Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorLandinez Téllez, David Arsenio
dc.contributor.advisorCabrera Báez, Michael
dc.contributor.authorDelgado Saavedra, Juan Camilo
dc.date.accessioned2023-05-31T20:04:58Z
dc.date.available2023-05-31T20:04:58Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83934
dc.descriptionilustraciones, fotografías, graficas
dc.description.abstractAl abordar un trabajo experimental en física de la materia condensada o en ciencia de materiales, resulta primordial contar con muestras confiables, cuidadosamente diseñadas y fabricadas, de modo que exhiban los diferentes fenómenos físicos que se desean estudiar, tales como: magnetismo, superconductividad, termoelectricidad, fermiones pesados, criticalidad cuántica, entre otros. Este trabajo de grado, se enfoca en la adaptación e implementación de un espacio en el laboratorio del GFNM, para la fabricación y caracterización estructural de monocristales de la familia RT2Al10(R: tierra rara, T: metal de transición) utilizando una técnica experimental denominada técnica de flujo, con el propósito de lograr muestras de una alta calidad, para luego medir sus características estructurales y composicionales, dando paso a una nueva linea de investigación en ciencia de materiales en la Universidad Nacional de Colombia - Sede Bogotá, en la que a futuro se podrán estudiar propiedades electrónicas, magnéticas y térmicas derivadas de los grados de correlación electrónica y otro tipo de fenómenos físicos que se producen en esta familia de compuestos; y que se encuentran a la vanguardia de la investigación en nuevos materiales, específicamente en la línea de materiales cuánticos. (Texto tomado de la fuente)
dc.description.abstractWhen starting an experimental work in condensed matter physics or materials science, it is essential to have reliable samples, carefully designed and manufactured, so that they exhibit the different physical phenomena that we want to be studied, such as: magnetism, superconductivity, thermoelectricity , heavy fermions, quantum criticality, among others. This degree work focuses on the adaptation and implementation of a place into the GFNM-Laboratory, for the fabrication and structural characterization of single crystals of the RT2Al10 family (R: rare earth, T: transition metal) using an experimental technique called flux technique, with the purpose of to obtain high quality samples, to later measure their structural and compositional characteristics, giving way to a new line of research in materials science at the National University of Colombia - Bogotá Campus, in which electronic, magnetic and thermal properties derived from the degrees of electronic correlation and other types of physical phenomena that occur in this family of compounds that can be studied in the future; and that, are at the forefront of research into new materials, specifically in the line of quantum materials.
dc.format.extentx, 62 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc540 - Química y ciencias afines::548 - Cristalografía
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicada
dc.titleFabricación y caracterización de sistemas intermetálicos de la familia RT2AI10 a base de tierras raras mediante la técnica de flujo
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Física
dc.contributor.researchgroupGrupo de Física de Nuevos Materiales
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Física
dc.description.researchareaFíısica experimental de nuevos materiales
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesPiers Coleman. Introduction to Many Body Physics. Cambridge University Press, University. Printing House, Cambridge CB2 8BS, United Kingdom, 2016.
dc.relation.referencesErnst Bauer. Strongly correlated electron systems, https://www.ifp.tuwien.ac.at/mitarbeiterinnen/persoenliche-homepages/ernst-bauer/research/strongly-correlatedelectron-systems/ (accessed June 10, 2020).
dc.relation.referencesV.W. Burnett, D. Yazici, B.D. White, N.R. Dilley, A.J Friedman, B. Brandom, and M.B Maple. Structure and physical properties of RT2Cd20 (R = rare earth, T = Ni, Pd) compounds with the CeCr2Al20 - type structure. Journal of Solid State Chemistry, page 215, (2014).
dc.relation.referencesS. Jia, N. Ni, S.L Budko, and P.C Canfield. Magnetic properties of RFe2Zn20 and RCo2Zn20 (R = Y,Nd, Sm, Gd–Lu). Physical Review B 80, 104403, (2009).
dc.relation.referencesM.A. Avila, K. Suekini, K. Umeo, H. Fukuoka, S. Yamanaka, and T. Tabatake. Ba8Ga16Sn30 with type-I Clathrate structure: Drastic suppression of heat conduction. Applied Physics Letters, 92, 041901, (2008).
dc.relation.referencesK. Wei, J.N. Neu, Y. Lai, K-W. Chen, D. Hobbis, G. Nolas, D. Graf, T. Siegrist, and R. Baumbach. Enhanced thermoelectric performance of heavy-fermion compounds Y bTM2Zn20 (TM = Co, Rh, Ir) at low temperatures. SCIENCE ADVANCES, eaaw6183:1–8, (2019).
dc.relation.referencesM. Cabrera-Baez, V.C. Denis, L. Mendoca-Ferreira, M. Carlone, P.A. Venegas, M.A Avila, and C. Rettori. Unusual evolution from a superconducting to an antiferromagnetic ground state in Y1−xGdxPb3 (0 ≤ x ≤ 1). PHYSICAL REVIEW, B 97, 224425:1–8 (2018).
dc.relation.referencesM. Cabrera-Baez, A. Naranjo-Uribe, J.M. Osorio-Guillén, C. Rettori, and Avila. Conduction electrons mediating the evolution from antiferromagnetic to ferromagnetic ordering in Gd(Co1−yFey)2Zn20 (0 ≤ y ≤ 1). PHYSICAL REVIEW, B 95, 104407:1–7, (2017).
dc.relation.referencesM. Cabrera-Baez, A. Naranjo-Uribe, J.M. Osorio-Guillén, C. Rettori, and Avila. Multiband electronic characterization of the complex intermetallic cage system Y1−xGdxCo2Zn20. PHYSICAL REVIEW, B 92, 214414:1–7, (2015).
dc.relation.referencesC. Guo, C. Cao, M. Smidman, F. Wu, Y. Zhang, F. Steglich, F. Zhang, and H. Yuan. Possible Weyl fermions in the magnetic Kondo system CeSb. Quantum Materials, doi:10.1038/s41535-017-0038-3, (2017).
dc.relation.referencesL. Wu, M. Kim, K. Park, A.M. Tsvelik, and M. Aronson. Quantum critical fluctuations in layered Y Fe2Al10. PNAS, 111 No.39, (2014).
dc.relation.referencesW.J. Gannon, L.S. Wu, I.A. Zaliznyak, and et.al. Local quantum phase transition inY Fe2Al10. PNAS, www.pnas.org/cgi/doi/10.1073/pnas.1721493115, (2017).
dc.relation.referencesJ.L. Lv, R. Chen, H. Wang, J.L. Luo, and N. Wang. Single-crystal growth and physical property characterization of the intermediate-valence compound Y bF e2Al10. PHYSICAL REVIEW, B 95, 235132:1–6, (2017).
dc.relation.referencesT. Kubo, M. Sakoda, E. Matsuoka, T. Terashima, N. Kikugawa, S. Uji, and H. Sugawara. Magnetoresistance, hall effect, and shubnikov–de haas effect in antiferromagnetic kondo semimetal CeRu2Al10. Journal of the Physical Society of Japan, 89, 114704:338–341, (2020).
dc.relation.referencesTomoaki Takesaka, Kenta Oe, Riki Kobayashi, Yukihiro Kawamura, Takashi Nishioka, Harukazu Kato, Masahiro Matsumura, and Kazuto Kodama. Semiconducting behavior in CeF e2Al10 and CeRu2Al10 single crystals. Journal of Physics: Conference Series, 200(1):012201, jan 2010.
dc.relation.referencesKazunori Umeo, Takashi Ohsuka, Yuji Muro, Junpei Kajino, and Toshiro Takabatake. Pressure effect on the anomalous phase transition in CeOs2Al10. Journal of The Physical Society of Japan - J PHYS SOC JPN, 80, 06 2011.
dc.relation.referencesP.C. Canfield and Z. Fisk. Growth of single crystals from metallic fluxes. Philosophical Magazine Part B, 65:6, 1117-1123, DOI:10.1080/13642819208215073, (1992).
dc.relation.referencesZ. Fisk and J.P. Remeika. Growth of single crystals from molten metal fluxes. Handbook on the Physics and Chemistry of Rare Earths, 12:53–70, (1989).
dc.relation.referencesRaquel A. Ribeiro and Marcos A. Avila. Single crystal flux growths of thermoelectric materials. Philosophical Magazine, 92,(2012).
dc.relation.referencesCarlos M. Giles de Mayolo. Estudio de compuestos intermetálicos por difracción de rayos X en cristales individuales, https://sites.ifi.unicamp.br/giles/pesquisa/ (accessed June 15, 2020).
dc.relation.referencesElizabeth Chavira Martínez. Superconductividad en materiales cerámicos e intermetálicos, https://www.iim.unam.mx/investigadores/chavira/investigacion.html (accessed June 15, 2020).
dc.relation.referencesPaula Giraldo. Grupo de Materiales Cuánticos (Quantum Materials), https://quantummaterials.uniandes.edu.co/index.php/research/single-crystal-growth/ (accessed October 6, 2022).
dc.relation.referencesL. Fuentes. Introducción al método de Rietveld. Sociedad Mexicana de Cristalografía, A.C, Centro de Investigación en Materiales Avanzados, S.C, Instituto de Investigaciones en Materiales UNAM, 2004.
dc.relation.referencesG. Dhanaraj, K. Byrappa, V. Prasad, and M. Dudley. Handbook of crystal growth. Springer-Verlag Berlin Heidelberg, 2010.
dc.relation.referencesS. Galli, M. Moret, and P. Roversi. Cristalografía: la visión de rayos X- 2014: Año internacional de la cristalografía. Asociación Italiana de Cristalografía, 2014.
dc.relation.referencesW. Callister. Introducción a la Ciencia e Ingeniería de los materiales. Editorial Reverte S.A, 1995.
dc.relation.referencesK. Sangwal. Nucleation and crystal growth: metastability of solutions and melts. John Wiley & Sons, Inc., John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA, 2018.
dc.relation.referencesAndrew F. May, Jiaqiang Yan, and Michael A. McGuire. A practical guide for crystal growth of van der waals layered materials. Journal of Applied Physics, 128(5):051101, 2020.
dc.relation.referencesW. K. Burton, N. Cabrera, and F.C. Frank. The growth of crystals and the equilibrium structure of their surfaces. Phil. Trans. R. Soc. Lond., 243:299–358, (1951).
dc.relation.referencesJ. Hulliger. Chemistry and crystal growth. Angew. Chem. Int. Ed. Engl, 33:143–162, (1994).
dc.relation.referencesM. Sera, H. Nohara, M. Nakamura, H. Tanida, T. Nishioka, and M. Matsumura. Unusual temperature-dependent exchange interaction in GdFe2Al10 in comparison with GdRu2Al10. PHYSICAL REVIEW, B 88, 100404(R), (2013).
dc.relation.referencesT. Nishioka, Y. Kawamura, and T. et.al. Takesaka. Novel phase transition and the pressure effect in Y Fe2Al10 - type CeT2Al10 (T = Fe,Ru,Os). J. Phys. Soc. Jpn., https://arxiv.org/abs/0909.2911v1, 2009.
dc.relation.referencesR. White. MAGNETISM AND PROPERTIES OF THREE RARE EARTH INTERMETALLIC SERIES). UNSW Canberra, PhD Thesis, (accessed July 29, 2022), 2017.
dc.relation.referencesV. Thiede, T. Ebel, and W. Jeitschko. Ternary aluminidesLnT2Al10 (Ln = Y, La–Nd, Sm, Gd–Lu and T = Fe,Ru,Os) with Y bF e2Al10 type structure and magnetic properties of the iron-containing series. J. Mater. Chem., 8(1):125–130, (1998).
dc.relation.referencesB.D. Cullity and S.R. Stock. Elements of X-Ray Diffraction. PEARSON., Pearson Education Limited, 2014.
dc.relation.referencesG.A. Pérez and H. Colorado. Difracción de Rayos X y el Método Rietveld. Teoría y software de refinamiento. Universidad del Valle - Cali, Colombia. Edición Notas de Clase, Ciudad Universitaria, Meléndez - Cali, Colombia., 2015.
dc.relation.referencesB. H. Toby and R. B. Von Dreele. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. Journal of Applied Crystallography, 46(2), 544-549, (2013).
dc.relation.referencesK. Momma and F. Izumi. VESTA:a three-dimensional visualization system for electronic and structural analysis. J. Appl. Phys. Crystallogr, 41, 653, (2008).
dc.relation.referencesA. Kerkau, L. Wu, and et.al. Crystal structure of yttrium iron aluminium (1/2/10), Y Fe2Al10. Z. Kristallogr, NCS 227:289–290, (2012).
dc.relation.referencesS. Niemann and W. Jeitschko. The crystal structure of Y bF e2Al10, a combined substitution and stacking variant of the ThMn12 and CeMn4Al8 type structures. Zeitschrift fur Kristallographie, 210:338–341, (1995).
dc.relation.referencesGdFe2Al10 (T = 300K) Crystal Structure: Datasheet from “PAULING FILE multinaries edition – 2012” in springermaterials (https://materials.springer.com/isp/crystallographic/docs/sd 1232746). Copyright 2016 Springer-Verlag Berlin Heidelberg & Material Phases Data System (MPDS), Switzerland & National Institute for Materials Science (NIMS), Japan, Part of SpringerMaterials, accessed 2022-09-28.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembMONOCRISTALES
dc.subject.lembSingle crystals
dc.subject.proposalSistemas intermetálicos
dc.subject.proposalIntermetallic systems
dc.subject.proposalTécnica de flujo metálico
dc.subject.proposalMetallic flux technique
dc.subject.proposalMateriales cuánticos
dc.subject.proposalQuantum materials
dc.title.translatedFabrication and characterization of intermetallic systems of the RT2AI10 family based on rare earths using flux technique
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito