1088/2040-8978/12/1/015503.
dc.relation.referencesX. Li, L. Liu, J. Zhao, and J. Tan, “Optical Properties of Sodium Chloride Solution Within the Spectral Range from 300 to 2500 nm at Room Temperature.,” Appl. Spectrosc., vol. 69, no. 5, pp. 635–40, May 2015, doi: 10.1366/14-07769R.
dc.relation.referencesL. Mandel, E. Wolf, and P. Meystre, “Optical Coherence and Quantum Optics,” Am. J. Phys., 1996, doi: 10.1119/1.18450.
dc.relation.referencesA. Ukil, H. Braendle, and P. Krippner, “Distributed temperature sensing: Review of technology and applications,” IEEE Sensors Journal, vol. 12, no. 5. pp. 885–892, 2012, doi: 10.1109/JSEN.2011.2162060.
dc.relation.referencesP. R. N. Childs, J. R. Greenwood, and C. A. Long, “Review of temperature measurement,” Rev. Sci. Instrum., vol. 71, no. 8, p. 2959, Jul. 2000, doi: 10.1063/1.1305516.
dc.relation.referencesA. Ghosh, C. Zhang, S. Q. Shi, and H. Zhang, “High-Temperature Gas Sensors for Harsh Environment Applications: A Review,” CLEAN – Soil, Air, Water, vol. 47, no. 8, p. 1800491, Aug. 2019, doi: 10.1002/CLEN.201800491.
dc.relation.referencesM. R. Werner and W. R. Fahrner, “Review on materials, microsensors, systems, and devices for high-temperature and harsh-environment applications,” IEEE Trans. Ind. Electron., vol. 48, no. 2, pp. 249–257, Apr. 2001, doi: 10.1109/41.915402.
dc.relation.referencesM. Mansoor, I. Haneef, S. Akhtar, A. De Luca, and F. Udrea, “Silicon diode temperature sensors—A review of applications,” Sensors Actuators A Phys., vol. 232, pp. 63–74, Aug. 2015, doi: 10.1016/J.SNA.2015.04.022.
dc.relation.referencesH. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express, vol. 15, no. 9, p. 5711, Apr. 2007, doi: 10.1364/OE.15.005711.
dc.relation.referencesJ. Chen, Y. Zhu, Z. Guo, and A. G. Nasibulin, “Recent progress on thermo-electrical properties of conductive polymer composites and their application in temperature sensors,” Eng. Sci., vol. 12, pp. 13–22, 2020, doi: 10.30919/ES8D1129.
dc.relation.referencesJ. J. Patil, Y. H. Patil, and A. Ghosh, “Comprehensive and Analytical Review on Optical Fiber Refractive Index Sensor,” Proc. 4th Int. Conf. Trends Electron. Informatics, ICOEI 2020, pp. 169–175, Jun. 2020, doi: 10.1109/ICOEI48184.2020.9142916.
dc.relation.referencesT. Takeo and H. Hattori, “Optical Fiber Sensor for Measuring Refractive Index,” Jpn. J. Appl. Phys., vol. 21, no. 10, pp. 1509–1512, Oct. 1982, doi: 10.1143/JJAP.21.1509/XML.
dc.relation.referencesP. Nath, H. K. Singh, P. Datta, and K. C. Sarma, “All-fiber optic sensor for measurement of liquid refractive index,” Sensors Actuators A Phys., vol. 148, no. 1, pp. 16–18, Nov. 2008, doi: 10.1016/J.SNA.2008.06.027.
dc.relation.referencesJ. Li, “A review: Development of novel fiber-optic platforms for bulk and surface refractive index sensing applications,” Sensors and Actuators Reports, vol. 2, no. 1, p. 100018, Nov. 2020, doi: 10.1016/J.SNR.2020.100018.
dc.relation.referencesN. Sabri, S. A. Aljunid, M. S. Salim, R. B. Ahmad, and R. Kamaruddin, “Toward Optical Sensors: Review and Applications,” J. Phys. Conf. Ser., vol. 423, no. 1, p. 012064, Apr. 2013, doi: 10.1088/1742-6596/423/1/012064.
dc.relation.referencesS. Mononobe and M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Light. Technol., 1996, doi: 10.1109/50.541212.
dc.relation.referencesM. A. Mahdi, M. H. A. Bakar, R. Narayanaswamy, T. K. Yadav, and Y. M. Kamil, “Single mode tapered fiber-optic interferometer based refractive index sensor and its application to protein sensing,” Opt. Express, Vol. 22, Issue 19, pp. 22802-22807, vol. 22, no. 19, pp. 22802–22807, Sep. 2014, doi: 10.1364/OE.22.022802.
dc.relation.referencesJ. E. Betancur-Ochoa, V. P. Minkovich, and Y. J. Montagut-Ferizzola, “Special Photonic Crystal Modal Interferometer for Highly Sensitive Biosensing,” J. Light. Technol. Vol. 35, Issue 21, pp. 4747-4751, vol. 35, no. 21, pp. 4747–4751, Nov. 2017, Accessed: Jul. 19, 2021. [Online]. Available: https://www.osapublishing.org/abstract.cfm?uri=jlt-35-21-4747.
dc.relation.referencesB. H. Lee, E. S. Choi, H. Y. Choi, K. S. Park, S. J. Park, and U.-C. Paek, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry–Perot interferometer,” Opt. Lett. Vol. 33, Issue 21, pp. 2455-2457, vol. 33, no. 21, pp. 2455–2457, Nov. 2008, doi: 10.1364/OL.33.002455.
dc.relation.referencesP.-K. Wei and Y.-H. Tai, “Sensitive liquid refractive index sensors using tapered optical fiber tips,” Opt. Lett. Vol. 35, Issue 7, pp. 944-946, vol. 35, no. 7, pp. 944–946, Apr. 2010, doi: 10.1364/OL.35.000944.
dc.relation.referencesJ. N. Dash and R. Jha, “Highly sensitive D shaped PCF sensor based on SPR for near IR,” Opt. Quantum Electron., vol. 48, no. 2, pp. 1–7, Feb. 2016, doi: 10.1007/s11082-016-0423-3.
dc.relation.referencesJ. Homola and M. Piliarik, “Surface Plasmon Resonance (SPR) Sensors,” Springer, Berlin, Heidelberg, 2006, pp. 45–67.
dc.relation.referencesP. Pilla et al., “Long Period Grating coated with high refractive index layer,” in Proceedings of WFOPC2005 - 4th IEEE/LEOS Workshop on Fibres and Optical Passive Components, 2005, vol. 2005, pp. 370–375, doi: 10.1109/WFOPC.2005.1462157.
dc.relation.referencesD. J. Webb et al., “Spectral Characteristics of Tapered LPG Device as a Sensing Element for Refractive Index and Temperature,” J. Light. Technol. Vol. 24, Issue 2, pp. 870-, vol. 24, no. 2, pp. 870-, Feb. 2006, Accessed: May 02, 2021. [Online]. Available: https://www.osapublishing.org/abstract.cfm?uri=jlt-24-2-870.
dc.relation.referencesD. Chu, J. Duan, K. Yin, X. Dong, Y. Song, and Z. Xie, “High temperature-sensitivity sensor based on long period fiber grating inscribed with femtosecond laser transversal-scanning method,” Chinese Opt. Lett. Vol. 15, Issue 9, pp. 090602-, vol. 15, no. 9, pp. 090602-, Sep. 2017, Accessed: Jul. 26, 2021. [Online]. Available: https://www.osapublishing.org/abstract.cfm?uri=col-15-9-090602.
dc.relation.referencesM. A. Riza, Y. I. Go, S. W. Harun, and R. R. J. Maier, “FBG Sensors for Environmental and Biochemical Applications - A Review,” IEEE Sens. J., vol. 20, no. 14, pp. 7614–7627, Jul. 2020, doi: 10.1109/JSEN.2020.2982446.
dc.relation.referencesA. Méndez, “Fiber Bragg grating sensors: a market overview,” in Third European Workshop on Optical Fibre Sensors, Jul. 2007, vol. 6619, p. 661905, doi: 10.1117/12.738334.
dc.relation.referencesX. Sang, C. Yu, T. Mayteevarunyoo, K. Wang, Q. Zhang, and P. L. Chu, “Temperature-insensitive chemical sensor based on a fiber Bragg grating,” Sensors Actuators, B Chem., vol. 120, no. 2, pp. 754–757, Jan. 2007, doi: 10.1016/j.snb.2006.03.046.
dc.relation.referencesQ. Wu et al., “Singlemode-Multimode-Singlemode Fiber Structures for Sensing Applications-A Review,” IEEE Sens. J., vol. 21, no. 11, pp. 12734–12751, Jun. 2021, doi: 10.1109/JSEN.2020.3039912.
dc.relation.referencesZ. Huang, Y. Zhu, X. Chen, and A. Wang, “Intrinsic Fabry-Pérot fiber sensor for temperature and strain measurements,” IEEE Photonics Technol. Lett., vol. 17, no. 11, pp. 2403–2405, Nov. 2005, doi: 10.1109/LPT.2005.857236.
dc.relation.referencesK. Tian et al., “High sensitivity temperature sensor based on singlemode-no-core-singlemode fibre structure and alcohol,” Sensors Actuators A Phys., vol. 284, pp. 28–34, Dec. 2018, doi: 10.1016/J.SNA.2018.10.016.
dc.relation.referencesP. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett., vol. 94, no. 13, p. 131110, Apr. 2009, doi: 10.1063/1.3115029.
dc.relation.referencesJ. Zhou et al., “Intensity modulated refractive index sensor based on optical fiber Michelson interferometer,” Sensors Actuators B Chem., vol. 208, pp. 315–319, Mar. 2015, doi: 10.1016/J.SNB.2014.11.014.
dc.relation.referencesC. Zhang, S. Xu, J. Zhao, H. Li, H. Bai, and C. Miao, “Intensity-modulated refractive index sensor with anti-light source fluctuation based on no-core fiber filter,” Opt. Laser Technol., vol. 97, pp. 358–363, Dec. 2017, doi: 10.1016/J.OPTLASTEC.2017.07.023.
dc.relation.referencesT. H. C. De Barros, J. E. S. Sousa, H. P. Alves, and J. F. Martins-Filho, “D-Shaped Plastic Optical Fibers: Fabrication and Characterization as Refractive Index Sensor,” 2021 SBMO/IEEE MTT-S Int. Microw. Optoelectron. Conf. IMOC 2021, 2021, doi: 10.1109/IMOC53012.2021.9624875
dc.relation.referencesJ. Mohanraj, V. Velmurugan, S. Sathiyan, and S. Sivabalan, “All fiber-optic ultra-sensitive temperature sensor using few-layer MoS2 coated D-shaped fiber,” Opt. Commun., vol. 406, pp. 139–144, Jan. 2018, doi: 10.1016/J.OPTCOM.2017.06.011.
dc.relation.referencesN. Gaber et al., “Volume refractometry of liquids using stable optofluidic Fabry-Pérot resonator with curved surfaces,” https://doi.org/10.1117/12.2076034, vol. 9375, pp. 192–200, Feb. 2015, doi: 10.1117/12.2076034.
dc.relation.referencesR. M. André et al., “Simultaneous measurement of temperature and refractive index using focused ion beam milled Fabry-Perot cavities in optical fiber micro-tips,” Opt. Express, Vol. 24, Issue 13, pp. 14053-14065, vol. 24, no. 13, pp. 14053–14065, Jun. 2016, doi: 10.1364/OE.24.014053.
dc.relation.referencesD. Wu, T. Zhu, and M. Liu, “A high temperature sensor based on a peanut-shape structure Michelson interferometer,” Opt. Commun., vol. 285, no. 24, pp. 5085–5088, Nov. 2012, doi: 10.1016/J.OPTCOM.2012.06.091.
dc.relation.referencesC. H. Chen, W. Te Wu, and J. N. Wang, “All-fiber microfluidic multimode Mach–Zehnder interferometers as high sensitivity refractive index sensors,” Microsyst. Technol. 2016 232, vol. 23, no. 2, pp. 429–440, Apr. 2016, doi: 10.1007/S00542-016-2928-X.
dc.relation.referencesE. I. Pacheco-Chacon et al., “An aluminum-coated asymmetric core-offset Mach-Zehnder interferometer temperature sensor,” Opt. Fiber Technol., vol. 65, p. 102591, Sep. 2021, doi: 10.1016/J.YOFTE.2021.102591.
dc.relation.referencesA. K. Pathak, V. Bhardwaj, R. K. Gangwar, and V. K. Singh, “SPR based fiber sensor to measure refractive index of glycerol and acetone,” Proc. 2015 Int. Conf. Microw. Photonics, ICMAP 2015, Feb. 2016, doi: 10.1109/ICMAP.2015.7408711.
dc.relation.referencesW. Luo et al., “Temperature effects on surface plasmon resonance sensor based on side-polished D-shaped photonic crystal fiber,” Measurement, vol. 181, p. 109504, Aug. 2021, doi: 10.1016/J.MEASUREMENT.2021.109504.
dc.relation.referencesT. Guo, T. Zhang, and X. Qiao, “FBG-EFPI sensor for large strain measurement with low temperature crosstalk,” Opt. Commun., vol. 473, p. 125945, Oct. 2020, doi: 10.1016/J.OPTCOM.2020.125945.
dc.relation.referencesR. Fiorin, V. De Oliveira, H. J. Kalinowski, R. C. Kamikawachi, and I. Abe, “FBG-Assisted Micro-Channel for Refractive Index Measurements,” IEEE Photonics Technol. Lett., vol. 33, no. 1, pp. 35–38, Jan. 2021, doi: 10.1109/LPT.2020.3043088.
dc.relation.referencesB. O. Guan, H. Y. Tam, X. M. Tao, and X. Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photonics Technol. Lett., vol. 12, no. 6, pp. 675–677, Jun. 2000, doi: 10.1109/68.849081.
dc.relation.referencesN. Zhao et al., “High temperature probe sensor with high sensitivity based on Michelson interferometer,” Opt. Commun., vol. 343, pp. 131–134, May 2015, doi: 10.1016/J.OPTCOM.2014.12.012.
dc.relation.referencesZ. Tian, S. S.-H. Yam, and H.-P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett., vol. 33, no. 10, p. 1105, May 2008, doi: 10.1364/ol.33.001105.
dc.relation.referencesK. J. Gåsvik, “Optical metrology,” p. 360, 2002.
dc.relation.referencesH. Gao, Y. Jiang, Y. Cui, L. Zhang, J. Jia, and L. Jiang, “Investigation on the thermo-optic coefficient of silica fiber within a wide temperature range,” J. Light. Technol., vol. 36, no. 24, pp. 5881–5886, Dec. 2018, doi: 10.1109/JLT.2018.2875941.
dc.relation.referencesA. Efimov, “Spatial coherence at the output of multimode optical fibers,” Opt. Express, Vol. 22, Issue 13, pp. 15577-15588, vol. 22, no. 13, pp. 15577–15588, Jun. 2014, doi: 10.1364/OE.22.015577.
dc.relation.referencesCOMSOL Multiphysics, “Introduction to COMSOL Multiphysics 5.0,” Manual, 2009, doi: 10.1108/JCRE-12-2012-0031.
dc.relation.referencesM. Born et al., “Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light,” Princ. Opt., Oct. 1999, doi: 10.1017/CBO9781139644181.
dc.relation.referencesImageJ, “ImageJ User Guide,” Nat. Methods, 2012, doi: 10.1038/nmeth.2019.
dc.relation.referencesR. Stöckle et al., “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett., vol. 75, no. 2, pp. 160–162, 1999, doi: 10.1063/1.124305.
dc.relation.referencesY. C. Maya, I. Del Villar, A. B. Socorro, J. M. Corres, and J. F. Botero-Cadavid, “Optical Fiber Immunosensors Optimized with Cladding Etching and ITO Nanodeposition,” 31st Annu. Conf. IEEE Photonics Soc. IPC 2018, Nov. 2018, doi: 10.1109/IPCON.2018.8527306.
dc.relation.referencesS. F. S. M. Noor, S. W. Harun, H. Ahmad, and A. R. Muhammad, “Multimode interference based fiber-optic sensor for temperature measurement,” J. Phys. Conf. Ser., vol. 1151, no. 1, p. 012023, Jan. 2019, doi: 10.1088/1742-6596/1151/1/012023.
dc.relation.referencesH. Nikbakht, H. Latifi, T. Amini, and M. I. Zibaii, “Tip sensor probe for changing refractive index measurement in small volumes,” Int. J. Opt. Photonics, vol. 8, no. 2, pp. 105–111, 2014, Accessed: Jul. 12, 2021. [Online]. Available: http://ijop.ir/article-1-172-en.html.
dc.relation.referencesY. E. Marin et al., “Silicon-photonic interferometric biosensor using active phase demodulation,” https://doi.org/10.1117/12.2287803, vol. 10510, pp. 20–28, Feb. 2018, doi: 10.1117/12.2287803.
dc.relation.referencesJ. E. Betancur-Ochoa, V. P. Minkovich, and Y. J. Montagut-Ferizzola, “Special Photonic Crystal Modal Interferometer for Highly Sensitive Biosensing,” J. Light. Technol., vol. 35, no. 21, pp. 4747–4751, Nov. 2017, doi: 10.1109/JLT.2017.2761738.
dc.relation.referencesY. Zhang, X. Tian, L. Xue, Q. Zhang, L. Yang, and B. Zhu, “Super-high sensitivity of fiber temperature sensor based on leaky-mode bent SMS structure,” IEEE Photonics Technol. Lett., vol. 25, no. 6, pp. 560–563, 2013, doi: 10.1109/LPT.2013.2245644.
dc.relation.referencesA. D. Gomes and O. Frazao, “Microfiber Knot with Taper Interferometer for Temperature and Refractive Index Discrimination,” IEEE Photonics Technol. Lett., vol. 29, no. 18, pp. 1517–1520, Sep. 2017, doi: 10.1109/LPT.2017.2735185.
dc.relation.referencesY. H. Chen, W. H. Shi, L. Feng, X. Y. Xu, and M. Y. Shang-Guan, “Study on simultaneous sensing of gas concentration and temperature in one-dimensional photonic crystal,” Superlattices Microstruct., vol. 131, pp. 53–58, Jul. 2019, doi: 10.1016/J.SPMI.2019.05.033.
dc.relation.referencesV. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B 2007 882, vol. 88, no. 2, pp. 297–303, Jul. 2007, doi: 10.1007/S00340-007-2717-4.
dc.relation.referencesS. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: Characteristics and application,” Meas. Sci. Technol., vol. 14, no. 5, p. R49, Mar. 2003, doi: 10.1088/0957-0233/14/5/201.
dc.relation.referencesZ. M. Zheng, Y. Sen Yu, X. Y. Zhang, Q. Guo, and H. B. Sun, “Femtosecond Laser Inscribed Small-Period Long-Period Fiber Gratings with Dual-Parameter Sensing,” IEEE Sens. J., vol. 18, no. 3, pp. 1100–1103, Feb. 2018, doi: 10.1109/JSEN.2017.2761794.
dc.relation.referencesB. Zhang and M. Kahrizi, “High-temperature resistance Fiber Bragg grating temperature sensor fabrication,” IEEE Sens. J., vol. 7, no. 4, pp. 586–591, Apr. 2007, doi: 10.1109/JSEN.2007.891941.
dc.relation.referencesT. Wang, K. Liu, J. Jiang, M. Xue, P. Chang, and T. Liu, “A large range temperature sensor based on an angled fiber end,” Opt. Fiber Technol., vol. 45, pp. 19–23, Nov. 2018, doi: 10.1016/J.YOFTE.2018.04.008.
dc.relation.referencesY. M. Raji, H. S. Lin, S. A. Ibrahim, M. R. Mokhtar, and Z. Yusoff, “Intensity-modulated abrupt tapered Fiber Mach-Zehnder Interferometer for the simultaneous sensing of temperature and curvature,” Opt. Laser Technol., vol. 86, pp. 8–13, Dec. 2016, doi: 10.1016/J.OPTLASTEC.2016.06.006.
dc.relation.referencesX. Dong, H. Du, X. Sun, and J. Duan, “Simultaneous Strain and Temperature Sensor Based on a Fiber Mach-Zehnder Interferometer Coated with Pt by Iron Sputtering Technology,” Mater. 2018, Vol. 11, Page 1535, vol. 11, no. 9, p. 1535, Aug. 2018, doi: 10.3390/MA11091535
dc.relation.referencesF. Mumtaz et al., “A Design of Taper-Like Etched Multicore Fiber Refractive Index-Insensitive a Temperature Highly Sensitive Mach-Zehnder Interferometer,” IEEE Sens. J., vol. 20, no. 13, pp. 7074–7081, Jul. 2020, doi: 10.1109/JSEN.2020.2978533
dc.relation.referencesM. de F. F. Domingues and A. Radwan, “Low Cost Silica Optical Fiber Sensors,” pp. 49–59, 2017, doi: 10.1007/978-3-319-47349-9_3.
dc.relation.referencesJ. B. Rosolem, C. Floridia, A. A. Juriollo, and E. W. Bezerra, “Comparative analysis of fiber grating versus fiber powering for fiber optical sensing applications,” SBMO/IEEE MTT-S Int. Microw. Optoelectron. Conf. Proc., pp. 641–645, 2009, doi: 10.1109/IMOC.2009.5427503.
dc.relation.referencesJ. Li et al., “Low-cost wearable device based D-shaped single mode fiber curvature sensor for vital signs monitoring,” Sensors Actuators A Phys., vol. 337, p. 113429, Apr. 2022, doi: 10.1016/J.SNA.2022.113429.
dc.relation.referencesY. Ding, X. Dai, and T. Zhang, “Low-cost fiber-optic temperature measurement system for high-voltage electrical power equipment,” IEEE Trans. Instrum. Meas., vol. 59, no. 4, pp. 923–933, Apr. 2010, doi: 10.1109/TIM.2009.203093
dc.relation.referencesM. C. P. Soares, T. D. Cabral, B. F. Mendes, V. A. da Silva, E. B. Tambourgi, and E. Fujiwara, “Technical and Economic Viability Analysis of Optical Fiber Sensors for Monitoring Industrial Bioreactors,” Eng. Proc. 2020, Vol. 2, Page 57, vol. 2, no. 1, p. 57, Nov. 2020, doi: 10.3390/ECSA-7-08161.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembFibra óptica en medicina
dc.subject.lembOptical fibers in medicine
dc.subject.proposalSensing platform
dc.subject.proposalInterferometric fiber optics sensor
dc.subject.proposalMercury
dc.subject.proposalAnti-BSA
dc.subject.proposalSMS structure
dc.subject.proposalOptical fiber with slanted end
dc.subject.proposalPlataforma de sensado
dc.subject.proposalSensores interferométricos a fibra óptica
dc.subject.proposalMercurio
dc.subject.proposalAnti-BSA
dc.subject.proposalEstructura SMS
dc.subject.proposalSensores de extremo inclinado
dc.title.translatedPlataforma de sensado a fibra óptica para el monitoreo de especies biológicas y químicas a bajas concentraciones
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaÁrea Curricular en Física
dc.contributor.orcidPatiño Jurado, Brayan de Jesús [0000-0001-7128-2525]
dc.contributor.orcidGarcía Sucerquia, Jorge Iván [0000-0003-3449-6094]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-CompartirIgual 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito