Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorÁvila Murillo, Mónica Constanza
dc.contributor.advisorNarváez Cuenca, Carlos Eduardo
dc.contributor.authorPulido Teuta, Juanita
dc.date.accessioned2023-05-29T16:28:25Z
dc.date.available2023-05-29T16:28:25Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83893
dc.descriptionilustraciones, graficas
dc.description.abstractLa actividad agonista en LXR modula la producción de ApoE y ABCA1, disminuyendo la placa amiloide en modelos murinos, convirtiéndose así una alternativa terapéutica del Alzheimer. Estudios previos muestran que Nectandra reticulata es agonista de LXR, por lo que es de nuestro interés identificar la composición del extracto, relacionarlo con su actividad y optimizar la extracción de este. Es así cómo se analizó el extracto activo de N. reticulata, mediante RP-UHPLC-DAD y UHPLC-ESI-HRMS. Los resultados del análisis por EM evidenciaron que la mayoría de los compuestos presentes corresponden a flavonoides glicosilados. Para confirmar la identidad de las agliconas, se realizó una hidrólisis ácida, mostrando que el compuesto principal con un área cromatográfica de 84,5% a 355 nm corresponde a la quercitrina; el segundo compuesto en abundancia del 8,0% del área cromatográfica se identificó como afzelina. En menor proporción (6,9%) se determinó 3 o 7-(6''-p-cumaroilglucósido) kaempferol. Después de la identificación se realizaron estudios in silico e in vitro, permitiendo seleccionar a la quercitrina cómo marcador, ya que este metabolito presenta una actividad superior a la de los otros compuestos identificados e incluso de su respectiva aglicona. Finalmente se realizó la validación y optimización de la extracción de este metabolito, se encontró que al hacer la extracción asistida por ultrasonido la cantidad de quercitrina en el extracto y el rendimiento del proceso se ven influenciados principalmente por la proporción etanol:agua y la temperatura del sistema. La mejores condiciones de extracción encontradas fueron 60% de etanol, 50 °C y 40 mL/g (solvente:material vegetal). (Texto tomado de la fuente)
dc.description.abstractThe agonistic activity of LXR modulates the production of ApoE and ABCA1, reducing amyloid plaque in murine models, that means a therapeutic alternative for Alzheimer's. Previous studies show that Nectandra reticulata is an LXR agonist, it is our interest to identify the composition of the extract, relate it to its activity and optimize its extraction. The active extract of N. reticulata was analyzed by RP-UHPLC-DAD and UHPLC-ESI-HRMS. The mass analysis showed that most of the compounds present correspond to glycosylated flavonoids. To confirm the identity of the aglycones, acid hydrolysis was performed. There it was shown that the main compound with a chromatographic area of 84.5% at 355 nm corresponds to quercitrin; the second compound in abundance of 8.0% of the chromatographic area was identified as afzeline. In a smaller proportion (chromatographic area 6.9%) 3 or 7-(6''-p-coumaroylglucoside) kaempferol were found. After the identification, in silico and in vitro studies of the molecules were carried out, these studies allowed quercitrin to be selected as a marker, since this metabolite has a higher activity than the other identified compounds and even of its respective aglycone. Finally, the validation and optimization of the extraction of this metabolite was carried out, it was found that when performing the extraction assisted by ultrasound, the amount of quercitrin in the extract and the performance of the process are mainly influenced by the proportion of ethanol:water and temperature of the system. The best extraction conditions were 60% ethanol, 50 °C and 40 mL/g (solvent:plant material ratio).
dc.format.extentxvi, 76 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánica
dc.titleUso de diseño de experimentos para la optimización de la extracción de compuestos fenólicos en un extracto activo de Nectandra Reticulata
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Química
dc.contributor.researchgroupGrupo de Investigación en Química de Productos Naturales Vegetales Bioactivos (Quipronab)
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Química
dc.description.researchareaQuímica de productos naturales
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAgalloco, J., DeSantis, P., Grilli, A., & Pavell, A. (2021). Handbook of Validation in Pharmaceutical Processes, Fourth Edition. CRC Press.
dc.relation.referencesAguirre Rueda, D. (2014). Daño inflamatorio y estrés oxidativo en la Enfermedad de Alzheimer. Efecto de polifenoles y cannabinoides. https://roderic.uv.es/handle/10550/37242
dc.relation.referencesAkram, M., & Nawaz, A. (2017). Effects of medicinal plants on Alzheimer’s disease and memory deficits. Neural Regeneration Research, 12(4), 660. https://doi.org/10.4103/1673-5374.205108
dc.relation.referencesAkram, Robert Verpoorte, & Pomahačová, B. (2021). Methods for the analysis of galanthamine and its extraction from laboratory to industrial scale. South African Journal of Botany, 136, 51-64. https://doi.org/10.1016/j.sajb.2020.08.004
dc.relation.referencesAlarcón, M. E. T., Conde, C. G., & Mendez, G. L. (2019). Extracción, caracterización y actividad antioxidante del aceite esencial de Eucalyptus globulus Labill. Revista Cubana de Farmacia, 52(1), Art. 1. http://www.revfarmacia.sld.cu/index.php/far/article/view/266
dc.relation.referencesAlzheimer’s Disease International (ADI). (2021). About Alzheimer’s & Dementia. https://www.alzint.org/about/
dc.relation.referencesBalaguer Beser, Á. A., & Ruiz Fernández, L. Á. (2021). Selección de un modelo de regresión lineal múltiple para el cálculo de la precipitación media en verano. https://riunet.upv.es/handle/10251/167659
dc.relation.referencesBaptista, F. I., Henriques, A. G., Silva, A. M. S., Wiltfang, J., & da Cruz e Silva, O. A. B. (2014). Flavonoids as Therapeutic Compounds Targeting Key Proteins Involved in Alzheimer’s Disease. ACS Chemical Neuroscience, 5(2), 83-92. https://doi.org/10.1021/cn400213r
dc.relation.referencesBarbosa-Filho, J. M., Yoshida, M., & Gottlieb, O. R. (1989). Lignoids from Nectandra amazonum and N. glabrescens. Phytochemistry, 28(7), 1991. https://doi.org/10.1016/S0031-9422(00)97906-8
dc.relation.referencesBatiha, G. E.-S., Alkazmi, L. M., Nadwa, E. H., Rashwan, E. K., Beshbishy, A. M., Shaheen, H., & Wasef, L. (2020). Physostigmine: A Plant Alkaloid Isolated from Physostigma venenosum: A Review on Pharmacokinetics, Pharmacological and Toxicological Activities. Journal of Drug Delivery and Therapeutics, 10(1-s), Art. 1-s. https://doi.org/10.22270/jddt.v10i1-s.3866
dc.relation.referencesBenedetti, B., Caponigro, V., & Ardini, F. (2022). Experimental Design Step by Step: A Practical Guide for Beginners. Critical Reviews in Analytical Chemistry, 52(5), 1015-1028. https://doi.org/10.1080/10408347.2020.1848517
dc.relation.referencesBranch, S. K. (2005). Guidelines from the International Conference on Harmonisation (ICH). Journal of Pharmaceutical and Biomedical Analysis, 38(5), 798-805. https://doi.org/10.1016/j.jpba.2005.02.037
dc.relation.referencesBustos Rangel, A. M. (2021). Búsqueda de agonistas LXR en plantas colombianas con potencial terapéutico para la enfermedad de Alzheimer. https://repositorio.unal.edu.co/handle/unal/80277
dc.relation.referencesCaicedo Díaz, J. A. (2021). Evaluación del potencial terapéutico de agonistas sintéticos y naturales de LXR (GW3965 y Nectandra reticulata) en el modelo murino 3xTg-AD de la enfermedad de Alzheimer. https://repositorio.unal.edu.co/handle/unal/81590
dc.relation.referencesCalabrò, M., Rinaldi, C., Santoro, G., & Crisafulli, C. (2020). The biological pathways of Alzheimer disease: A review. AIMS Neuroscience, 8(1), 86-132. https://doi.org/10.3934/Neuroscience.2021005
dc.relation.referencesCambier, V., Hance, T., & de Hoffmann, E. (2000). Variation of DIMBOA and related compounds content in relation to the age and plant organ in maize. Phytochemistry, 53(2), 223-229. https://doi.org/10.1016/S0031-9422(99)00498-7
dc.relation.referencesCastellani, R. J., Rolston, R. K., & Smith, M. A. (2010). Alzheimer Disease. Disease-a-month : DM, 56(9), 484-546. https://doi.org/10.1016/j.disamonth.2010.06.001
dc.relation.referencesConserva, G. A., Costa-Silva, T. A., Quirós-Guerrero, L. M., Marcourt, L., Wolfender, J.-L., Queiroz, E. F., Tempone, A. G., & Lago, J. H. G. (2021). Kaempferol-3-O-α-(3,4-di-E-p-coumaroyl)-rhamnopyranoside from Nectandra oppositifolia releases Ca2+ from intracellular pools of Trypanosoma cruzi affecting the bioenergetics system. Chemico-Biological Interactions, 349, 109661. https://doi.org/10.1016/j.cbi.2021.109661
dc.relation.referencesDewick, P. M. (2002). Medicinal Natural Products: A Biosynthetic Approach. John Wiley & Sons.
dc.relation.referencesDonoso, A. (2003). La enfermedad de Alzheimer. Revista chilena de neuro-psiquiatría, 41, 13-22. https://doi.org/10.4067/S0717-92272003041200003
dc.relation.referencesDuthey, B. (2004). Background Paper 6.11 Alzheimer Disease and other Dementias. Background Paper, 74.
dc.relation.referencesDyer, L. A., & Palmer, A. D. N. (Eds.). (2004). Piper: A Model Genus for Studies of Phytochemistry, Ecology, and Evolution. Springer US. https://doi.org/10.1007/978-0-387-30599-8
dc.relation.referencesFelipe, D. F., Brambilla, L. Z. S., Porto, C., Pilau, E. J., & Cortez, D. A. G. (2014). Phytochemical Analysis of Pfaffia glomerata Inflorescences by LC-ESI-MS/MS. Molecules, 19(10), Art. 10. https://doi.org/10.3390/molecules191015720
dc.relation.referencesFerreira, S. L. C., Bruns, R. E., Ferreira, H. S., Matos, G. D., David, J. M., Brandão, G. C., da Silva, E. G. P., Portugal, L. A., dos Reis, P. S., Souza, A. S., & dos Santos, W. N. L. (2007). Box-Behnken design: An alternative for the optimization of analytical methods. Analytica Chimica Acta, 597(2), 179-186. https://doi.org/10.1016/j.aca.2007.07.011
dc.relation.referencesFolch, J., Ettcheto, M., Petrov, D., Abad, S., Pedrós, I., Marin, M., Olloquequi, J., & Camins, A. (2018). Una revisión de los avances en la terapéutica de la enfermedad de Alzheimer: Estrategia frente a la proteína β-amiloide. Neurología, 33(1), 47-58. https://doi.org/10.1016/j.nrl.2015.03.012
dc.relation.referencesFouache, A., Zabaiou, N., De Joussineau, C., Morel, L., Silvente-Poirot, S., Namsi, A., Lizard, G., Poirot, M., Makishima, M., Baron, S., Lobaccaro, J.-M. A., & Trousson, A. (2019). Flavonoids differentially modulate liver X receptors activity-Structure-function relationship analysis. The Journal of Steroid Biochemistry and Molecular Biology, 190, 173-182. https://doi.org/10.1016/j.jsbmb.2019.03.028
dc.relation.referencesGandy, S., Knopman, D. S., & Sano, M. (2021). Talking points for physicians, patients and caregivers considering Aduhelm® infusion and the accelerated pathway for its approval by the FDA. Molecular Neurodegeneration, 16(1), 74. https://doi.org/10.1186/s13024-021-00490-z
dc.relation.referencesGarcez, F. R., Garcez, W. S., Martins, M., & Cruz, A. C. (1999). A Bioactive Lactone from Nectandra gardneri. Planta Medica, 65(8), 775-775. https://doi.org/10.1055/s-2006-960867
dc.relation.referencesGarcía, I., Ortiz, M. C., Sarabia, L., & Aldama, J. M. (2007). Validation of an analytical method to determine sulfamides in kidney by HPLC-DAD and PARAFAC2 with first-order derivative chromatograms. Analytica Chimica Acta, 587(2), 222-234. https://doi.org/10.1016/j.aca.2007.01.054
dc.relation.referencesGeng, P., Sun, J., Zhang, R., He, J., & Abliz, Z. (2009). An investigation of the fragmentation differences of isomeric flavonol-O-glycosides under different collision-induced dissociation based mass spectrometry. Rapid Communications in Mass Spectrometry, 23(10), 1519-1524. https://doi.org/10.1002/rcm.4021
dc.relation.referencesGonzález Villa, Á. A. (2004). Obtención de aceites esenciales y extractos etanólicos de plantas del Amazonas. https://repositorio.unal.edu.co/handle/unal/2800
dc.relation.referencesGoud, V., Ramasamy, A., Das, A., & Kalyanasundaram, D. (2019). Box-Behnken technique based multi-parametric optimization of electrostatic spray coating in the manufacturing of thermoplastic composites. Materials and Manufacturing Processes, 34(14), 1638-1645. https://doi.org/10.1080/10426914.2019.1666991
dc.relation.referencesGrecco, S. S., Lorenzi, H., Tempone, A. G., & Lago, J. H. G. (2016). Update: Biological and chemical aspects of Nectandra genus (Lauraceae). Tetrahedron: Asymmetry, 27(17), 793-810. https://doi.org/10.1016/j.tetasy.2016.07.009
dc.relation.referencesGrøntvedt, G. R., Schröder, T. N., Sando, S. B., White, L., Bråthen, G., & Doeller, C. F. (2018). Alzheimer’s disease. Current Biology: CB, 28(11), R645-R649. https://doi.org/10.1016/j.cub.2018.04.080
dc.relation.referencesGutiérrez Pulido, H. (2012). Análisis y diseño de experimentos [Text]. Biblioteca Hernán Malo González de la Universidad del Azuay; Biblioteca Hernán Malo González. https://biblioteca.uazuay.edu.ec/buscar/item/63520
dc.relation.referencesHarris, T. K., & Mildvan, A. S. (1999). High-Precision Measurement of Hydrogen Bond Lengths in Proteins by Nuclear Magnetic Resonance Methods. Proteins: Structure, Function, and Bioinformatics, 35(3), 275-282. https://doi.org/10.1002/(SICI)1097-0134(19990515)35:3<275::AID-PROT1>3.0.CO;2-V
dc.relation.referencesHebert, L. E., Weuve, J., Scherr, P. A., & Evans, D. A. (2013). Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology, 80(19), 1778-1783. https://doi.org/10.1212/WNL.0b013e31828726f5
dc.relation.referencesHernández, M. G., & Salas, C. O. (2014). Etiología proteica de la enfermedad de Alzheimer. REDUCA, 6(1), Art. 1. http://www.revistareduca.es/index.php/reduca/article/view/1719
dc.relation.referencesHiebl, V., Ladurner, A., Latkolik, S., & Dirsch, V. M. (2018). Natural products as modulators of the nuclear receptors and metabolic sensors LXR, FXR and RXR. Biotechnology Advances, 36(6), 1657-1698. https://doi.org/10.1016/j.biotechadv.2018.03.003
dc.relation.referencesHu, Y., Yang, Y., Yu, Y., Wen, G., Shang, N., Zhuang, W., Lu, D., Zhou, B., Liang, B., Yue, X., Li, F., Du, J., & Bu, X. (2013). Synthesis and Identification of New Flavonoids Targeting Liver X Receptor β Involved Pathway as Potential Facilitators of Aβ Clearance with Reduced Lipid Accumulation. Journal of Medicinal Chemistry, 56(15), 6033-6053. https://doi.org/10.1021/jm301913k
dc.relation.referencesHuang, Y., & Mucke, L. (2012). Alzheimer Mechanisms and Therapeutic Strategies. Cell, 148(6), 1204-1222. https://doi.org/10.1016/j.cell.2012.02.040
dc.relation.referencesHvattum, E., & Ekeberg, D. (2003). Study of the collision-induced radical cleavage of flavonoid glycosides using negative electrospray ionization tandem quadrupole mass spectrometry. Journal of Mass Spectrometry, 38(1), 43-49. https://doi.org/10.1002/jms.398
dc.relation.referencesJi, H., & Zhang, H. (2008). Multipotent natural agents to combat Alzheimer’s disease. Functional spectrum and structural features. Acta Pharmacologica Sinica, 29(2), 143-151. https://doi.org/10.1111/j.1745-7254.2008.00752.x
dc.relation.referencesJia, Y., Hoang, M. H., Jun, H.-J., Lee, J. H., & Lee, S.-J. (2013). Cyanidin, a natural flavonoid, is an agonistic ligand for liver X receptor alpha and beta and reduces cellular lipid accumulation in macrophages and hepatocytes. Bioorganic & Medicinal Chemistry Letters, 23(14), 4185-4190. https://doi.org/10.1016/j.bmcl.2013.05.030
dc.relation.referencesKepp, K. P. (2012). Bioinorganic Chemistry of Alzheimer’s Disease. Chemical Reviews, 112(10), 5193-5239. https://doi.org/10.1021/cr300009x
dc.relation.referencesKnopman, D. S., Amieva, H., Petersen, R. C., Chételat, G., Holtzman, D. M., Hyman, B. T., Nixon, R. A., & Jones, D. T. (2021). Alzheimer disease. Nature Reviews Disease Primers, 7(1), Art. 1. https://doi.org/10.1038/s41572-021-00269-y
dc.relation.referencesKoldamova, R., & Lefterov, I. (2007). Role of LXR and ABCA1 in the Pathogenesis of Alzheimer’s Disease -Implications for a New Therapeutic Approach. Curr. Alzheimer Res., 4(2), 171-178. https://doi.org/10.2174/156720507780362227
dc.relation.referencesLeardi, R. (2009). Experimental design in chemistry: A tutorial. Analytica Chimica Acta, 652(1), 161-172. https://doi.org/10.1016/j.aca.2009.06.015
dc.relation.referencesLei, Z., Sumner, B. W., Bhatia, A., Sarma, S. J., & Sumner, L. W. (2019). UHPLC-MS Analyses of Plant Flavonoids. Current Protocols in Plant Biology, 4(1), e20085. https://doi.org/10.1002/cppb.20085
dc.relation.referencesMabry, T. J., Markham, K. R., & Thomas, M. B. (1970). The Ultraviolet Spectra of Flavones and Flavonols. En T. J. Mabry, K. R. Markham, & M. B. Thomas (Eds.), The Systematic Identification of Flavonoids (pp. 41-164). Springer. https://doi.org/10.1007/978-3-642-88458-0_5
dc.relation.referencesMacías-Villamizar, V. E., Cuca-Suárez, L. E., & Coy-Barrera, E. D. (2015). Genus Nectandra: «Phytochemistry and Biological Activity». Boletin Latinoamericano y Del Caribe de Plantas Medicinales y Aromaticas, 27.
dc.relation.referencesMohandas, E., Rajmohan, V., & Raghunath, B. (2009). Neurobiology of Alzheimer’s disease. Indian Journal of Psychiatry, 51(1), 55-61. https://doi.org/10.4103/0019-5545.44908
dc.relation.referencesNewman, D. J., & Cragg, G. M. (2020). Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770-803. https://doi.org/10.1021/acs.jnatprod.9b01285
dc.relation.referencesNussbaum, R. L., & Ellis, C. E. (2003). Alzheimer’s Disease and Parkinson’s Disease. New England Journal of Medicine, 348(14), 1356-1364. https://doi.org/10.1056/NEJM2003ra020003
dc.relation.referencesNuutila, A. M., Kammiovirta, K., & Oksman-Caldentey, K.-M. (2002). Comparison of methods for the hydrolysis of flavonoids and phenolic acids from onion and spinach for HPLC analysis. Food Chemistry, 76(4), 519-525. https://doi.org/10.1016/S0308-8146(01)00305-3
dc.relation.referencesOlivero, R. A., Nocerino, J. M., & Deming, S. N. (1995). Experimental Design and Optimization. En J. Einax (Ed.), Chemometrics in Environmental Chemistry—Statistical Methods (pp. 73-122). Springer. https://doi.org/10.1007/978-3-540-49148-4_3
dc.relation.referencesOrnaf, R. M., & Dong, M. W. (2005). 2—Key Concepts of HPLC in Pharmaceutical Analysis. En S. Ahuja & M. W. Dong (Eds.), Separation Science and Technology (Vol. 6, pp. 19-45). Academic Press. https://doi.org/10.1016/S0149-6395(05)80046-7
dc.relation.referencesPlumb, J. A. (2004). Cell Sensitivity Assays: The MTT Assay. En S. P. Langdon (Ed.), Cancer Cell Culture: Methods and Protocols (pp. 165-169). Humana Press. https://doi.org/10.1385/1-59259-406-9:165
dc.relation.referencesRaissi, S., & Farsani, R.-E. (2009). Statistical Process Optimization Through Multi-Response Surface Methodology. International Journal of Mathematical and Computational Sciences, 3(3), 197-201.
dc.relation.referencesRamón, C., & Gil-Garzón, M. A. (2021). Efecto de los parámetros de operación de la extracción asistida por ultrasonido en la obtención de polifenoles de uva: Una revisión. TecnoLógicas, 24(51), Art. 51. https://doi.org/10.22430/22565337.1822
dc.relation.referencesRamón Vázquez, A., & Ramón Vázquez, A. (2018). Estudio del perfil transcripcional de los receptores nucleares LXR en un modelo celular de macrófago murino inmortalizado [Info:eu-repo/semantics/doctoralThesis, Universidad Complutense de Madrid]. https://eprints.ucm.es/49016/
dc.relation.referencesRastinejad, F., Huang, P., Chandra, V., & Khorasanizadeh, S. (2013). Understanding nuclear receptor form and function using structural biology. Journal of Molecular Endocrinology, 51(3), T1-T21. https://doi.org/10.1530/JME-13-0173
dc.relation.referencesRibeiro, A. B., Bolzani, V. da S., Yoshida, M., Santos, L. S., Eberlin, M. N., & Silva, D. H. S. (2005). A new neolignan and antioxidant phenols from Nectandra grandiflora. Journal of the Brazilian Chemical Society, 16, 526-530.
dc.relation.referencesRincón Aguilar, C. M. (2014). Actividad biológica de la familia Lauraceae. https://repositorio.unal.edu.co/handle/unal/52219
dc.relation.referencesRius-Pérez, S., Tormos, A. M., Pérez, S., & Taléns-Visconti, R. (2018). Patología vascular: ¿causa o efecto en la enfermedad de Alzheimer? Neurología, 33(2), 112-120. https://doi.org/10.1016/j.nrl.2015.07.010
dc.relation.referencesRodrigues, M. I., & Iemma, A. F. (2014). Experimental Design and Process Optimization. CRC Press.
dc.relation.referencesRossi, L., Mazzitelli, S., Arciello, M., Capo, C. R., & Rotilio, G. (2008). Benefits from dietary polyphenols for brain aging and Alzheimer’s disease. Neurochemical Research, 33(12), 2390-2400. https://doi.org/10.1007/s11064-008-9696-7
dc.relation.referencesSahoo, N., Manchikanti, P., & Dey, S. (2010). Herbal drugs: Standards and regulation. Fitoterapia, 81(6), 462-471. https://doi.org/10.1016/j.fitote.2010.02.001
dc.relation.referencesSahu, P. K., Ramisetti, N. R., Cecchi, T., Swain, S., Patro, C. S., & Panda, J. (2018). An overview of experimental designs in HPLC method development and validation. Journal of Pharmaceutical and Biomedical Analysis, 147, 590-611. https://doi.org/10.1016/j.jpba.2017.05.006
dc.relation.referencesSanabria-Castro, A., Alvarado-Echeverría, I., & Monge-Bonilla, C. (2017). Molecular Pathogenesis of Alzheimer’s Disease: An Update. Annals of Neurosciences, 24(1), 46-54. https://doi.org/10.1159/000464422
dc.relation.referencesSang, Z., Wang, K., Dong, J., & Tang, L. (2022). Alzheimer’s disease: Updated multi-targets therapeutics are in clinical and in progress. European Journal of Medicinal Chemistry, 238, 114464. https://doi.org/10.1016/j.ejmech.2022.114464
dc.relation.referencesSerrano, M. P. (2010). Mecanismos bioquímicos de la Enfermedad de Alzheimer. 20.
dc.relation.referencesSever, R., & Glass, C. K. (2013). Signaling by Nuclear Receptors. Cold Spring Harbor Perspectives in Biology, 5(3), a016709-a016709. https://doi.org/10.1101/cshperspect.a016709
dc.relation.referencesSodhi, R. K., & Singh, N. (2013). Liver X receptors: Emerging therapeutic targets for Alzheimer’s disease. Pharmacological Research, 72, 45-51. https://doi.org/10.1016/j.phrs.2013.03.008
dc.relation.referencesStipičević, S., Fingler, S., Zupančič-Kralj, L., & Drevenkar, V. (2003). Comparison of gas and high performance liquid chromatography with selective detection for determination of triazine herbicides and their degradation products extracted ultrasonically from soil. Journal of Separation Science, 26(14), 1237-1246. https://doi.org/10.1002/jssc.200301420
dc.relation.referencesTamayo, A. E. I., Pérez, C. H., & Tejeda, J. J. G. (2020). Tratamientos paliativos en la enfermedad de Alzheimer. 16 de abril, 59(275), 1-6.
dc.relation.referencesTaverniers, I., De Loose, M., & Van Bockstaele, E. (2004). Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance. TrAC Trends in Analytical Chemistry, 23(8), 535-552. https://doi.org/10.1016/j.trac.2004.04.001
dc.relation.referencesTolosa, T., Rogez, H., Silva, E., & Souza, J. (2018). Optimization of Acid Hydrolysis of Myricetin-3-O-rhamnoside Using Response Surface Methodology. Journal of the Brazilian Chemical Society. https://doi.org/10.21577/0103-5053.20180125
dc.relation.referencesTundis, R., Loizzo, M. R., Nabavi, S. M., Orhan, I. E., Skalicka-Woźniak, K., D’Onofrio, G., & Aiello, F. (2018). Chapter 3—Natural Compounds and Their Derivatives as Multifunctional Agents for the Treatment of Alzheimer Disease. En G. Brahmachari (Ed.), Discovery and Development of Neuroprotective Agents from Natural Products (pp. 63-102). Elsevier. https://doi.org/10.1016/B978-0-12-809593-5.00003-3
dc.relation.referencesValencia Rincón, E. (2018). Generación de un modelo in vitro para evaluar la actividad agonista de extractos naturales, obtenidos de plantas de las familias de Lauráceas y Miristicáceas, sobre los receptores X del hígado (LXRs). https://repositorio.unal.edu.co/handle/unal/63367
dc.relation.referencesVeer, B., Geetanjali, & Singh, R. (2020). Chapter 6—Natural products as anti-Alzheimer’s drugs. En Atta-ur-Rahman (Ed.), Studies in Natural Products Chemistry (Vol. 66, pp. 157-174). Elsevier. https://doi.org/10.1016/B978-0-12-817907-9.00006-4
dc.relation.referencesWHO. (2021, septiembre 2). Dementia. https://www.who.int/news-room/fact-sheets/detail/dementia
dc.relation.referencesXiao, J., Muzashvili, T. S., & Georgiev, M. I. (2014). Advances in the biotechnological glycosylation of valuable flavonoids. Biotechnology Advances, 32(6), 1145-1156. https://doi.org/10.1016/j.biotechadv.2014.04.006
dc.relation.referencesXu, C., Zhang, Y., Zhu, L., Huang, Y., & Lu, J. (2011). Influence of Growing Season on Phenolic Compounds and Antioxidant Properties of Grape Berries from Vines Grown in Subtropical Climate. Journal of Agricultural and Food Chemistry, 59(4), 1078-1086. https://doi.org/10.1021/jf104157z
dc.relation.referencesXue-shan, Z., juan, P., Qi, W., Zhong, R., Li-hong, P., Zhi-han, T., Zhi-sheng, J., Gui-xue, W., & Lu-shan, L. (2016). Imbalanced cholesterol metabolism in Alzheimer’s disease. Clinica Chimica Acta, 456, 107-114. https://doi.org/10.1016/j.cca.2016.02.024
dc.relation.referencesYin, R., Messner, B., Faus-Kessler, T., Hoffmann, T., Schwab, W., Hajirezaei, M.-R., von Saint Paul, V., Heller, W., & Schäffner, A. R. (2012). Feedback inhibition of the general phenylpropanoid and flavonol biosynthetic pathways upon a compromised flavonol-3-O-glycosylation. Journal of Experimental Botany, 63(7), 2465-2478. https://doi.org/10.1093/jxb/err416
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsEnfermedad de Alzheimer
dc.subject.decsAlzheimer Disease
dc.subject.proposalAlzheimer
dc.subject.proposalLauraceae
dc.subject.proposalModelamiento molecular
dc.subject.proposalBox-Bhencken
dc.subject.proposalNectandra
dc.subject.proposalValidación
dc.subject.proposalDocking molecular
dc.subject.proposalValidation
dc.title.translatedUse of design of experiments for the optimization of the extraction of phenolic compounds in an active extract of Nectandra Reticulata
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito