Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorHincapie Triviño, Gina Marcela
dc.contributor.advisorPérez Flórez, Alejandro
dc.contributor.authorContreras Patiño, Julián Esteban
dc.date.accessioned2023-05-30T18:56:26Z
dc.date.available2023-05-30T18:56:26Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83915
dc.descriptionilustraciones
dc.description.abstractUna de las principales problemáticas de la industria textil, es la alta cantidad de colorantes depositados en los cuerpos de agua, los cuales pueden tener efectos carcinogénicos, causan eutrofización y perturbaciones en la vida acuática. El proceso Fenton, es un proceso avanzado de oxidación que utiliza sales de hierro (Fe2+) solubles como catalizadores en presencia de H2O2 a pH ácido. En la presente investigación, con el objetivo de valorizar un material natural basado en óxidos de hierro proveniente de Acerías de Paz del Río en el departamento de Boyacá, Colombia, se llevó a reacción dicho material como catalizador en el proceso tipo Fenton frente a dos colorantes usados como modelo en reacciones de degradación: Cristal Violeta (CV) y Fucsina Ácida (FA). El material se caracterizó a través de diferentes técnicas, encontrándose una baja área superficial (27 m2/g), diferentes fases de hierro, dentro de las cuales predominan la siderita, goethita y hematita y una composición elemental mayoritaria para hierro y oxígeno. La evaluación de la actividad catalítica mostró que este material es capaz de reducir la cantidad de Cristal Violeta (CV) hasta el 90% y de Fucsina Ácida (FA) hasta un 80% en 8 h, partiendo en ambos casos de una concentración de contaminante de 50 mg/L, así mismo el valor de carbono orgánico total (TOC) se redujo hasta 34% en CV y 36% en FA, y en los ciclos de reúso el TOC se redujo al 46% y 51% luego del primer ciclo para el CV y la FA respectivamente. Se encontró que la cantidad de hierro lixiviado en la solución es de 6 mg/L, lo cual indica que el proceso catalítico es heterogéneo. (Texto tomado de la fuente).
dc.description.abstractOne of the main problems of the textile industry is the high number of dyes deposited in water bodies, which can have carcinogenic effects, cause eutrophication, and disturb aquatic life. The Fenton process is an advanced oxidation process that uses soluble iron salts (Fe2+) as catalysts in the presence of H2O2 at acid pH. In this investigation, with the aim of valorize a natural material based on iron oxides, coming from Acerías de Paz del Río in Boyacá, Colombia, this material was used as a catalyst in the Fenton process against two dyes used as a model in degradation reactions: Crystal Violet (CV) and Acid Fuchsin (FA). The material was characterized through different techniques, finding a low specific surface area (27 m2/g), different iron crystalline phases, predominantly siderite, goethite and hematite, and a majority elemental composition for iron and oxygen. The evaluation of the catalytic activity showed that this material can reduce the amount of Crystal Violet (CV) up to 90% and of Acid Fuchsin (AF) up to 80% in 8 h, starting in both cases from a contaminant concentration of 50 mg/L, likewise, the Total Organic Carbon (TOC) value was reduced up to 34% in CV and 36% in AF, and in the reuse cycles, the TOC was reduced to 46% and 51% after the first cycle for CV and AF respectively. The amount of iron leached was found to be 5 mg/L, indicating that the catalytic process is heterogeneous.
dc.format.extentxix, 109 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc540 - Química y ciencias afines::543 - Química analítica
dc.titleDegradación de colorantes presentes en aguas residuales usando un mineral natural basado en óxidos de hierro como catalizador
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Química
dc.description.notesIncluye anexos
dc.contributor.researchgroupEstado Sólido y Catálisis Ambiental
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Química
dc.description.researchareaCatálisis ambiental
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesÁngel, M., José, H., Velasco, A., Rojas, F., Hugo, V., Alicia, M., Víctor, S., Mesoporos, E. D. E., & Arcillas, Y. C. D. E. (2003). Revista Internacional de Contaminación Ambiental DEL ESTADO DE PUEBLA , MÉXICO Departamento de Investigación en Zeolitas , Instituto de Ciencias de la Universidad Autónoma de Puebla . Edif . 76 , Complejo de Ciencias , C . U ., San Manuel , Puebla 72570 P. 19, 183–190.
dc.relation.referencesArias, A., Bernal, L., González, H., López, J., Primelles, R. F. L., Arenas, D. M. M., Moreno, G., Rodríguez, Á. M., & Melo, C. U. (2019). Recursos minerales de Colombia. In Servicio Geológico Colombiano (Vol. 2).
dc.relation.referencesAugusto, T. D. M., Chagas, P., Sangiorge, D. L., Mac Leod, T. C. D. O., Oliveira, L. C. A., & Castro, C. S. De. (2018). Iron ore tailings as catalysts for oxidation of the drug paracetamol and dyes by heterogeneous Fenton. Journal of Environmental Chemical Engineering, 6(5), 6545–6553. https://doi.org/10.1016/j.jece.2018.09.052
dc.relation.referencesBello, M. M., Abdul Raman, A. A., & Asghar, A. (2019). A review on approaches for addressing the limitations of Fenton oxidation for recalcitrant wastewater treatment. Process Safety and Environmental Protection, 126, 119–140. https://doi.org/10.1016/j.psep.2019.03.028
dc.relation.referencesBenavides, V., & Vasquez Sarria, N. (2015). Diseño del plan de gestión ambiental para la industria textil Aritex de Colombia S.A.
dc.relation.referencesBiń, A. K., & Sobera-Madej, S. (2012). Comparison of the Advanced Oxidation Processes (UV, UV/H 2O 2 and O 3) for the Removal of Antibiotic Substances during Wastewater Treatment. Ozone: Science and Engineering, 34(2), 136–139. https://doi.org/10.1080/01919512.2012.650130
dc.relation.referencesBokare, A. D., & Choi, W. (2014). Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of Hazardous Materials, 275, 121–135. https://doi.org/10.1016/j.jhazmat.2014.04.054
dc.relation.referencesBotero Camacho, L. A. (2020). La Paradoja de la Disponibilidad de Agua de Mala Calidad en el Sector Rural Colombiano. Revista de Ingeniera. Universidad de Los Andes, 49, 38–51. https://doi.org/10.16924/revinge.49.6
dc.relation.referencesCarvalho, S. S. F., & Carvalho, N. M. F. (2017). Dye degradation by green heterogeneous Fenton catalysts prepared in presence of Camellia sinensis. Journal of Environmental Management, 187, 82–88. https://doi.org/10.1016/j.jenvman.2016.11.032
dc.relation.referencesChaibakhsh, N., Ahmadi, N., & Zanjanchi, M. A. (2014). Use of Plantago major L. as a natural coagulant for optimized decolorization of dye-containing wastewater. Industrial Crops and Products, 61, 169–175. https://doi.org/10.1016/j.indcrop.2014.06.056
dc.relation.referencesClarizia, L., Russo, D., Di Somma, I., Marotta, R., & Andreozzi, R. (2017). Homogeneous photo-Fenton processes at near neutral pH: A review. Applied Catalysis B: Environmental, 209, 358–371. https://doi.org/10.1016/j.apcatb.2017.03.011
dc.relation.referencesde Freitas, V. A. A., Breder, S. M., Silvas, F. P. C., Radino Rouse, P., & de Oliveira, L. C. A. (2019). Use of iron ore tailing from tailing dam as catalyst in a fenton-like process for methylene blue oxidation in continuous flow mode. Chemosphere, 219, 328–334. https://doi.org/10.1016/j.chemosphere.2018.12.052
dc.relation.referencesDil, E. A., Ghaedi, M., Ghaedi, A., Asfaram, A., Jamshidi, M., & Purkait, M. K. (2016). Application of artificial neural network and response surface methodology for the removal of crystal violet by zinc oxide nanorods loaded on activate carbon: Kinetics and equilibrium study. Journal of the Taiwan Institute of Chemical Engineers, 59, 210–220. https://doi.org/10.1016/j.jtice.2015.07.023
dc.relation.referencesDonado, R. (2013). Plan de gestión para lodos generados en las PTAR-D de los municipios de Cumaral y San Martín de los Llanos en departamento del Meta. Pontificia Universidad Javeriana.
dc.relation.referencesErtl, G., Knözinger, H., Schüth, F., & Weitkamp, J. (Eds.). (2008). Handbook of Heterogeneous Catalysis (1st ed.). Wiley-VCH. https://doi.org/10.1002/9783527610044
dc.relation.referencesFida, H., Zhang, G., Guo, S., & Naeem, A. (2017). Heterogeneous Fenton degradation of organic dyes in batch and fixed bed using La-Fe montmorillonite as catalyst. Journal of Colloid and Interface Science, 490, 859–868. https://doi.org/10.1016/j.jcis.2016.11.085
dc.relation.referencesFónagy, O., Szabó-Bárdos, E., & Horváth, O. (2021). 1,4-Benzoquinone and 1,4-hydroquinone based determination of electron and superoxide radical formed in heterogeneous photocatalytic systems. Journal of Photochemistry and Photobiology A: Chemistry, 407. https://doi.org/10.1016/j.jphotochem.2020.113057
dc.relation.referencesFraume Restrepo, N. J. (2006). Diccionario Ambiental. ECOE Ediciones.
dc.relation.referencesGarcia Herrera, J. C. (2014). Procesos fenton y foto-fenton para el tratamiento de aguas residuales de laboratorio microbiológico empleando Fe2O3 soportado en nanotubos de carbono. Repositorio Ujaveriana, 65. https://repository.javeriana.edu.co/bitstream/handle/10554/11853/GarciaHerreraJulianCamilo2014.pdf?sequence=1
dc.relation.referencesGarrido-Ramírez, E. G., Theng, B. K. G., & Mora, M. L. (2010). Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions - A review. Applied Clay Science, 47(3–4), 182–192. https://doi.org/10.1016/j.clay.2009.11.044
dc.relation.referencesGlobal Environment Outlook – GEO-6: Summary for Policymakers. (2019). Global Environment Outlook – GEO-6: Summary for Policymakers. https://doi.org/10.1017/9781108639217
dc.relation.referencesGosetti, F., Gianotti, V., Angioi, S., Polati, S., Marengo, E., & Gennaro, M. C. (2004). Oxidative degradation of food dye E133 Brilliant Blue FCF: Liquid chromatography-electrospray mass spectrometry identification of the degradation pathway. Journal of Chromatography A, 1054(1–2), 379–387. https://doi.org/10.1016/j.chroma.2004.07.106
dc.relation.referencesGuimaraes, I. R., Giroto, A., Oliveira, L. C. A., Guerreiro, M. C., Lima, D. Q., & Fabris, J. D. (2009). Synthesis and thermal treatment of cu-doped goethite: Oxidation of quinoline through heterogeneous fenton process. Applied Catalysis B: Environmental, 91(3–4), 581–586. https://doi.org/10.1016/j.apcatb.2009.06.030
dc.relation.referencesGuo, S., Yuan, N., Zhang, G., & Yu, J. C. (2017). Graphene modified iron sludge derived from homogeneous Fenton process as an efficient heterogeneous Fenton catalyst for degradation of organic pollutants. Microporous and Mesoporous Materials, 238, 62–68. https://doi.org/10.1016/j.micromeso.2016.02.033
dc.relation.referencesHadjltaief, H. B., Sdiri, A., Gálvez, M. E., Zidi, H., Costa, P. Da, & Zina, M. Ben. (2018). Natural hematite and siderite as heterogeneous catalysts for an effective degradation of 4-chlorophenol via photo-fenton process. ChemEngineering, 2(3), 1–14. https://doi.org/10.3390/chemengineering2030029
dc.relation.referencesHitam, C. N. C., & Jalil, A. A. (2020). A review on exploration of Fe2O3 photocatalyst towards degradation of dyes and organic contaminants. Journal of Environmental Management, 258(January). https://doi.org/10.1016/j.jenvman.2019.110050
dc.relation.referencesHussain, T., & Wahab, A. (2018). A critical review of the current water conservation practices in textile wet processing. Journal of Cleaner Production, 198, 806–819. https://doi.org/10.1016/j.jclepro.2018.07.051
dc.relation.referencesHwang, S., Huling, S. G., & Ko, S. (2010). Fenton-like degradation of MTBE: Effects of iron counter anion and radical scavengers. Chemosphere, 78(5), 563–568. https://doi.org/10.1016/j.chemosphere.2009.11.005
dc.relation.referencesIDEAM. (2019). Estudio Nacional del Agua 2018. http://www.andi.com.co/Uploads/ENA_2018-comprimido.pdf
dc.relation.referencesIPCC. (2015). Cambio climático 2014: Mitigación del cambio climático. Resumen para responsables de políticas y Resumen técnico. Contribución del Grupo de Trabajo III al Quinto Informe de Evaluación del Grupo Intergubernamental de Expertos sobre Cambio Climático. In Ipcc.
dc.relation.referencesJaén, J., & de Araque, L. (2014). Carbono En El Clima Tropical Marino De Sherman (Provincia De Colón, Panama). Tecnociencia, 8(February).
dc.relation.referencesKanagaraj, T., Thiripuranthagan, S., Paskalis, S. M. K., & Abe, H. (2017). Visible light photocatalytic activities of template free porous graphitic carbon nitride—BiOBr composite catalysts towards the mineralization of reactive dyes. Applied Surface Science, 426, 1030–1045. https://doi.org/10.1016/j.apsusc.2017.07.255
dc.relation.referencesKashyap, S. J., Sankannavar, R., & Madhu, G. M. (2022). Iron oxide (Fe2O3) synthesized via solution-combustion technique with varying fuel-to-oxidizer ratio: FT-IR, XRD, optical and dielectric characterization. Materials Chemistry and Physics, 286(April), 126118. https://doi.org/10.1016/j.matchemphys.2022.126118
dc.relation.referencesKassem, K. O., Hussein, M. A. T., Motawea, M. M., Gomaa, H., Alrowaili, Z. A., & Ezzeldien, M. (2021). Design of mesoporous ZnO @ silica fume-derived SiO2 nanocomposite as photocatalyst for efficient crystal violet removal: Effective route to recycle industrial waste. Journal of Cleaner Production, 326(February), 129416. https://doi.org/10.1016/j.jclepro.2021.129416
dc.relation.referencesKhataee, A., Gholami, P., & Vahid, B. (2017). Catalytic performance of hematite nanostructures prepared by N2 glow discharge plasma in heterogeneous Fenton-like process for acid red 17 degradation. Journal of Industrial and Engineering Chemistry, 50, 86–95. https://doi.org/10.1016/j.jiec.2017.01.035
dc.relation.referencesKim, K. H., & Ihm, S. K. (2011). Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: A review. Journal of Hazardous Materials, 186(1), 16–34. https://doi.org/10.1016/j.jhazmat.2010.11.011
dc.relation.referencesKong, L., Zhu, Y., Liu, M., Chang, X., Xiong, Y., & Chen, D. (2016). Conversion of Fe-rich waste sludge into nano-flake Fe-SC hybrid Fenton-like catalyst for degradation of AOII. Environmental Pollution, 216, 568–574. https://doi.org/10.1016/j.envpol.2016.06.012
dc.relation.referencesLiu, Y., Zhang, G., Chong, S., Zhang, N., Chang, H., Huang, T., & Fang, S. (2017). NiFe(C2O4)x as a heterogeneous Fenton catalyst for removal of methyl orange. Journal of Environmental Management, 192, 150–155. https://doi.org/10.1016/j.jenvman.2017.01.064
dc.relation.referencesMazilu, I., Ciotonea, C., Chirieac, A., Dragoi, B., Catrinescu, C., Ungureanu, A., Petit, S., Royer, S., & Dumitriu, E. (2017). Synthesis of highly dispersed iron species within mesoporous (Al-)SBA-15 silica as efficient heterogeneous Fenton-type catalysts. Microporous and Mesoporous Materials, 241, 326–337. https://doi.org/10.1016/j.micromeso.2016.12.024
dc.relation.referencesMeneses Madroñero, P. S. (2022). Remoción de colorantes presentes en aguas reales provenientes de un laboratorio de microbiología mediante el proceso CWAO con un catalizador Mn, Cu, y/o Fe soportado en carbón activado a partir de caucho de llanta. Universidad Nacional de Colombia.
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible. (2004a). Plan de manejo de aguas residuales municipales lineamientos para tasa retributiva y plan de saneamiento y manejo de vertimientos. 1–19.
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible. (2004b). Plan nacional de manejo de aguas residuales en Colombia. Vasa, 1–36. http://medcontent.metapress.com/index/A65RM03P4874243N.pdf
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible. (2015). Resolución 615 de 2015 Vertimientos. 62.
dc.relation.referencesMonge, S., Torres, A., Ribeiro, R., Silva, A., & Bengoa, C. (2018). Manual técnico sobre procesos de oxidación avanzada aplicados al tratamiento de aguas residuales industriles. http://triton-cyted.com/wp-content/uploads/2019/04/Manual-sobre-oxidaciones-avanzadas.pdf
dc.relation.referencesMorató, J., Carneiro, A. P., Subirana, A., Vidal, G., Jarpa, M., Plaza de los Reyes, C., Belmonte, M., Mariangel, L., & Peñuela, G. (2016). Manual de Tecnologías Sostenibles en Tratamiento de Aguas (Red ALFA TECSPAR (Ed.); Vol. 4, Issue 1).
dc.relation.referencesNguyen, L. H., Nguyen, X. H., Van Thai, N., Le, H. N., Thi, T. T. B., Thi, K. T. B., Nguyen, H. M., Le, M. T., Van, H. T., & Nguyet, D. T. A. (2022). Promoted degradation of ofloxacin by ozone integrated with Fenton-like process using iron-containing waste mineral enriched by magnetic composite as heterogeneous catalyst. Journal of Water Process Engineering, 49(June), 103000. https://doi.org/10.1016/j.jwpe.2022.103000
dc.relation.referencesNie, X., Li, G., Li, S., Luo, Y., Luo, W., Wan, Q., & An, T. (2022). Highly efficient adsorption and catalytic degradation of ciprofloxacin by a novel heterogeneous Fenton catalyst of hexapod-like pyrite nanosheets mineral clusters. Applied Catalysis B: Environmental, 300(June 2021), 120734. https://doi.org/10.1016/j.apcatb.2021.120734
dc.relation.referencesNosaka, Y., & Nosaka, A. Y. (2017). Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chemical Reviews, 117(17), 11302–11336. https://doi.org/10.1021/acs.chemrev.7b00161
dc.relation.referencesNoyola, A., Morgan, J., & Guereca, L. (2013). Selección de Tecnologías para el Tratamiento de Aguas Residuales Municipales. Guía de apoyo para ciudades pequeñas y medianas. In UNAM (Ed.), Selección de tecnologías para el tratamiento de aguas residuales municipales. http://es.slideshare.net/EdwinMamaniVilcapaza/seleccion-de-tecnologias-para-el-tratamiento-de-aguas-residuales-municipales
dc.relation.referencesOzdemir, S., Cirik, K., Akman, D., Sahinkaya, E., & Cinar, O. (2013). Treatment of azo dye-containing synthetic textile dye effluent using sulfidogenic anaerobic baffled reactor. Bioresource Technology, 146, 135–143. https://doi.org/10.1016/j.biortech.2013.07.066
dc.relation.referencesP, K. (2016). Degradation of Toxic Dyes- A Review. International Journal of Pure & Applied Bioscience, 4(5), 81–89. https://doi.org/10.18782/2320-7051.2400
dc.relation.referencesPayá, J. mateo. (2020). Tratamiento de emisiones de COVs en la industria química farmacéutica mediante oxidación térmica regenerativa [Universidad de Murcia]. http://nadir.uc3m.es/alejandro/phd/thesisFinal.pdf%5Cnhttp://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Universidad+de+murcia#0
dc.relation.referencesPBL Netherlands Environmental Assessment Agency. (2018). The geography of future water challenges. PBL Netherlands Environmental Assessment Agency, 47(3 Pt 1), 699–702. https://doi.org/10.2466/pr0.1980.47.3.699
dc.relation.referencesPérez Bedoya, J. S. (2017). Valorización De Un Mineral De Hierro Colombiano Como Catalizador Para La Síntesis Fischer-Tropsch. Universidad de Antioquia.
dc.relation.referencesQuadrado, R. F. N., & Fajardo, A. R. (2017). Fast decolorization of azo methyl orange via heterogeneous Fenton and Fenton-like reactions using alginate-Fe2+/Fe3+ films as catalysts. Carbohydrate Polymers, 177(June), 443–450. https://doi.org/10.1016/j.carbpol.2017.08.083
dc.relation.referencesQuattrocchi, O. A., Abelaira de Andrizzi, S. I., & Laba, R. F. (1992). Introducción a la HPLC. Aplicación y Práctica (1st ed.). Gráficas Farro S.A.
dc.relation.referencesRai, P., Gautam, R. K., Banerjee, S., Rawat, V., & Chattopadhyaya, M. C. (2015). Synthesis and characterization of a novel SnFe2O4@activated carbon magnetic nanocomposite and its effectiveness in the removal of crystal violet from aqueous solution. Journal of Environmental Chemical Engineering, 3(4), 2281–2291. https://doi.org/10.1016/j.jece.2015.08.017
dc.relation.referencesRamos, M. D. N., Santana, C. S., Velloso, C. C. V., da Silva, A. H. M., Magalhães, F., & Aguiar, A. (2021). A review on the treatment of textile industry effluents through Fenton processes. Process Safety and Environmental Protection, 155, 366–386. https://doi.org/10.1016/j.psep.2021.09.029
dc.relation.referencesRodriguez Férnandez-Alba, A., Letón García, P., Rosal García, R., Dorado Valiño, M., Villar Fernández, S., & Sanz García, J. M. (2006). Tratamientos Avanzados De Aguas Residuales Industriales. Citme, 6,8. 13, 30, 34.
dc.relation.referencesRouquerol, F., Rouquerol, J., & Sing, K. (1999). Adsorption by Powders and Porous Solids (2nd ed., Vol. 1). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-598920-6.X5000-3
dc.relation.referencesRyder, G. (2017). Informe mundial de las Naciones Unidas sobre el desarrollo de los recursos hídricos, 2017: Aguas residuales: el recurso no explotado. In Paris : UNESCO, 2017 (Vol. 3, p. 202). http://cidta.usal.es/cursos/EDAR/modulos/Edar/unidades/LIBROS/logo/pdf/Aguas_Residuales_composicion.pdf
dc.relation.referencesSahoo, C., Gupta, A. K., & Pal, A. (2005). Photocatalytic degradation of Crystal Violet (C.I. Basic Violet 3) on silver ion doped TiO2. Dyes and Pigments, 66(3), 189–196. https://doi.org/10.1016/j.dyepig.2004.09.003
dc.relation.referencesSaini, B., & Dey, A. (2022). Synthesis and characterization of copolymer adsorbent for crystal violet dye removal from water. Materials Today: Proceedings, 61, 342–350. https://doi.org/10.1016/j.matpr.2021.10.060
dc.relation.referencesSánchez, A. (2013). Síntesis y caracterización de catalizadores para la oxidación húmeda catalítica de colorantes y aguas residuales. 223. https://eprints.ucm.es/21676/1/T34519.pdf
dc.relation.referencesSanz Tejedor, A. (2020). Química Orgánica Industrial. Retrieved December 3, 2020, from https://www.eii.uva.es/organica/qoi/tema-11.php
dc.relation.referencesSaravan, R. S., Muthukumaran, M., Mubashera, S. M., Abinaya, M., Prasath, P. V., Parthiban, R., Mohammad, F., Oh, W. C., & Sagadevan, S. (2020). Evaluation of the photocatalytic efficiency of cobalt oxide nanoparticles towards the degradation of crystal violet and methylene violet dyes. Optik, 207(December 2019), 164428. https://doi.org/10.1016/j.ijleo.2020.164428
dc.relation.referencesSegura Triana, L. E. (2007). Estudio de Antecedentes sobre la contaminación del recurso hidrico en Colombia. In Escuela Superior de Administración Pública (ESAP).
dc.relation.referencesSingh, K. P., Gupta, S., Singh, A. K., & Sinha, S. (2011). Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach. Journal of Hazardous Materials, 186(2–3), 1462–1473. https://doi.org/10.1016/j.jhazmat.2010.12.032
dc.relation.referencesTackling global water pollution | UNEP - UN Environment Programme. (n.d.). Retrieved September 16, 2020, from https://www.unenvironment.org/explore-topics/water/what-we-do/tackling-global-water-pollution
dc.relation.referencesTamburini, D., Shimada, C. M., & McCarthy, B. (2021). The molecular characterization of early synthetic dyes in E. Knecht et al’s textile sample book “A Manual of Dyeing” (1893) by high performance liquid chromatography - Diode array detector - Mass spectrometry (HPLC-DAD-MS). Dyes and Pigments, 190(March), 109286. https://doi.org/10.1016/j.dyepig.2021.109286
dc.relation.referencesTan, X. fei, Liu, Y. guo, Gu, Y. ling, Liu, S. bo, Zeng, G. ming, Cai, X., Hu, X. jiang, Wang, H., Liu, S. mian, & Jiang, L. hua. (2016). Biochar pyrolyzed from MgAl-layered double hydroxides pre-coated ramie biomass (Boehmeria nivea (L.) Gaud.): Characterization and application for crystal violet removal. Journal of Environmental Management, 184, 85–93. https://doi.org/10.1016/j.jenvman.2016.08.070
dc.relation.referencesTestolin, R. C., Mater, L., Sanches-Simões, E., Dal Conti-Lampert, A., Corrêa, A. X. R., Groth, M. L., Oliveira-Carneiro, M., & Radetski, C. M. (2020). Comparison of the mineralization and biodegradation efficiency of the Fenton reaction and Ozone in the treatment of crude petroleum-contaminated water. Journal of Environmental Chemical Engineering, 8(5), 104265. https://doi.org/10.1016/j.jece.2020.104265
dc.relation.referencesThiam, A., Salazar, R., Brillas, E., & Sirés, I. (2020). In-situ dosage of Fe2+ catalyst using natural pyrite for thiamphenicol mineralization by photoelectro-Fenton process. Journal of Environmental Management, 270(May). https://doi.org/10.1016/j.jenvman.2020.110835
dc.relation.referencesThomas, N., Dionysiou, D. D., & Pillai, S. C. (2021). Heterogeneous Fenton catalysts: A review of recent advances. Journal of Hazardous Materials, 404(PB), 124082. https://doi.org/10.1016/j.jhazmat.2020.124082
dc.relation.referencesUNESCO. (2019). Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2019. No dejar a nadie atrás. In Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura (p. 215). http://www.unwater.org/publications/world-water-development-report-2019/
dc.relation.referencesVega Mora, L. (2015). PROGRAMA INTEGRAL DE GESTIÓN AMBIENTAL SECTORIAL-PGAS SUBSECTOR TEXTIL.
dc.relation.referencesVillegas- Guzman, P., Giannakis, S., Rtimi, S., Grandjean, D., Bensimon, M., de Alencastro, L. F., Torres-Palma, R., & Pulgarin, C. (2017). A green solar photo-Fenton process for the elimination of bacteria and micropollutants in municipal wastewater treatment using mineral iron and natural organic acids. In Applied Catalysis B: Environmental (Vol. 219, pp. 538–549). https://doi.org/10.1016/j.apcatb.2017.07.066
dc.relation.referencesWahi, N., Joseph, C., Tawie, R., & Ikau, R. (2016). Critical Review on Construction Waste Control Practices: Legislative and Waste Management Perspective. Procedia - Social and Behavioral Sciences, 224(August 2015), 276–283. https://doi.org/10.1016/j.sbspro.2016.05.460
dc.relation.referencesWang, A., Wang, Y., Walter, E. D., Kukkadapu, R. K., Guo, Y., Lu, G., Weber, R. S., Wang, Y., Peden, C. H. F., & Gao, F. (2018). Catalytic N2O decomposition and reduction by NH3 over Fe/Beta and Fe/SSZ-13 catalysts. Journal of Catalysis, 358, 199–210. https://doi.org/10.1016/j.jcat.2017.12.011
dc.relation.referencesWang, N., Zheng, T., Zhang, G., & Wang, P. (2016). A review on Fenton-like processes for organic wastewater treatment. Journal of Environmental Chemical Engineering, 4(1), 762–787. https://doi.org/10.1016/j.jece.2015.12.016
dc.relation.referencesWeissermel, K., & Arpe, H.-J. (1997). Industrial Organic Chemistry (Third). VCH A Wiley company.
dc.relation.referencesXu, Y., Chen, X. Y., Li, Y., Ge, F., & Zhu, R. L. (2016). Quantitative structure-property relationship (QSPR) study for the degradation of dye wastewater by Mo-Zn-Al-O catalyst. Journal of Molecular Liquids, 215, 461–466. https://doi.org/10.1016/j.molliq.2016.01.029
dc.relation.referencesYao, G., Wei, Y., Gui, K., & Ling, X. (2022). Catalytic performance and reaction mechanisms of NO removal with NH3 at low and medium temperatures on Mn-W-Sb modified siderite catalysts. Journal of Environmental Sciences (China), 115(x), 126–139. https://doi.org/10.1016/j.jes.2021.06.029
dc.relation.referencesYin, J., Cai, J., Yin, C., Gao, L., & Zhou, J. (2016). Degradation performance of crystal violet over CuO@AC and CeO2-CuO@AC catalysts using microwave catalytic oxidation degradation method. Journal of Environmental Chemical Engineering, 4(1), 958–964. https://doi.org/10.1016/j.jece.2016.01.001
dc.relation.referencesYu, J., Zou, J., Xu, P., & He, Q. (2020). Three-dimensional photoelectrocatalytic degradation of the opaque dye acid fuchsin by Pr and Co co-doped TiO2 particle electrodes. In Journal of Cleaner Production (Vol. 251). https://doi.org/10.1016/j.jclepro.2019.119744
dc.relation.referencesZhang, M., Dong, H., Zhao, L., Wang, D. xi, & Meng, D. (2019). A review on Fenton process for organic wastewater treatment based on optimization perspective. Science of the Total Environment, 670, 110–121. https://doi.org/10.1016/j.scitotenv.2019.03.180
dc.relation.referencesZhang, Y., Zhang, Z., Yan, Q., & Wang, Q. (2016). Synthesis, characterization, and catalytic activity of alkali metal molybdate/α-MoO3 hybrids as highly efficient catalytic wet air oxidation catalysts. Applied Catalysis A: General, 511, 47–58. https://doi.org/10.1016/j.apcata.2015.11.035
dc.relation.referencesZhu, Y., Zhu, R., Xi, Y., Zhu, J., Zhu, G., & He, H. (2019). Strategies for enhancing the heterogeneous fenton catalytic reactivity: A review. Applied Catalysis B: Environmental, 255(January). https://doi.org/10.1016/j.apcatb.2019.05.041
dc.relation.referencesZollinger, H. (2004). Color Chemistry. Synthesis, Properties and Applications of Organic Dyes and Pigments. 3rd revised edition. By Heinrich Zollinger. Angewandte Chemie International Edition, 43(40), 5291–5292. https://doi.org/10.1002/anie.200385122
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembColoring matter
dc.subject.lembColorantes
dc.subject.lembCatalysts
dc.subject.lembCatalizadores
dc.subject.lembwater pollutants
dc.subject.lembContaminantes del agua
dc.subject.proposalProceso Fenton
dc.subject.proposalProcesos Avanzados de Oxidación (AOP´s)
dc.subject.proposalAdvanced Oxidation Processes (AOP)
dc.subject.proposalCristal violeta
dc.subject.proposalFucsina ácida
dc.subject.proposalMaterial de hierro
dc.subject.proposalCrystal violet
dc.subject.proposalFenton process
dc.subject.proposalAcid fuchsine
dc.subject.proposalIron ore
dc.title.translatedDegradation of dyes present in wastewater using a natural material based on iron oxides as catalyst
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito