Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorHincapié Triviño, Gina Marcela
dc.contributor.authorRubio Rueda, Julieta Andrea
dc.date.accessioned2023-05-31T15:40:10Z
dc.date.available2023-05-31T15:40:10Z
dc.date.issued2022-10-28
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83928
dc.descriptionilustraciones, fotografías, graficas
dc.description.abstractEl etanol es un alcohol primario obtenido tanto por vía petroquímica como a partir de biomasa. Entre los derivados más importantes que se obtienen del etanol se encuentra el n-butanol, que se utiliza principalmente como disolvente y como molécula plataforma. Actualmente, la producción de n-butanol se lleva a cabo principalmente por dos métodos, el proceso ABE (fermentación Aceto-Butílica-Etílica) y el proceso OXO (hidroformilación), sin embargo, ambos procesos tienen inconvenientes, por ejemplo, el proceso ABE presenta bajo rendimiento, dificultad en la separación de los productos y alta toxicidad de los solventes, y por su parte el proceso OXO presenta una alta toxicidad de los reactivos, un alto costo de los catalizadores y una baja rentabilidad. Debido a lo anterior, ha surgido la reacción de Guerbet como alternativa, la cual consiste en la conversión de etanol a n-butanol a través de reacciones de condensación y deshidratación en presencia de un catalizador, empleando condiciones de presión y temperatura apropiadas. En el proceso de Guerbet se han utilizado catalizadores homogéneos y heterogéneos. Entre los catalizadores heterogéneos potenciales para esta reacción se encuentran los óxidos mixtos de Mg/Al derivados de hidrotalcitas que han demostrado ser prometedores debido a sus propiedades ácido/base, facilidad de síntesis, alta actividad y bajo costo. De acuerdo con lo anterior, el objetivo de la presente investigación fue evaluar el efecto de la presencia de distintos tipos de sitios activos en los óxidos mixtos derivados de hidrotalcitas de Mg/Al, usados como catalizadores en la transformación de etanol a nbutanol mediante la reacción de Guerbet. Se consideraron variables como: la composición de las hidrotalcitas, la presencia de sitios básicos de diferente naturaleza, la presencia de sitios de hidrogenación y deshidrogenación, la temperatura, el uso de cobre estructural en el catalizador y su efecto sobre la selectividad hacia el n-butanol. Los catalizadores objeto de este estudio fueron óxidos mixtos derivados de hidrotalcitas de Mg/Al con relaciones molares 1/1, 3/1 y 5/1, sintetizados por el método de coprecipitación y posterior calcinación a 500°C. De igual forma, se evaluó la influencia de sustituir una porción de los cationes Mg2+ por cationes Cu2+ en la estructura de la hidrotalcita sobre la selectividad hacia butanol. Los materiales de partida, así como los óxidos mixtos fueron caracterizados por diferentes técnicas entre las cuales se incluye difracción de rayos X encontrándose los picos característicos de las hidrotalcitas en los precursores y en los óxidos mixtos los picos característicos de un perfil asociado a periclasa (MgO). Por otra parte, se realizó un análisis de textura y porosidad encontrándose que estos sólidos, según la clasificación IUPAC son de tipo IV, característicos de sólidos mesoporosos con áreas superficiales específicas entre 216 y 294 [m2/g]. La actividad catalítica se evaluó usando un reactor tipo batch Parr® de 50 mL usando una carga de 3% en masa de catalizador versus la cantidad de etanol empleada. Se purgó con N2 y la reacción se llevó a cabo a presión autógena. Se evaluaron temperaturas de 250, 300 y 350°C bajo agitación a 300 rpm durante 6 horas. Los reactivos y productos se identificaron y cuantificaron por cromatografía de gases. Bajo las condiciones experimentales estudiadas, el catalizador de Mg/Al que presentó un mejor comportamiento catalítico en términos de conversión (79.9%) y selectividad (8.8%) hacia n-butanol a una temperatura de 300°C, es aquel con una relación molar de 3/1; esto se explica por la proporción de pares ácido-base presentes en este sólido que fueron cuantificados mediante desorción a temperatura programada, alcanzando un valor de 51.0 µmol/g. Al emplear cobre estructural en este material y evaluarlo en la reacción a las distintas temperaturas, se observó que a 250°C presentó una conversión comparable (80.9%) y una mayor selectividad hacia n-butanol (16.5%) versus el catalizador de Mg/Al con relación 3/1. La presencia de cobre en el material aporta una cantidad de sitios básicos de fuerza media de 43.2 µmol/g y al ser un metal de transición aporta densidad electrónica promoviendo el fenómeno de retrodonación y como consecuencia facilitando el proceso de hidrogenación/deshidrogenación. Los resultados conseguidos en esta investigación son promisorios ya que igualan los porcentajes de conversión y en algunos casos de selectividad, a aquellos obtenidos en diversas investigaciones disponibles en la literatura científica, en las cuales se utilizan catalizadores de paladio e indio que resultan costosos. De igual manera, y como aporte principal de la presente investigación, se brinda una posible explicación asociada con el aumento en la selectividad hacia el producto de interés que genera la presencia de cobre en los óxidos mixtos derivados de hidrotalcitas; dado que, si bien este catión ha sido utilizado anteriormente para esta reacción, no hemos evidenciado en la literatura las razones químicas que expliquen este comportamiento. El entendimiento del catalizador es importante para mejorar el diseño y la actividad de estos materiales. (Texto tomado de la fuente)
dc.description.abstractEthanol is a primary alcohol obtained both petrochemically and from biomass. Among the most important derivatives obtained from ethanol is n-butanol, which is used mainly as a solvent and as a platform molecule. Currently, the production of n-butanol is carried out mainly by two methods, the ABE process (Aceto-Butyl-Ethyl fermentation) and the OXO (hydroformylation) process, however, both processes have drawbacks, for example, the ABE process It presents low yield, difficulty in separating the products and high toxicity of the solvents, and for its part the OXO process presents a high toxicity of the reagents, a high cost of the catalysts and a low profitability. Due to the above, the Guerbet reaction has emerged as an alternative, which consists of the conversion of ethanol to n-butanol through condensation and dehydration reactions in the presence of a catalyst, using appropriate pressure and temperature conditions. Homogeneous and heterogeneous catalysts have been used in the Guerbet process. Potential heterogeneous catalysts for this reaction include mixed Mg/Al oxides derived from hydrotalcites that have shown promise due to their acid/base properties, ease of synthesis, high activity, and low cost. In accordance with the above, the objective of the present investigation was to evaluate the effect of the presence of different types of active sites in the mixed oxides derived from Mg/Al hydrotalcites, used as catalysts in the transformation of ethanol to n-butanol by means of Guerbet's reaction. Variables such as: the composition of the hydrotalcites, the presence of basic sites of different nature, the presence of hydrogenation and dehydrogenation sites, temperature, the use of structural copper in the catalyst and its effect on selectivity towards n-butanol, were considered. The catalysts object of this study were mixed oxides derived from Mg/Al hydrotalcites with molar ratios 1/1, 3/1 and 5/1, synthesized by the coprecipitation method and subsequent calcination at 500°C. Similarly, the effect on the selectivity towards butanol of replacing a portion of the Mg2+ cations by Cu2+ cations in the hydrotalcite structure was evaluated. The starting materials as well as the mixed oxides were characterized by different techniques, including X-ray diffraction, finding the characteristic peaks of hydrotalcites in the precursors and in the mixed oxides, the characteristic peaks of a profile associated with periclase (MgO). On the other hand, a texture and porosity analysis were carried out, finding that these solids, according to the IUPAC classification, are type IV, characteristic of mesoporous solids with specific surface areas between 216 and 294 [m2 /g]. Catalytic activity was evaluated using a 50 mL Parr® batch reactor using a 3 % catalyst charge versus the amount of ethanol. Reactor was purged with N2 and the reaction was carried out under autogenous pressure. Temperatures of 250, 300 and 350°C were evaluated under stirring at 300 rpm for 6 hours. The reagents and products were identified and quantified by gas chromatography. Under the experimental conditions studied, Mg/Al 3/1 catalyst presented the best catalytic behavior in terms of conversion (79.9%) and selectivity (8.8%) towards n-butanol at a temperature of 300° C. This is explained by the proportion of acid-base pairs in this solid that were quantified by temperature programmed desorption experiments, reaching a value of 51 µmol/g. When copper is included in the structure of this material, it was observed that at 250°C it presented a comparable conversion (80.9%) and a higher selectivity towards n-butanol (16.5%) versus the Mg/ Al with ratio 3/1. The presence of copper provides 43.2 µmol/g of basic sites of medium strength and being a transition metal, provides electron density promoting backbonding, and therefore facilitates hydrogenation/ dehydrogenation processes. The results obtained in this investigation are promising since they are comparable to the conversion and in some cases the selectivity of different studies, in which expensive palladium and indium catalysts are used. In this sense, and as the main contribution of this investigation, a feasible explanation associated with the increase in selectivity towards nbutanol generated by the presence of copper in mixed oxides. Despite this cation has been previously used in for this reaction, to our knowledge, in the literature there is not a chemical explanation related to this behaviour. Understanding the catalyst is important to improve the design and activity of these materials.
dc.description.sponsorshipA la Universidad Nacional de Colombia-Sede Bogotá por el apoyo económico a través del proyecto con código Hermes 48249 y a través de la beca de Auxiliar Docente
dc.format.extent109 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc660 - Ingeniería química::661 - Tecnología de químicos industriales
dc.titleÓxidos mixtos derivados de hidrotalcitas como catalizadores para la obtención de n-butanol a partir de etanol
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Química
dc.contributor.researchgroupEstado Sólido y Catálisis Ambiental (ESCA)
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Química
dc.description.researchareaCatálisis Heterogénea Ambiental
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesC. Angelici, B. M. Weckhuysen, and P. C. A. Bruijnincx, “Chemocatalytic conversion of ethanol into butadiene and other bulk chemicals,” ChemSusChem, vol. 6, no. 9, pp. 1595–1614, 2013.
dc.relation.referencesM. Rechi Siqueira, O. Micali Perrone, G. Metzker, D. C. de Oliveira Lisboa, J. C. Thoméo, and M. Boscolo, “Highly selective 1-butanol obtained from ethanol catalyzed by mixed metal oxides: Reaction optimization and catalyst structure behavior,” Mol. Catal., vol. 476, no. May, p. 110516, 2019.
dc.relation.referencesO. M. Perrone, F. Lobefaro, M. Aresta, F. Nocito, M. Boscolo, and A. Dibenedetto, “Butanol synthesis from ethanol over CuMgAl mixed oxides modified with palladium (II) and indium (III),” Fuel Process. Technol., vol. 177, no. May, pp. 353–357, 2018.
dc.relation.referencesM. T. Palacios-Lozano, A. Camacho, C. Cammaert, S. Rincón, L. Guzmán, S. L. Mejia, S. Valbuena, C. Romero, C. Franco, “Evaluación ambiental estratégica de políticas, planes y programas de biocombustibles en Colombia, con énfasis en biodiversidad,” 2008.
dc.relation.referencesC. D. Reese, “Flammable and Combustible Liquids,” Handb. Saf. Heal. Serv. Ind. - 4 Vol. Set, pp. 692–703, 2020.
dc.relation.referencesJ. A. Barrett, Z. R. Jones, C. Stickelmaier, N. Schopp, and P. C. Ford, “A Pinch of Salt Improves n-Butanol Selectivity in the Guerbet Condensation of Ethanol over CuDoped Mg/Al Oxides,” ACS Sustain. Chem. Eng., vol. 6, no. 11, pp. 15119–15126, 2018.
dc.relation.referencesEuropean Automobile Manufacturers Association, Alliance of Automobile Manufacturers, Truck and Engine Manufacturers Association, and Japan Automobile Manufacturers Association, “World-wide fuel charter. Fifth Edition,” Fuel, vol. 81, no. September, 2013.
dc.relation.referencesGobierno de Colombia, “Acta de protocolización mesa nacional para el aprovechamiento de biomasa residual,” pp. 1–8, Jun. 24. 2021.
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible y MInisterio de Minas y Energía, “Resolución 0789: Por la cual se modifica la Resolución 898 de 1995 en lo relacionado con los parámetros y requisitos de calidad del Etanol Anhidro Combustible y Etanol Anhidro Combustible Desnaturalizado utiliado como componente oxigenante de gasolinas y se dictan otras disposiciones,” vol. 2016, no. 49, 2016.
dc.relation.referencesFEDERACIÓN NACIONAL DE BIOCOMBUSTIBLES EN COLOMBIA, “Preguntas Frecuentes de los Biocombustibles,” Fedebiocombustibles, 2014. [Online]. Available: http://www.fedebiocombustibles.com/v3/nota-web-id923.htm#sthash.rz2DmFV2.dpuf. [Accessed: 07-Jan-2022].
dc.relation.referencesD. L. Carvalho, L. E. P. Borges, L. G. Appel, P. Ramírez De La Piscina, and N. Homs, “In situ infrared spectroscopic study of the reaction pathway of the direct synthesis of n-butanol from ethanol over MgAl mixed-oxide catalysts,” Catal. Today, vol. 213, pp. 115–121, 2013.
dc.relation.referencesRodolfo Cavaliere da Rocha, Dario Alberto Alviso, Nasser Darabiha, and Rogério Gonçalves dos Santos, “Comparison between n-butanol and ethanol combustion kinetic models through one-dimensional premixed flame simulations,” Proc. 23rd ABCM Int. Congr. Mech. Eng., 2015.
dc.relation.referencesM. León, E. Díaz, and S. Ordóñez, “Ethanol catalytic condensation over Mg-Al mixed oxides derived from hydrotalcites,” Catal. Today, vol. 164, no. 1, pp. 436–442, 2011.
dc.relation.referencesChemical Company. DOWTM, “Product Safety Assessment - DOWTM n-Butanol,” DOW, pp. 1–6, 2013. [Online]. Available from: https://www.dow.com/webapps/include/GetDoc.aspx?filepath=productsafety/pdfs/n oreg/233-00247.pdf
dc.relation.referencesAbengoa S.A, “Producción Industrial,” Informe Anual 2013, 2013. [Online]. Available: http://www.abengoa.com/export/sites/abengoa_corp/resources/pdf/gobierno_corpo rativo/informes_anuales/2013/Tomo1/2013_Tomo1_IA_8.pdf. [Accessed: 07-Jan2022].
dc.relation.referencesB. Ndaba, I. Chiyanzu, and S. Marx, “N-Butanol derived from biochemical and chemical routes: A review,” Biotechnol. Reports, vol. 8, pp. 1–9, 2015.
dc.relation.referencesDATA BRIDGE MARKET. RESEARCH, “Mercado de N-butanol de América del Norte por aplicaciones (acrilato de butilo, acetato de butilo, éteres de glicol y otros) y geografía: tendencias y pronósticos para 2019,” MICROMARKETMONITOR, 2015. [Online]. Available: http://www.micromarketmonitor.com/market/northamerica-n-butanol-1314983271.html. [Accessed: 07-Jan-2022].
dc.relation.referencesJ. Quesada, L. Faba, E. Díaz, and S. Ordóñez, “Tuning the selectivities of Mg-Al mixed oxides for ethanol upgrading reactions through the presence of transition metals,” Appl. Catal. A Gen., vol. 559, no. March, pp. 167–174, 2018.
dc.relation.referencesZ. Sun, AC. Vasconcelos, G. Bottari, MCA. Stuart, G. Bonura, C. Cannilla, “Efficient catalytic conversion of ethanol to 1-butanol via the guerbet reaction over copper- and nickel-doped porous,” ACS Sustain. Chem. Eng., vol. 5, no. 2, pp. 1738–1746, 2017.
dc.relation.referencesN. Qureshi, “Solvent Production,” Encycl. Microbiol., pp. 512–528, 2009.
dc.relation.referencesX. Wu, G. Fang, Y. Tong, D. Jiang, Z. Liang, W. Leng, L. Liu, P. Tu, H. Wang, J. Ni, X. Li, “Catalytic Upgrading of Ethanol to n-Butanol: Progress in Catalyst Development,” ChemSusChem, vol. 11, no. 1, pp. 71–85, 2018.
dc.relation.referencesC. Xue and C. Cheng, Butanol production by Clostridium, 1st ed., vol. 4. Elsevier Inc., 2019. [Online]. Available: http://dx.doi.org/10.1016/bs.aibe.2018.12.001
dc.relation.referencesM. F. P. Muñoz., Motores De Combustión Interna Alternativos, Valencia, Reverté. pp. 447-457, 2015. [Online].Available: https://gdocu.upv.es/alfresco/service/api/node/content/workspace/SpacesStore/130 ad267-fe67-4ec7-8363-51b16ffe11a6/TOC_0809_04_01.pdf?guest=true
dc.relation.referencesB. L. Bursten, Química. La ciencia central., Pearson., vol. 465, pp. 492, México, 2007.
dc.relation.referencesA. J. Scheid, E. Barbosa-Coutinho, M. Schwaab, and N. P. G. Salau, “Mechanism and Kinetic Modeling of Ethanol Conversion to 1-Butanol over Mg and Al Oxide Derived from Hydrotalcites,” Ind. Eng. Chem. Res., vol. 58, no. 29, pp. 12981–12995, 2019.
dc.relation.referencesD. L. Carvalho, R. R. De Avillez, M. T. Rodrigues, L. E. P. Borges, and L. G. Appel, “Mg and Al mixed oxides and the synthesis of n-butanol from ethanol,” Appl. Catal. A Gen., vol. 415–416, pp. 96–100, 2012.
dc.relation.referencesY. Li, J. Gong, W. Yuan, J. Fu, B. Zhang, and Y. Li, “Experimental investigation on combustion, performance, and emissions characteristics of butanol as an oxygenate in a spark ignition engine,” Adv. Mech. Eng., vol. 9, no. 2, pp. 1–13, 2017.
dc.relation.referencesMarketsandmarkets, “Mercado de n-butanol,” MARKETSANDMARKETS, 2021. [Online]. Available: https://www.marketsandmarkets.com/Market-Reports/n-butanolmarket-1089.html. [Accessed: 07-Jan-2022].
dc.relation.referencesD. B. M. RESEARCH, “Mercado global de N-butanol : tendencias de la industria y pronóstico para 2029,” DATABRIDGE, 2021. [Online]. Available: https://www.databridgemarketresearch.com/reports/global-n-butanol-market. [Accessed: 07-Jan-2022].
dc.relation.referencesF. Hill, “Etanol,” MERK, 2021. [Online]. Available: https://www.merckmillipore.com/CO/es/product/Ethanol,MDA_CHEM-100983. [Accessed: 07-Jan-2022].
dc.relation.referencesD. Product and S. Card, “1-Butanol,” MERCK. [Online]. Available: https://www.merckmillipore.com/CO/es/product/1-Butanol,MDA_CHEM-101990. [Accessed: 07-Jan-2022].
dc.relation.referencesR. C. Patil, P. G. Suryawanshi, R. Kataki, and V. V. Goud, Current challenges and advances in butanol production. Sustainable Bioenergy: Advances and Impa. Elsevier Inc., pp. 225-256, 2019. [Online]. Available: http://dx.doi.org/10.1016/B978- 0-12-817654-2.00008-3
dc.relation.referencesA. V. Chistyakov, S. A. Nikolaev, P. A. Zharova, M. V. Tsodikov, and F. Manenti, “Linear Α-alcohols production from supercritical ethanol over Cu/Al2O3 catalyst,” Energy, vol. 166, pp. 569–576, 2019.
dc.relation.referencesC. Xue, F. Liu, M. Xu, I.C Tang, J. Zhao, F. Bai, “Butanol production in acetonebutanol-ethanol fermentation with in situ product recovery by adsorption,” Bioresour. Technol., vol. 219, pp. 158–168, 2016. [Online]. Available: http://dx.doi.org/10.1016/j.biortech.2016.07.111
dc.relation.referencesJ. I. Di Cosimo, C. R. Apesteguía, M. J. L. Ginés, and E. Iglesia, “Structural requirements and reaction pathways in condensation reactions of alcohols on MgyAlOx catalysts,” J. Catal., vol. 190, no. 2, pp. 261–275, 2000.
dc.relation.referencesR. Molina, M. H. Castaño, and S. Moreno, “Catalizadores de manganeso sintetizados por autocombustión y coprecipitación y su empleo en la oxidación del 2-propanol,” Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat., vol. 39, no. 150, p. 26, 2015.
dc.relation.referencesC. Forano, T. Hibino, F. Leroux, and C. Taviot-Guého, “Chapter 13.1 Layered Double Hydroxides,” Dev. Clay Sci., vol. 1, no. C, pp. 1021–1095, 2006.
dc.relation.referencesA. Antolin, A. Antolín, and S. Es, “CATALYST FOR OBTAINING HIGHER ALCOHOLS", U.S. 9.266,096 B2, Feb. 23, 2016.
dc.relation.referencesJ. Stone, L. Enterprises, and C. Muchos, Transición a la nueva era de biorrefinación y visión de futuro para plantas de etanol, pp. 1–5, 2020. [Online]. Available: https://www.catalyxxinc.com/single-post/transitioning-to-the-new-biorefining-erafuture-vision-for-ethanol-plants
dc.relation.referencesK. K. Ramasamy, M. Gray, H. Job, C. Smith, and Y. Wang, “Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds,” Catal. Today, vol. 269, pp. 82–87, 2016.
dc.relation.referencesD. G. Evans and R. C. T. Slade, “Structural aspects of layered double hydroxides,” Struct. Bond., vol. 119, no. December 2005, pp. 1–87, 2005.
dc.relation.referencesC. Forano, U. Costantino, V. Prévot, and C. T. Gueho, Layered double hydroxides (LDH), Developments in Clay Science vol. 5., pp. 745-782, 2013.
dc.relation.referencesG. M. Hincapié, “Efecto de las propiedades ácido-base de los oxidos mixtos derivados de hidrotalcitas en la activación de metanol para reacciones de transesterificación” Universidad de Antioquia. Facultad de Ciencias Exactas y Naturales. Medellín. 2014.
dc.relation.referencesF. Prinetto, G. Ghiotti, R. Durand, and D. Tichit, “Investigation of acid-base properties of catalysts obtained from layered double hydroxides,” J. Phys. Chem. B, vol. 104, no. 47, pp. 11117–11126, 2000.
dc.relation.referencesJ. I. Di Cosimo, C. R. Apesteguía, M. J. L. Ginés, and E. Iglesia, “Structure and Suface and Catalytic Properties of Mg-Al Basic Oxides,” J. Catal., vol. 510, p. 375, 1999.
dc.relation.referencesO. V. Larina et al., “Successive vapour phase Guerbet condensation of ethanol and 1-butanol over Mg-Al oxide catalysts in a flow reactor,” Appl. Catal. A Gen., vol. 588, 2019.
dc.relation.referencesI. C. Marcu, D. Tichit, F. Fajula, and N. Tanchoux, “Catalytic valorization of bioethanol over Cu-Mg-Al mixed oxide catalysts,” Catal. Today, vol. 147, no. 3–4, pp. 231–238, 2009.
dc.relation.referencesI. C. Marcu, N. Tanchoux, F. Fajula, and D. Tichit, “Catalytic conversion of ethanol into butanol over M-Mg-Al mixed oxide catalysts (M = Pd, Ag, Mn, Fe, Cu, Sm, Yb) obtained from LDH precursors,” Catal. Letters, vol. 143, no. 1, pp. 23–30, 2013.
dc.relation.referencesR. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallographica 32, no. 5, pp. 751– 767, 1976.
dc.relation.referencesD. G. Cantrell, L. J. Gillie, A. F. Lee, and K. Wilson, “Structure-reactivity correlations in MgAl hydrotalcite catalysts for biodiesel synthesis,” Appl. Catal. A Gen., vol. 287, no. 2, pp. 183–190, 2005.
dc.relation.referencesR. G. Pearson, “Hard and Soft Acids and Bases,” J. Am. Chem. Soc., vol. 85, no. 22, pp. 3533–3539, 1963.
dc.relation.referencesKarlsruhe, “ICSD - the world’s largest database for completely identified inorganic crystal structures,” pp. 27–28, 2021.
dc.relation.referencesP. A. Weeb, C. Analytical Methods in Fine Particle Technology, Micromeritics Instrument, no. 2, pp. 2–5, 2012. [Online]. Available: https://eur-lex.europa.eu/legalcontent/PT/TXT/PDF/?uri=CELEX:32016R0679&from=PT%0Ahttp://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:52012PC0011:pt:NOT
dc.relation.referencesE. Sarbu, I. Caunescu, and A. Trifan, “Regeneration of weak and medium absorbing molecular sieves (3Å vs 4Å) under microwave exposure,” Rev. Chim., vol. 65, no. 7, pp. 762–767, 2014.
dc.relation.referencesT. L. Jordison, C. T. Lira, and D. J. Miller, “Condensed-Phase Ethanol Conversion to Higher Alcohols,” Ind. Eng. Chem. Res., vol. 54, no. 44, pp. 10991–11000, 2015.
dc.relation.referencesD. Astruc, Organometallic chemistry and catalysis. 2007.
dc.relation.referencesJ. T. Kloprogge, L. Hickey, and R. L. Frost, “Synthesis and spectroscopic characterization of deuterated hydrotalcite,” J. Mater. Sci. Lett., vol. 21, no. 8, pp. 603–605, 2002.
dc.relation.referencesR. Karcz et al., “Comparative Physicochemical and Catalytic Study of Nanocrystalline Mg-Al Hydrotalcites Precipitated with Inorganic and Organic Bases,” Nanomaterials, vol. 12, no. 16, 2022.
dc.relation.referencesO. F. Catalysis, “On the Shift in the CH Stretching Bands of Methoxy Chemisorbed,” vol. 176, pp. 173–176, 1985.
dc.relation.referencesN. Takezawa and H. Kobayashi, “The shift of CH stretching band of surface alcoholate on metal oxides,” J. Catal., vol. 25, no. 1, pp. 179–181, 1972.
dc.relation.referencesV. A. Sadykov et al., “Mechanism of Ethanol Steam Reforming Over Pt/(Ni+Ru)- Promoted Oxides by FTIRS In Situ,” Top. Catal., vol. 59, no. 15–16, pp. 1332–1342, 2016.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalEtanol
dc.subject.proposalN-butanol
dc.subject.proposalHidrotalcitas
dc.subject.proposalÓxidos mixtos
dc.subject.proposalRetrodonación
dc.subject.proposalEthanol
dc.subject.proposalHydrotalcites
dc.subject.proposalMixed oxides
dc.subject.proposalbackbonding
dc.title.translatedMixed oxides derived from hydrotalcites as catalysts in obtaining n-butanol from ethanol
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameUniversidad Nacional de Colombia
dc.subject.wikidataGuerbet reaction
dc.subject.wikidataReacción de Guerbet
dc.subject.wikidatabutan-1-ol


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito