Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorSimbaqueba Ariza, Axel Danny
dc.contributor.advisorPlazas, María Cristina
dc.contributor.authorAgudelo Cardona, David Alejandro
dc.date.accessioned2023-05-25T19:14:54Z
dc.date.available2023-05-25T19:14:54Z
dc.date.issued2023-05-21
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83872
dc.descriptionilustraciones, fotografías, graficas
dc.description.abstractEn este trabajo se estableció un protocolo para la implementación de la irradiación corporal total con electrones, para el cual se requirió la habilitación del modo especial de alta tasa de dosis en un acelerador VARIAN IX, cumpliendo con los requisitos establecidos por VARIAN, el cual exigen una simetría no mayor al 2 % para el inplane y crossplane de los perfiles de dosis en condiciones de referencia (campo de 36 x 36, SSD 100 cm, colimador a 0° y tasa de dosis de 888 UM/min). Así mismo, se logró la caracterización de un haz de electrones de 6 MeV a través de las especificaciones geométricas de la sala de tratamiento del INC, contando con un SSD extendido de 483 cm al punto central del inmovilizador vertical y un campo efectivo de (241 x 241) cm en las diagonales de un campo cuadrado rotado 45 grados, además de la calibración y uso de películas radiocrómicas obteniendo un porcentaje de error relativo de dosis de ± 2 % respecto al sistema de planeación (TPS) en condiciones de referencia (campo de 10 x 10, SSD 100 cm y energía de 6 MeV). Se determinan perfiles de dosis con un buen comportamiento para un campo de 40 x 40, con rotación de colimador a 45°, SSD extendida de 448,6 cm, alta tasa de dosis 888 UM/min y energía de 6 MeV; así como el cumplimiento en las uniformidades de dosis establecidas por la AAPM con una pequeña variación en el crossplane de ± 5, siendo la recomendada por la AAPM como ± 4. Variaciones de dosis en profundidad fueron halladas, logrando cumplir con los criterios establecidos por la EORTC, en la cual sugieren que las superficies de Isodosis entregadas del 80 % y 50 % se encuentren al menos en 4 mm y 5 mm a 15 mm de profundidad respectivamente. Distribuciones de dosis en el plano de tratamiento son presentadas, encontrando zonas con gradientes máximos del 15 % de la dosis prescrita. Por último, se determinó el número de unidades monitor a dar para una sesión de tratamiento de TSEI, teniendo en cuenta la prescripción de dosis y la geometría de irradiación según la técnica Stanford; se encontró que para una prescripción de 1,8 Gy haciendo uso de un solo campo de irradiación deben darse 2450 UM por posición de tratamiento. Una bandeja personalizada, rotada a 45 grados y un panel de PMMA con espesor de 0,6 cm para la degradación del haz y cámaras de ionización fueron usados. Por otra parte, en la sección 4.2, se definieron cada una de las consideraciones a tener en cuenta al momento de posicionar e inmovilizar un paciente apto para la TSEI, teniendo presente poblaciones de pacientes que posean morbilidades como problemas locomotores o patologías graves, obteniendo una práctica difícil en la ubicación del paciente. Asimismo, se debe considerar aquella población que no presenta características (sean patológicas o psiquiátricas) capaces de dar lugar a problemas en el posicionamiento. Dispositivos de inmovilización y de protección adquiridos por el INC fueron considerados. Se inmoviliza un maniquí antropomórfico con el propósito de reproducir las posiciones definidas en la técnica Stanford, reproduciendo 2 de las 6 posiciones (AP y PA) debido a impedimentos físicos del maniquí. Por último, se ejecuta la verificación dosimétrica en la superficie del maniquí mediante el uso de dosímetros TLD, diodos y películas radiocrómicas, encontrando que regiones que cuentan con protuberancias o se encuentren muy cerca al inmovilizador vertical, tienen gradientes de dosis mayores que otras zonas del maniquí; a su vez se concluye que la determinación de impartir un boost local, deberá ser evaluado por el oncólogo radioterápico y físico médico tratante. (Texto tomado de la fuente)
dc.description.abstractIn this work, a protocol was established for the implementation of Total Skin Electron Irradiation (TSEI), which required the enabling of the high dose rate special mode on a VARIAN IX accelerator, meeting the requirements established by VARIAN, which demand a symmetry no greater than 2 % for inplane and crossplane dose profiles under reference conditions (field size of 36 x 36, SSD 100 cm, 0° collimator and dose rate of 888 MU/min). Additionally, a 6 MeV electron beam was characterized using the geometric specifications of the treatment room at INC, with an extended SSD of 483 cm to the central point of the vertical immobilizer, and an effective field size of (241 x 241) cm on the diagonals of a rotated 45-degree square field. Calibration and use of radiographic films were also achieved, obtaining a relative dose error percentage of ± 2 % with respect to the planning system (TPS) under reference conditions (field size of 10 x 10, SSD 100 cm, and energy of 6 MeV). Profiles of dose were determined with good behavior for a field of 40 x 40, with collimator rotation at 45°, extended SSD of 448.6 cm, high dose rate of 888 MU/min and energy of 6 MeV; as well as compliance with the dose uniformities established by the AAPM with a small variation in crossplane of ± 5, which is recommended by the AAPM as ± 4. Variations in dose at depth were found, achieving compliance with the criteria established by the EORTC, which suggest that the 80 % and 50 % isodose surfaces delivered be at least 4 mm and 5 mm at 15 mm depth, respectively. Dose distributions in the treatment plane are presented, finding areas with maximum dose gradients of 15 % of the prescribed dose. Finally, the number of monitor units to be given for a TSEI treatment session was determined, taking into account the dose prescription and irradiation geometry according to the Stanford technique; it was found that for a prescription of 1.8 Gy using a single irradiation field, 2450 MU per treatment position should be given. A customized tray, rotated at 45 degrees, and a PMMA panel with a thickness of 0.6 cm for beam degradation and ionization chambers were used. On the other hand, in section 4.2, each of the considerations to be taken into account when positioning and immobilizing a patient suitable for TSEI were defined, taking into account populations of patients with morbidities such as locomotor problems or serious pathologies, obtaining a difficult practice in patient positioning. Likewise, consideration must be given to those populations that do not present characteristics (whether pathological or psychiatric) capable of giving rise to positioning problems. Immobilization and protection devices acquired by the INC were considered. An anthropomorphic mannequin is immobilized with the purpose of reproducing the positions defined in the Stanford technique, reproducing 2 of the 6 positions (AP and PA) due to physical impediments of the mannequin. Finally, dosimetric verification is carried out on the surface of the mannequin using TLD dosimeters, diodes, and radiocrhomic films, finding that regions with protuberances or that are very close to the vertical immobilizer have higher dose gradients than other areas of the mannequin; in turn, it is concluded that the determination to impart a local boost should be evaluated by the treating radiation oncologist and medical physicist.
dc.format.extentxiv, 122 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc610 - Medicina y salud::614 - Medicina Forense; incidencia de lesiones, heridas, enfermedades; medicina preventiva pública
dc.titleProtocolo de implementación para la irradiación de piel total con electrones a partir de la técnica Stanford en el Instituto Nacional de Cancerología
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Física Médica
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Física Médica
dc.description.researchareaRadioterapia
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesCJ Karzmark, R Loevinger, RE Steele, and M Weissbluth. A technique for large-field, superficial electron therapy. Radiology, 74(4):633–644, 1960.
dc.relation.referencesJacques Ferlay, Murielle Colombet, Isabelle Soerjomataram, Donald M Parkin, Marion Piñeros, Ariana Znaor, and Freddie Bray. Cancer statistics for the year 2020: An over- view. International journal of cancer, 149(4):778–789, 2021.
dc.relation.referencesFlavia Carolina Pozzobon, Álvaro Enrique Acosta, and Juan Sebastián Castillo. Cáncer de piel en colombia: cifras del instituto nacional de cancerología. Revista de la Asociación Colombiana de Dermatología y Cirugía Dermatológica, 26(1):12–17, 2018.
dc.relation.referencesE.S.E. Ministerio de Salud y Protección Social; Hospital Universitario Centro Dermatológico Federico Lleras Acosta. Manual para la prevención y el diagnóstico temprano del cáncer de piel no melanoma dirigido a profesionales de la salud, 2015.
dc.relation.referencesBouthaina Dabaja, Chul S. Ha, and James D. Cox. Chapter 34 - leukemias and lymphomas. In James D. Cox and K. Kian Ang, editors, Radiation Oncology (Ninth Edition), pages 875–911. Mosby, Philadelphia, ninth edition edition, 2010.
dc.relation.referencesGlenn W Jones, Richard T Hoppe, and Eli Glatstein. Electron beam treatment for cutaneous t-cell lymphoma. Hematology/oncology clinics of North America, 9(5):1057– 1076, 1995.
dc.relation.referencesC.J. Karzmark; J. Anderson; A. Buffa; P. Fessenden; F. Khan; G. Svensson;and K. Wright. Total skin electron therapy: Technique and dosimetry, Report of the American Association of Physicists in Medicine (AAPM) Task Group 30, AAPM Report No. 23, 1987.
dc.relation.referencesGlenn W Jones, Barry M Kacinski, Lynn D Wilson, Rein Willemze, Margaret Spittle, Gerda Hohenberg, Leonore Handl-Zeller, Franz Trautinger, Robert Knobler, and EORTC Cutaneous Lymphoma Project Group. Total skin electron radiation in the management of mycosis fungoides: Consensus of the european organization for research and treatment of cancer (EORTC) cutaneous lymphoma project group. Journal of the American Academy of Dermatology, 47(3):364–370, 2002.
dc.relation.referencesSonja Dieterich, Eric Ford, Dan Pavord, and Jing Zeng. Chapter 24 - special procedures. In Sonja Dieterich, Eric Ford, Dan Pavord, and Jing Zeng, editors, Practical Radiation Oncology Physics, pages 313–326. Elsevier, Philadelphia, 2016.
dc.relation.referencesTomasz Piotrowski, Piotr Milecki, Malgorzata Skórska, and Dorota Fundowicz. Total skin electron irradiation techniques: a review. Advances in Dermatology and Allergology/Post¸epy Dermatologii I Alergologii, 30(1):50, 2013.
dc.relation.referencesJoanna Kazmierska. Clinical results of the total skin electron irradiation of the mycosis fungoides in adults. conventional fractionation and low dose schemes. Reports of Practical Oncology and Radiotherapy, 19(2):99–103, September 2014.
dc.relation.referencesFaiz M Khan and John P Gibbons. Khan’s the physics of radiation therapy. Lippincott Williams & Wilkins, 2014.
dc.relation.referencesRadiation Oncology Physics. Non-serial Publications. INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna, 2005.
dc.relation.referencesPedro Andreo, David T Burns, Alan E Nahum, Jan Seuntjens, and Frank Herbert Attix. Fundamentals of ionizing radiation dosimetry. John Wiley & Sons, 2017.
dc.relation.referencesCS Sureka and Christina Armpilia. Radiation biology for medical physicists. CRC Press, 2017.
dc.relation.referencesH Svensson, P Almond, A Brahme, A Dutreix, and HK Leetz. Radiation dosimetry: Electron beams with energies between 1 and 50 mev. Reports of the International Commission on Radiation Units and Measurements, 1985a.
dc.relation.referencesL Lindborg. Procedures in external radiation-therapy dosimetry with electron and photon beams with maximum energies between 1 and 50 MeV-recommendations by the nordic-association-of-clinical-physics (NACP). ACTA RADIOLOGICA ONCOLOGY, 19(1):55–79, 1980.
dc.relation.referencesMJ Berger and SM Seltzer. Quality of radiation in a water medium irradiated with high-energy electron beams book of abstracts 12th int. In Congress of Radiology, page 127, 1969.
dc.relation.referencesM Saiful Huq, Min-Sig Hwang, Troy P Teo, Si Young Jang, Dwight E Heron, and Ronald J Lalonde. A dosimetric evaluation of the IAEA-AAPM TRS 483 code of practice for dosimetry of small static fields used in conventional linac beams and comparison with IAEA TRS-398, AAPM TG 51, and TG 51 addendum protocols. Medical physics, 45(9):4257–4273, 2018.
dc.relation.referencesEric P Reynard, Michael DC Evans, Slobodan Devic, William Parker, Carolyn R Freeman, David Roberge, and Ervin B Podgorsak. Rotational total skin electron irradiation with a linear accelerator. Journal of applied clinical medical physics, 9(4):123–134, 2008.
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible (Noviembre 1, 2017). Resolución 2254 de 2017. Por la cual se adopta la norma de calidad del aire ambiente y se dictan otras disposiciones. https://www.minambiente.gov.co/wp-content/uploads/2021/ 10/Resolucion-2254-de-2017.pdf.
dc.relation.referencesTarek Shouman and Zeinab El-Taher. Total skin electron therapy: a modified technique for small room linear accelerator. J Egypt Nat Cancer Inst, 16(4):202–09, 2004.
dc.relation.referencesYAM Yousif, Casper A Willemse, et al. Commissioning and optimization of a total skin electron therapy technique using a high dose rate electron facility. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, 4(03):197, 2015.
dc.relation.referencesAzam Niroomand-Rad, Sou-Tung Chiu-Tsao, Michael P Grams, David F Lewis, Christopher G Soares, Leo J Van Battum, Indra J Das, Samuel Trichter, Michael W Kissick, Guerda Massillon-JL, et al. Report of AAPM task group 235 radiochromic film dosimetry: an update to TG-55, 2020.
dc.relation.referencesMA Pagnan-González, JO Hern´andez-Oviedo, and E Mitsoura. Dosimetry of large electron beam fields and treatment protocol for mycosis fungoides using the total skin irradiation technique. 2014.
dc.relation.referencesP Pradeep Kumar, Ulrich K Henschke, Krishna P Mandal, J Rao Nibhanupudy, and Indravadan S Patel. Early experience in using an 18 MeV linear accelerator for mycosis fungoides at howard university hospital. Journal of the National Medical Association, 69(4):223, 1977.
dc.relation.referencesL Murrer, P Van der Hulst, W Jansen, et al. Code of practice and recommendations for total body irradiation and total skin irradiation. report 34 of the netherlands commission on radiation dosimetry. 2021, 2021.
dc.relation.referencesK Smits, KD Quint, MH Vermeer, LA Dani¨els, R Willemze, PM Jansen, WPA Jansen, and KJ Neelis. Total skin electron beam therapy for cutaneous t-cell lymphomas in the netherlands: A retrospective analysis of treatment outcomes and selection for high or low dose schedule. Clinical and translational radiation oncology, 33:77–82, 2022.
dc.relation.referencesZhe Chen, Alfred G Agostinelli, Lynn D Wilson, and Ravinder Nath. Matching the dosimetry characteristics of a dual-field stanford technique to a customized single-field stanford technique for total skin electron therapy. International Journal of Radiation Oncology* Biology* Physics, 59(3):872–885, 2004.
dc.relation.referencesGJ D’Angio, LZ Nisce, and JH Kim. Weekly total skin electron beam therapy for mycosis fungoides and other cutaneous lymphomata: further experience. The British Journal of cancer. Supplement, 2:379, 1975.
dc.relation.referencesMI Smedal, DO Johnston, FA Salzman, JG Trump, and KA Wright. Ten year experience with low megavolt ellectron therapy. The American journal of roentgenology, radium therapy, and nuclear medicine, 88:215–228, 1962.
dc.relation.referencesFaiz M Khan and John P Gibbons. Electron Beam Therapy. Lippincott Williams & Wilkins, 2014.
dc.relation.referencesKhaled Elsayad, Christos Moustakis, Manuela Simonsen, Dagmar Backer, Uwe Haverkamp, and Hans Theodor Eich. In-vivo dosimetric analysis in total skin electron beam therapy. Physics and imaging in radiation oncology, 6:61–65, 2018.
dc.relation.referencesFelipe Luˇci´c, Beatriz Sánchez-Nieto, Paola Caprile, Gabriel Zelada, and Karen Goset. Dosimetric characterization and optimization of a customized stanford total skin electron irradiation (TSEI) technique. Journal of Applied Clinical Medical Physics, 14(5):1–12, 2013.
dc.relation.referencesJohn G Trump, KA Wright, WW Evans, JH Anson, HF Hare, JL Fromer, G Jacque, and KW Horne. High energy electrons for the treatment of extensive superficial malignant lesions. The American journal of roentgenology, radium therapy, and nuclear medicine, 69(4):623–629, 1953.
dc.relation.referencesBengt E Bj¨arngard, George TY Chen, Richard W Piontek, and G¨oran K Svensson. Analysis of dose distributions in whole body superficial electron therapy. International Journal of Radiation Oncology* Biology* Physics, 2(3-4):319–324, 1977.
dc.relation.referencesJG Holt and DJ Perry. Some physical considerations in whole skin electron beam therapy. Medical Physics, 9(5):769–776, 1982.
dc.relation.referencesKA Elsayad, S Scobioala, J Bauch, S Frick, J Kriz, U Haverkamp, HT Eich, et al. Management of primary cutaneous T-cell lymphoma using total skin electron beam radiotherapy. 2014.
dc.relation.referencesThatcher R Heumann, Natia Esiashvili, Sareeta Parker, Jeffrey M Switchenko, Anees Dhabbaan, Michael Goodman, Mary Jo Lechowicz, Christopher R Flowers, and Mohammad K Khan. Total skin electron therapy for cutaneous t-cell lymphoma using a modern dual-field rotational technique. International Journal of Radiation Oncology* Biology* Physics, 92(1):183–191, 2015.
dc.relation.referencesP Pradeep Kumar, Roger R Good, Ernest O Jones, Bruce E McAnulty, and Michael A Reeves. Dual-field rotational (dfr) technique for total-skin electron-beam the- rapy (tsebt). American journal of clinical oncology, 10(4):344–354, 1987.
dc.relation.referencesErcole Mazzeo, Laura Rubino, Michela Buglione, Paolo Antognoni, Stefano Maria Magrini, Francesco Bertoni, Manuela Parmiggiani, Paola Barbieri, and Filippo Bertoni. The current management of mycosis fungoides and sezary syndrome and the role of radiotherapy: principles and indications. Reports of Practical Oncology and Radiotherapy, 19(2):77–91, 2014.
dc.relation.referencesFabio Ynoe Moraes, Heloisa de Carvalho, Samir Abdallah Hanna, Jo˜ao Luis Silva, and Gustavo Nader Marta. Literature review of clinical results of total skin electron irradiation (tsebt) of mycosis fungoides in adults. Reports of Practical Oncology and Ra- diotherapy, 19(2):92–98, 2014.
dc.relation.referencesBA Fraass, PL Roberson, and E Glatstein. Whole-skin electron treatment: patient skin dose distribution. Radiology, 146(3):811–814, 1983.
dc.relation.referencesRandi D Weaver, Bruce J Gerbi, and Kathryn E Dusenbery. Evaluation of eye shields made of tungsten and aluminum in high-energy electron beams. International Journal of Radiation Oncology* Biology* Physics, 41(1):233–237, 1998.
dc.relation.referencesRadiation Products Design, Inc. Tungsten eye shields. https://www.rpdinc.com/ tungsten-eye-shields-695. Accedido el 6 de Enero de 2023.
dc.relation.referencesElham Rahimy, Lawrie Skinner, Youn H Kim, and Richard T Hoppe. Technical report: 3d-printed patient-specific scalp shield for hair preservation in total skin electron beam therapy. Technical Innovations and Patient Support in Radiation Oncology, 18:12–15, 2021.
dc.relation.referencesRadiation Products Design, Inc. Head shield for rotational tbi stand. https://www. rpdinc.com/head-shield-for-rotational-tbi-stand-9295.html. Accedido el 6 de Enero de 2023.
dc.relation.referencesPatricia Ash. The influence of radiation on fertility in man. The British journal of radiology, 53(628):271–278, 1980.
dc.relation.referencesS. W. S. McKeever. Introduction, page 1–19. Cambridge Solid State Science Series. Cambridge University Press, 1985.
dc.relation.referencesS. W. S. McKeever. Theoretical background, page 20–63. Cambridge Solid State Science Series. Cambridge University Press, 1985.
dc.relation.referencesStephen F. Kry, Paola Alvarez, Joanna E. Cygler, Larry A. DeWerd, Rebecca M. Howell, Sanford Meeks, Jennifer O’Daniel, Chester Reft, Gabriel Sawakuchi, Eduardo G. Yukihara, and Dimitris Mihailidis. AAPM TG 191: Clinical use of luminescent dosimeters: TLDs and OSLDs. Medical Physics, 47(2):e19–e51, 2020.
dc.relation.referencesKristin Pedersen, Tor D Andersen, Jan Rødal, and Dag R Olsen. Sensitivity and stability of lif thermoluminescence dosimeters. Medical Dosimetry, 20(4):263–267, 1995.
dc.relation.referencesLars Sch¨uttrumpf, Klement Neumaier, Cornelius Maihoefer, Maximilian Niyazi, Ute Ganswindt, Minglun Li, Peter Lang, Michael Reiner, Claus Belka, and Stefanie Corradini. Dose optimization of total or partial skin electron irradiation by thermoluminescent dosimetry. Strahlentherapie und Onkologie, 194(5):444–453, 2018.
dc.relation.referencesPP Kumar, UK Henschke, and J Rao Nibhanupudy. Problems and solutions in achieving uniform dose distribution in superficial total body electron therapy. Journal of the National Medical Association, 69(9):645, 1977.
dc.relation.referencesJie Shi, William E Simon, and Timothy C Zhu. Modeling the instantaneous dose rate dependence of radiation diode detectors. Medical physics, 30(9):2509–2519, 2003.
dc.relation.referencesEllen Yorke, Rodica Alecu, Li Ding, Doracy P. Fontenla, Andre Kalend, Darryl G L Kaurin, Mary Ellen Masterson-McGary, Ginette Marinello, Thomas Matzen, Amarjit Saini, Jie Shi, William E. Simon, Timothy C. Zhu, X. Ronald Zhu, G¨oran Rikner, and Gorgen Nilsson. Report no. 087 - diode in vivo dosimetry for patients receiving external beam radiation therapy, 2005.
dc.relation.referencesSun Nuclear Corporation, Melbourne, Florida 32940 USA. IVD 2™ Reference Guide. Simple and Accurate Dose Monitoring, 1136011 edition, 2022.
dc.relation.referencesRA Kinhikar, S Chaudhary, R Upreti, P Kumar, C Tambe, D Dhote, and D Deshpande. Clinical application of isorad and qed in vivo semiconductor diodes for imrt and total skin electron therapy: Feasibility study. International Journal of Radiation Oncology, Biology, Physics, 75(3):S665, 2009.
dc.relation.referencesEhab M Attalla, Nashaat A Deiab, and Walaa S Abd Elgawad. Dosimetric evaluation using the diode measurements for total skin electron therapy technique. Oncology and Translational Medicine, 13(7):328–331, 2014.
dc.relation.referencesVarian Medical Systems, Palo Alto, California, USA. Clinac Basic Operations, HE- CEM-01-A edition, 2013. This manual is for education purposes only.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsRadioterapia
dc.subject.decsRadiotherapy
dc.subject.decsDosimetría
dc.subject.decsDosimetry
dc.subject.decsDosimetría in Vivo
dc.subject.decsIn Vivo Dosimetry
dc.subject.proposalIrradiación corporal total
dc.subject.proposalCáncer
dc.subject.proposalElectrones
dc.subject.proposalTSEI
dc.subject.proposalPelículas radiocrómicas
dc.subject.proposalDiodos
dc.subject.proposalRadiation therapy
dc.subject.proposalTotal body irradiation
dc.subject.proposalCancer
dc.subject.proposalElectrons
dc.subject.proposalTSEI
dc.subject.proposalRadiochromic films
dc.subject.proposalDiodes
dc.subject.proposalIn vivo dosimetry
dc.title.translatedImplementation protocol for total skin irradiation with electrons based on the Stanford technique at the Instituto Nacional de Cancerología
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito