Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorCarmen María, Romero Isaza
dc.contributor.authorSanabria Montealegre, Juan Carlos
dc.date.accessioned2023-06-05T16:08:22Z
dc.date.available2023-06-05T16:08:22Z
dc.date.issued2022-10-07
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83964
dc.descriptionilustraciones, fotografías, graficas
dc.description.abstractSe ha determinado que la estabilidad y, por tanto, la funcionalidad de las proteínas en solución depende de delicados equilibrios, los cuales son fácilmente perturbables por cambios en el entorno proteico. Dicha estabilidad reducida limita su posible uso en diversas aplicaciones, por ejemplo, en la industria farmacéutica y de alimentos. Los estudios termodinámicos son una herramienta fundamental para caracterizar tanto al proceso de plegamiento como a los cambios generados por factores externos cuantificables. Dentro de este contexto, se analiza en este trabajo una de las proteínas más usadas y conocidas en el ámbito general de la bioquímica, la albúmina sérica bovina (BSA). Se analiza el efecto que tiene sobre el sistema la adición de sales de tetraalquilamonio, teniendo en cuenta y aprovechando que se puede elegir aumentar el tamaño de su región alifática para realizar un estudio sistemático. Inicialmente se evaluó la estabilidad térmica de la BSA en solución acuosa usando la calorimetría diferencial de barrido y evaluando el efecto de la adición de: bromuro de tetrametilamonio (Me4NBr), bromuro de hexiltrimetilamonio (Met3HexNBr), bromuro de octiltrimetilamonio (Met3OctNBr), bromuro de deciltrimetilamonio (Met3DecNBr) y bromuro de dodeciltrimetilamonio (Met3DodecNBr), determinando que el Me4NBr actúa como un estabilizador, mientras que las demás sales generan un efecto desestabilizante sobre la proteína, el cual crece con el aumento de la región alifática y la concentración de las sales. Ahora bien, utilizando medidas de tensión superficial se determinaron los regímenes cinéticos del proceso de adsorción de la BSA en la interfase líquido-aire, encontrando que se puede modelar el proceso a través de tres etapas consecutivas de difusión, penetración y reordenamiento. Estas dos últimas se caracterizaron usando constantes cinéticas asociadas al proceso y encontrando que la etapa determinante del proceso corresponde a la de penetración y adsorción en la interfase, caracterizada con la constate cinética k1. Al evaluar el efecto de la adición de las sales se encuentra también que las moléculas con colas hidrofóbicas más largas ejercen un mayor aumento de la constante k1, debido a la adsorción competitiva entre la proteína y los tensoactivos sobre la interfase. Finalmente, a partir de determinaciones densitométricas se calcularon los parámetros de interacción preferencial, los cuales permiten decir que el Me4NBr es excluido de la vecindad de la superficie proteica debido a una hidratación preferencial, que aumenta la estabilidad de la estructura nativa de la BSA y que concuerda con la tendencia obtenida por las medidas con DSC. Por su parte el Met3OctNBr, Met3DecNBr y Met3DodecNBr muestran una interacción preferencial con la proteína que genera un efecto desestabilizante, siendo más pronunciado este efecto a medida que se aumenta la cadena alifática de la sal, siendo el Met3DodecNBr la sal de tetraalquilamonio más desestabilizante. (Texto tomado de la fuente)
dc.description.abstractIt has been determined that the stability and, therefore, the functionality of proteins in solution depends on delicate equilibrium, which are easily modified by changes in their environment. The reduced stability limits their possible use in various applications, for example, in the pharmaceutical and food industry. Thermodynamic studies are a fundamental tool to characterize the folding process and its changes due to external quantifiable factors. Within this context, one of the most used and well-known proteins in the general field of biochemistry, bovine serum albumin (BSA), is analyzed in this study. The addition of tetraalkylammonium salts were analyzed considering, and taking advantage of the fact that it is possible to choose to increase the size of their aliphatic region in order to perform a systematic study. Initially, the thermal stability of BSA in aqueous solution was evaluated using differential scanning calorimetry and assessing the effect of the addition of: tetramethylammonium bromide (Me4NBr), hexyltrimethylammonium bromide (Met3HexNBr), octyltrimethylammonium bromide (Met3OctNBr), decyltrimethylammonium bromide (Met3DecNBr) and dodecyltrimethylammonium bromide (Met3DodecNBr), determining that Me4NBr acts as a stabilizer, while the other salts generate a destabilizing effect on the protein, which grows with the increase of the aliphatic region and the concentration of the salts. Now, using surface tension measurements, the kinetic regimes of the adsorption process of BSA at the liquid-air interface were determined, finding that the process can be modeled through three consecutive stages of diffusion, penetration and rearrangement. These last two were characterized using kinetic constants associated to the process and finding that the stage that controls the process corresponds to the penetration and adsorption at the interface, with kinetic constant k1. When evaluating the effect of the addition of salts, it is also found that molecules with longer hydrophobic tails exert a greater increase of the k1 constant, due to competitive adsorption at the interface between the protein and surfactants. Finally, from densitometric determinations the preferential interaction parameters were calculated, which allow us to say that Me4NBr is excluded from the vicinity of the protein surface due to preferential hydration, which increases the stability of the native structure of BSA and is in agreement with the trend obtained by DSC measurements. On the other hand, Met3OctNBr, Met3DecNBr and Met3DodecNBr show a preferential interaction with the protein that generates a destabilizing effect, this effect being more pronounced as the aliphatic chain of the salt increases, with Met3DodecNBr being the most destabilizing tetraalkylammonium salt.
dc.format.extentxxv, 161 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc540 - Química y ciencias afines::541 - Química física
dc.titleEstabilidad de albúmina sérica bovina en solución acuosa en presencia de sales de tetraalquilamonio
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Química
dc.contributor.researchgroupGrupo de Termodinámica Clásica
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ciencias - Química
dc.description.researchareaEstudio fisicoquímico de interacciones en solución
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesC. Cantor and P. Schimmel, Biophysical Chemistry: Part I: The Conformation of Biological Macromolecules. W. H. Freeman, 1980. ISBN: 978-0716711889.
dc.relation.referencesC. Dobson and M. Karplus, ‘The fundamentals of protein folding: bringing together theory and experiment.’, Curr Opin Struct Biol, vol. 9, no. 1, pp. 92–101, Feb. 1999. https://doi.org/10.1016/S0959-440X(99)80012-8.
dc.relation.referencesD. Sidransky and M. Hollstein, ‘Clinical implications of the p53 gene’, Annu Rev Med, vol. 47, pp. 285–301, 1996. https://doi.org/10.1146/annurev.med.47.1.285.
dc.relation.referencesU. Kragh-Hansen, ‘Molecular aspects of ligand binding to serum albumin’, Pharmacol Rev, vol. 33, no. 1, pp. 17–53, Mar. 1981. ISSN: 0031-6997. Pubmed: 7027277.
dc.relation.referencesK. Majorek, P. Porebski, A. Dayal, M. Zimmerman, K. Jablonska, A. Stewart, M. Chruszcz, ‘Structural and immunologic characterization of bovine, horse, and rabbit serum albumins’, Mol Immunol, vol. 52, no. 3–4, pp. 174–182, Oct. 2012. https://doi.org/10.1016/j.molimm.2012.05.011.
dc.relation.referencesT. Kongraksawech, P. Vázquez-Landaverde, J. Huerta-Ruelas, and J. Torres, ‘Ionic strength and pH effects on optical thermographs for bovine serum albumin (BSA)’, Cien. Tecnol. Aliment., vol. 5, no. 4, pp. 259–264, Jan. 2007. https://doi.org/10.1080/11358120709487699.
dc.relation.referencesC. Anfinsen and H. Scheraga, ‘Experimental and theoretical aspects of protein folding’, Adv Protein Chem, vol. 29, pp. 205–300, 1975. https://doi.org/10.1016/s0065-3233(08)60413-1.
dc.relation.referencesK. A. Dill and H. Chan, ‘From Levinthal to pathways to funnels’, Nat Struct Biol, vol. 4, no. 1, pp. 10–9, Jan. 1997. https://doi.org/10.1038/nsb0197-10.
dc.relation.referencesK. a Dill and J. MacCallum, ‘The protein-folding problem, 50 years on.’, Science, vol. 338, no. 6110, pp. 1042–6, Nov. 2012. https://doi.org/10.1126/science.1219021.
dc.relation.referencesJ. Schellman, ‘Fifty years of solvent denaturation.’, Biophys Chem, vol. 96, no. 2–3, pp. 91–101, May 2002, Accessed: Jul. 02, 2013, https://doi.org/10.1016/s0301-4622(02)00009-1.
dc.relation.referencesP. Privalov, ‘Thermodynamics of protein folding’, J Chem Thermodyn, vol. 29, no. 4, pp. 447–474, Apr. 1997, https://doi.org/10.1006/jcht.1996.0178.
dc.relation.referencesG. Allen, A. Cooper, and G. Glasgow, ‘Thermodynamics of Protein Folding and Stability’, vol. 2, pp. 1–48, 1999, https://doi.org/10.1007/s00249-019-01362-7.
dc.relation.referencesD. Whitford, Proteins: structure and functions, 1st ed. Chichester: John Wiley & Sons, 2005. ISBN: 978-0-471-49894-0.
dc.relation.referencesD. Nelson, A. Lehninger, and M.Cox, Lehninger principles of biochemistry, 5th ed. New York: Macmillan, 2008. ISBN: 9780716771081.
dc.relation.referencesG. Petsko and D. Ringe, Protein structure and function. London: New Science Press, 2004. ISBN: 978-0878936632.
dc.relation.referencesM. Levitt and C. Chothia, ‘Structural patterns in globular proteins’, Nature, vol. 261, pp. 552–558, 1976, https://doi.org/10.1038/261552a0.
dc.relation.referencesV. Finkelstein and V. Galzitskaya, ‘Physics of protein folding’, Phys Life Rev, vol. 1, no. 1, pp. 23–56, Apr. 2004, https://doi.org/10.1016/j.plrev.2004.03.001.
dc.relation.referencesC. Levinthal, ‘Are there pathways for protein folding?’, Journal de Chimie Physique, vol. 65, pp. 44–45, 1968, https://doi.org/10.1051/jcp/1968650044.
dc.relation.referencesJ. Winkler, ‘Electron tunneling pathways in proteins’, Curr Opin Chem Biol, vol. 4, no. 2, pp. 192–198, Apr. 2000, https://doi.org/10.1016/S1367-5931(99)00074-5.
dc.relation.referencesC. Cecconi, E. Shank, C. Bustamante, and S. Marqusee, ‘Direct observation of the three-state folding of a single protein molecule.’, Science, vol. 309, no. 5743, pp. 2057–60, Sep. 2005, https://doi.org/10.1126/science.1116702.
dc.relation.referencesS. Salamanca Seguí, ‘Plegamiento y funcionalidad biológica del inhibidor de metalocarboxipeptidasas LCI’, TDX (Tesis Doctorals en Xarxa), Apr. 2004. ISBN: 8468841706.
dc.relation.referencesX. Qi, C. Holt, and D. McNulty, ‘Effect of temperature on the secondary structure of beta-lactoglobulin at pH 6.7, as determined by CD and IR spectroscopy: a test of the molten globule hypothesis.’, Biochem J, vol. 324, pp. 341–346, May 1997, https://doi.org/10.1042/bj3240341.
dc.relation.referencesH. Labouré, E. Cases, and Ph. Cayot, ‘Heat induced β-lactoglobulin polymerization: role of the change in medium permittivity’, Food Chem, vol. 85, no. 3, pp. 399–406, May 2004, https://doi.org/10.1016/j.foodchem.2003.07.017.
dc.relation.referencesR. Usha, R. Maheshwari, A. Dhathathreyan, and T. Ramasami, ‘Structural influence of mono and polyhydric alcohols on the stabilization of collagen.’, Colloids Surf B Biointerfaces, vol. 48, no. 2, pp. 101–5, Mar. 2006, https://doi.org/10.1016/j.colsurfb.2006.01.015.
dc.relation.referencesS. Woski, ‘Bioorganic chemistry: Peptides and proteins’, J Am Chem Soc, vol. 120, no. 47, pp. 12386–12386, Dec. 1998, https://doi.org/10.1021/ja985642p.
dc.relation.referencesW. Kauzmann, ‘Some factors in the interpretation of protein denaturation’, Adv Protein Chem, vol. 14, pp. 1–63, Jan. 1959, https://doi.org/10.1016/S0065-3233(08)60608-7.
dc.relation.referencesV. Calandrini, D. Fioretto, G. Onori, and A. Santucci, ‘Role of hydrophobic interactions on the stabilisation of native state of globular proteins’, Chem Phys Lett, vol. 324, no. 5–6, pp. 344–348, Jul. 2000, https://doi.org/10.1016/S0009-2614(00)00589-3.
dc.relation.referencesC. Tanford, ‘Contribution of Hydrophobic Interactions to the Stability of the Globular Conformation’, J Am Chem Soc, vol. 84, no. 22, pp. 4240–4247, 1962, https://doi.org/10.1021/ja00881a009.
dc.relation.referencesK. Dill, ‘Dominant forces in protein folding.’, Biochemistry, vol. 29, no. 31, pp. 7133–55, 1990, https://doi.org/10.1021/bi00483a001.
dc.relation.referencesT. Creamer, R. Srinivasan, and G. Rose, ‘Modeling unfolded states of proteins and peptides. II. Backbone solvent accessibility.’, Biochemistry, vol. 36, no. 10, pp. 2832–5, Mar. 1997, https://doi.org/10.1021/bi962819o.
dc.relation.referencesP. Privalov and S. Gill, ‘Stability of protein structure and hydrophobic interaction.’, Adv Protein Chem, vol. 39, pp. 191–234, Jan. 1988, https://doi.org/10.1016/S0065-3233(08)60377-0.
dc.relation.referencesC. Scharnagl, M. Reif, and J. Friedrich, ‘Stability of proteins: temperature, pressure and the role of the solvent.’, Biochim Biophys Acta, vol. 1749, no. 2, pp. 187–213, Jun. 2005, https://doi.org/10.1016/j.bbapap.2005.03.002.
dc.relation.referencesJ. Chelftel, J. Cuq, and D. Lórient, Proteínas alimentarias: Bioquímica. Propiedades funcionales. Valor nutritivo. Modificaciones químicas. Zaragoza, 1989.ISBN: 9788420006499.
dc.relation.referencesF. Franks, ‘Protein stability: The value of “old literature”’, Biophys Chem, vol. 96, no. 2–3, pp. 117–127, 2002, https://doi.org/10.1016/S0301-4622(02)00014-5.
dc.relation.referencesJ. Bischof and X. He, ‘Thermal stability of proteins.’, Ann N Y Acad Sci, vol. 1066, pp. 12–33, Dec. 2005, https://doi.org/10.1196/annals.1363.003.
dc.relation.referencesA. van Teeffelen, K. Broersen, and H. de Jongh, ‘Glucosylation of beta-lactoglobulin lowers the heat capacity change of unfolding; a unique way to affect protein thermodynamics.’, Protein Sci, vol. 14, no. 8, pp. 2187–94, Aug. 2005, https://doi.org/10.1110/ps.051405005.
dc.relation.referencesR. Tilton, J. Dewan, and G. Petsko, ‘Effects of temperature on protein structure and dynamics: x-ray crystallographic studies of the protein ribonuclease-A at nine different temperatures from 98 to 320K’, Biochemistry, vol. 31, no. 9, pp. 2469–2481, Mar. 1992, https://doi.org/10.1021/bi00124a006.
dc.relation.referencesC. Tanford, ‘Protein Denaturation’, Adv Protein Chem, pp. 121–282, 1968, https://doi.org/10.1016/S0065-3233(08)60401-5.
dc.relation.referencesD. Canchi and A. García, ‘Cosolvent effects on protein stability.’, Annu Rev Phys Chem, vol. 64, pp. 273–93, Jan. 2013, https://doi.org/10.1146/annurev-physchem-040412-110156.
dc.relation.referencesD. Otzen, ‘Protein-surfactant interactions: a tale of many states.’, Biochim Biophys Acta, vol. 1814, no. 5, pp. 562–91, May 2011, https://doi.org/10.1016/j.bbapap.2011.03.003.
dc.relation.referencesA. Rozo Balcero, Influencia de la temperatura y longitud de cadena en los coeficientes osmóticos y de actividad de sales de amonio cuaternario en solución acuosa. Tesis de doctorado. Universidad Nacional de Colombia. Facultad de Ciencias, 2011. [Online]. Available: http://www.bdigital.unal.edu.co/5339/1/anapatriciarozobalcero.2011.pdf
dc.relation.referencesN. v. di Russo, D. Estrin, M. Martí, and A. Roitberg, ‘pH-Dependent Conformational Changes in Proteins and Their Effect on Experimental pKas: The Case of Nitrophorin 4’, PLoS Comput Biol, vol. 8, no. 11, 2012, https://doi.org/10.1371/journal.pcbi.1002761.
dc.relation.referencesK. Talley and E. Alexov, ‘On the pH-optimum of activity and stability of proteins’, Proteins: Structure, Function and Bioinformatics, vol. 78, no. 12, pp. 2699–2706, 2010, https://doi.org/10.1002/prot.22786.
dc.relation.referencesC. Tanford, ‘Protein denaturation: Part c. theoretical models for the mechanism of denaturation’, Adv Protein Chem, vol. 24, no. C, pp. 1–95, 1970, https://doi.org/10.1016/S0065-3233(08)60241-7.
dc.relation.referencesA. H. Elcock, ‘Realistic modeling of the denatured states of proteins allows accurate calculations of the pH dependence of protein stability.’, J Mol Biol, vol. 294, no. 4, pp. 1051–62, Dec. 1999, https://doi.org/10.1006/jmbi.1999.3305.
dc.relation.referencesE. P. O’Brien, B. R. Brooks, and D. Thirumalai, ‘Effects of pH on proteins: Predictions for ensemble and single-molecule pulling experiments’, J Am Chem Soc, vol. 134, no. 2, pp. 979–987, 2012, https://doi.org/10.1021/ja206557y.
dc.relation.referencesS. T. Whitten, J. O. Wooll, R. Razeghifard, E. B. García-Moreno, and V. J. Hilser, ‘The origin of pH-dependent changes in m-values for the denaturant-induced unfolding of proteins’, J Mol Biol, vol. 309, no. 5, pp. 1165–1175, 2001, https://doi.org/10.1006/jmbi.2001.4726.
dc.relation.referencesA. Cooper, ‘Thermodynamic analysis of biomolecular interactions.’, Curr Opin Chem Biol, vol. 3, no. 5, pp. 557–63, Oct. 1999, Accessed: Jun. 19, 2013, https://doi.org/10.1016/s1367-5931(99)00008-3.
dc.relation.referencesC. Gómez-Moreno and J. Sancho, Estructura de proteinas, 1st ed. Barcelona: Gayban Grafic, 2003.ISBN: 9788434480612.
dc.relation.referencesG. Giraldo, ‘Aspectos termodinámicos de la relación entre grupos polares y apolares de alcoholes c-4 y su efecto sobre la estabilidad estructural de la β-lactoglobulina en soluciones acuosas’, Universidad Nacional de Colombia, 2007. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/29997.
dc.relation.referencesJ. Sancho, ‘The stability of 2-state, 3-state and more-state proteins from simple spectroscopic techniques... plus the structure of the equilibrium intermediates at the same time’, Arch Biochem Biophys, vol. 531, no. 1–2, pp. 4–13, 2013, https://doi.org/10.1016/j.abb.2012.10.014.
dc.relation.referencesJ. Brandts and L. Hunt, ‘The thermodynamics of protein denaturation. 3. The denaturation of ribonuclease in water and in aqueous urea and aqueous ethanol mixtures.’, J Am Chem Soc, vol. 89, no. 19, pp. 4826–38, Sep. 1967, https://doi.org/10.1021/ja00995a002.
dc.relation.referencesM. Zweifel and D. Barrick, ‘Relationships between the temperature dependence of solvent denaturation and the denaturant dependence of protein stability curves.’, Biophys Chem, vol. 101–102, pp. 221–37, Dec. 2002, https://doi.org/10.1016/s0301-4622(02)00181-3.
dc.relation.referencesI. Haque, R. Singh, A. Moosavi-Movahedi, and F. Ahmad, ‘Effect of polyol osmolytes on DeltaG(D), the Gibbs energy of stabilisation of proteins at different pH values.’, Biophys Chem, vol. 117, no. 1, pp. 1–12, Aug. 2005, https://doi.org/10.1016/j.bpc.2005.04.004.
dc.relation.referencesM. Auton, A. Ferreon, and D. Bolen, ‘Metrics that differentiate the origins of osmolyte effects on protein stability: a test of the surface tension proposal.’, J Mol Biol, vol. 361, no. 5, pp. 983–92, Sep. 2006, doi: 10.1016/j.jmb.2006.07.003.
dc.relation.referencesP. Davis-Searles, A. Saunders, D. Erie, D. Winzor, and G. Pielak, ‘Interpreting the effects of small uncharged solutes on protein-folding equilibria.’, Annu Rev Biophys Biomol Struct, vol. 30, pp. 271–306, Jan. 2001, https://doi.org/10.1146/annurev.biophys.30.1.271.
dc.relation.referencesJ. Wyman, ‘Linked functions and reciprocal effects in hemoglobin: A second look.’, Adv Protein Chem, vol. 19, pp. 223–286, 1964, https://doi.org/10.1016/s0065-3233(08)60190-4.
dc.relation.referencesR. Curtis, J. Newman, H. Blanch, and J. Prausnitz, ‘McMillan-Mayer solution thermodynamics for a protein in a mixed solvent’, Fluid Phase Equilib, vol. 192, no. 1–2, pp. 131–153, https://doi.org/10.1016/S0378-3812(01)00635-5.
dc.relation.referencesV. Parsegian, R. Rand, and D. Rau, ‘Osmotic stress, crowding, preferential hydration, and binding: A comparison of perspectives.’, Proc Natl Acad Sci U S A, vol. 97, no. 8, pp. 3987–92, Apr. 2000, https://doi.org/10.1073/pnas.97.8.3987.
dc.relation.referencesS. Timasheff, ‘Control of protein stability and reactions by weakly interacting cosolvents: the simplicity of the complicated.’, Adv Protein Chem, vol. 51, pp. 355–432, Jan. 1998, https://doi.org/10.1016/s0065-3233(08)60656-7.
dc.relation.referencesT. Arakawa and S. Timasheff, ‘Stabilization of protein structure by sugars.’, Biochemistry, vol. 21, no. 25, pp. 6536–44, Dec. 1982, https://doi.org/10.1021/bi00268a033.
dc.relation.referencesG. Xie and S. Timasheff, ‘Mechanism of the stabilization of ribonuclease A by sorbitol: preferential hydration is greater for the denatured then for the native protein.’, Protein Sci, vol. 6, no. 1, pp. 211–21, Jan. 1997, https://doi.org/10.1002/pro.5560060123.
dc.relation.referencesS. Shimizu and D. Smith, ‘Preferential hydration and the exclusion of cosolvents from protein surfaces.’, J Chem Phys, vol. 121, no. 2, pp. 1148–54, Jul. 2004, https://doi.org/10.1063/1.1759615.
dc.relation.referencesR. Bhat and S. Timasheff, ‘Steric exclusion is the principal source of the preferential hydration of proteins in the presence of polyethylene glycols.’, Protein Sci, vol. 1, no. 9, pp. 1133–43, Sep. 1992, https://doi.org/10.1002/pro.5560010907.
dc.relation.referencesT. Arakawa and S. Timasheff, ‘The stabilization of proteins by osmolytes’, Biophys J, vol. 47, no. 3, pp. 411–4, Mar. 1985, https://doi.org/10.1016/S0006-3495(85)83932-1.
dc.relation.referencesS. Timasheff, ‘In disperse solution, “osmotic stress” is a restricted case of preferential interactions.’, Proc Natl Acad Sci U S A, vol. 95, no. 13, pp. 7363–7, Jun. 1998, https://doi.org/10.1073/pnas.95.13.7363.
dc.relation.referencesT. Lin and S. Timasheff, ‘On the role of surface tension in the stabilization of globular proteins.’, Protein Sci, vol. 5, no. 2, pp. 372–81, Feb. 1996, https://doi.org/10.1002/pro.5560050222.
dc.relation.referencesA. Taravati, M. Shokrzadeh, A. Ebadi, ‘Various effects of sugar and polyols on the protein structure and function: Role as osmolyte on protein stability’, World Applied Sci. J., vol. 2, pp. 353–362, 2007. ISSN: 18184952.
dc.relation.referencesS. Timasheff and G. Xie, ‘Preferential interactions of urea with lysozyme and their linkage to protein denaturation’, Biophys Chem, vol. 105, no. 2–3, pp. 421–448, Sep. 2003, https://doi.org/10.1016/S0301-4622(03)00106-6.
dc.relation.referencesJ. Lee, K. Gekko, and S. Timasheff, ‘Measurements of preferential solvent interactions by densimetric techniques.’, Methods Enzymol, vol. 61, pp. 26–49, 1979, https://doi.org/10.1016/0076-6879(79)61005-4.
dc.relation.referencesJ. Lee and S. Timasheff, ‘Partial specific volumes and interactions with solvent components of proteins and guanidine hydrochloride’, Biochemistry, vol. 13, no. 2, pp. 257–265, 1974, doi:10.1021/bi00699a005.
dc.relation.referencesE. Courtenay, M. Capp, C. Anderson, and M. Record, ‘Vapor pressure osmometry studies of osmolyte-protein interactions: implications for the action of osmoprotectants in vivo and for the interpretation of “osmotic stress” experiments in vitro.’, Biochemistry, vol. 39, no. 15, pp. 4455–71, Apr. 2000, https://doi.org/ 10.1021/bi992887l.
dc.relation.referencesL. Blanco, E. Amado, and J. Avellaneda, ‘Isopiestic determination of the osmotic and activity coefficients of dilute aqueous solutions of the series MeEt3NI to HepEt3NI at 298.15K’, Fluid Phase Equilib, vol. 249, no. 1–2, pp. 147–152, Nov. 2006, https://doi.org/10.1016/j.fluid.2006.09.025.
dc.relation.referencesT. Lin and S. Timasheff, ‘On the role of surface tension in the stabilization of globular proteins.’, Protein Sci, vol. 5, no. 2, pp. 372–81, Feb. 1996, https://doi.org/10.1002/pro.5560050222.
dc.relation.referencesF. Cioci, R. Lavecchia, and L. Marrelli, ‘Effect of surface tension on the conformational stability of erythrocyte carbonic anhydrase’, vol. 116, pp. 118–125, 1996, https://doi.org/10.1016/0378-3812(95)02879-X.
dc.relation.referencesC. Romero and A. Albis, ‘Influence of polyols and glucose on the surface tension of bovine α-lactalbumin in aqueous solution’, J Solution Chem, vol. 39, no. 12, pp. 1865–1876, 2010, https://doi.org/10.1007/s10953-010-9554-5.
dc.relation.referencesC. Romero and J. Abella, ‘Surface behavior of α-chymotrypsinogen A in aqueous solutions at 298.15 K’, J Mol Liq, vol. 285, pp. 89–95, 2019, https://doi.org/10.1016/j.molliq.2019.04.073.
dc.relation.referencesC. Romero, J. Abella, and Y. Beltrán, ‘Influence of salts on the surface behavior of α-chymotrypsinogen A in aqueous solutions at 298.15 K’, J Mol Liq, vol. 344, p. 117723, 2021, https://doi.org/10.1016/j.molliq.2021.117723.
dc.relation.referencesJ. Lee and S. Timasheff, ‘The stabilization of proteins by sucrose.’, J Biol Chem, vol. 256, no. 14, pp. 7193–201, Jul. 1981, https://doi.org/10.1016/S0021-9258(19)68947-7.
dc.relation.referencesP. Wiggins, ‘Hydrophobic hydration, hydrophobic forces and protein folding’, Physica A: Statistical Mechanics and its Applications, vol. 238, no. 1–4, pp. 113–128, 1997, https://doi.org/10.1016/S0378-4371(96)00431-1.
dc.relation.referencesY. Kita, T. Arakawa, T. Lin, and S. Timasheff, ‘Contribution of the Surface Free Energy Perturbation to Protein-Solvent Interactions’, Biochemistry, vol. 33, no. 50, pp. 15178–15189, 1994, https://doi.org/10.1021/bi00254a029.
dc.relation.referencesJ. Krause, ‘Surface activity of proteins: chemical and physicochemical modifications.’, Molecular nutrition food research, vol. 41, no. 4, pp. 245–245, 1997, https://doi.org/10.1002/food.19970410415.
dc.relation.referencesC. Romero and N. Mendieta, ‘Influence of 1-butanol, 1,2-butanediol and 1,2,3,4-butanetreol on the adsorption of b-lactoglobulin at the air-water interface’, Revista Colombiana de Química, vol. 40, no. 3, pp. 367–380, 2011.ISSN: 0120-2804.
dc.relation.referencesG. Yampolskaya and D. Platikanov, ‘Proteins at fluid interfaces: Adsorption layers and thin liquid films’, Adv Colloid Interface Sci, vol. 128–130, no. 2006, pp. 159–183, Dec. 2006, https://doi.org/10.1016/j.cis.2006.11.018.
dc.relation.referencesT. Kongraksawech, ‘Characterization by optical methods of the heat denaturation of bovine serum albumin (BSA) as affected by protein concentration, pH, ionic strength and sugar concentration’, Oregon State University, 2006. [Online]. Available: https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/v118rh400
dc.relation.referencesD. C. Carter and J. X. Ho, ‘Structure of serum albumin.’, Adv Protein Chem, vol. 45, pp. 153–203, Jan. 1994, doi: 10.1016/s0065-3233(08)60640-3.
dc.relation.referencesM. Baker, ‘Albumin’s role in steroid hormone action and the origins of vertebrates: is albumin an essential protein?’, FEBS Lett, vol. 439, no. 1–2, pp. 9–12, 1998, doi: 10.1016/S0014-5793(98)01346-5.
dc.relation.referencesP. Relkin, ‘Thermal unfolding of beta-lactoglobulin, alpha-lactalbumin, and bovine serum albumin. A thermodynamic approach.’, Crit Rev Food Sci Nutr, vol. 36, no. 6, pp. 565–601, Jul. 1996, https://doi.org/10.1080/10408399609527740.
dc.relation.referencesB. Huang, H. Kim, and C. Dass, ‘Probing three-dimensional structure of bovine serum albumin by chemical cross-linking and mass spectrometry’, J Am Soc Mass Spectrom, vol. 15, no. 8, pp. 1237–1247, 2004, https://doi.org/10.1016/j.jasms.2004.05.004.
dc.relation.referencesL. Wu, B. Ma, D. Zou, Z. Tie, J. Wang, and W. Wang, ‘Influence of metal ions on folding pathway and conformational stability of bovine serum albumin’, J Mol Struct, vol. 877, no. 1–3, pp. 44–49, Apr. 2008, https://doi.org/10.1016/j.molstruc.2007.07.013.
dc.relation.referencesT. Peters, ‘Serum albumin’, Adv Protein Chem, vol. 37, pp. 161–246, 1985, https://doi.org/10.1016/s0065-3233(08)60065-0.
dc.relation.referencesT. Peters, ‘All About Albumin: Biochemistry, Genetics, and Medical Applications.’, America (NY), 1996. ISBN: 9780080527048.
dc.relation.referencesD. Bendedouch and S. Chen, ‘Structure and interparticle interactions of bovine serum albumin in solution studied by small-angle neutron scattering’, Journal of Physical Chemistry, vol. 87, no. 9, pp. 1473–1477, 1983, https://doi.org/10.1021/j100232a003.
dc.relation.referencesD. Li, M. Zhu, C. Xu, and B. Ji, ‘Characterization of the baicalein-bovine serum albumin complex without or with Cu2+ or Fe3+ by spectroscopic approaches.’, Eur J Med Chem, vol. 46, no. 2, pp. 588–99, Feb. 2011, https://doi.org/10.1016/j.ejmech.2010.11.038.
dc.relation.referencesK. Murayama and M. Tomida, ‘Heat-induced secondary structure and conformation change of bovine serum albumin investigated by Fourier transform infrared spectroscopy.’, Biochemistry, vol. 43, no. 36, pp. 11526–32, Sep. 2004, https://doi.org/10.1021/bi0489154.
dc.relation.referencesY. Moriyama, E. Watanabe, K. Kobayashi, H. Harano, E. Inui, and K. Takeda, ‘Secondary structural change of bovine serum albumin in thermal denaturation up to 130 degrees C and protective effect of sodium dodecyl sulfate on the change.’, J Phys Chem B, vol. 112, no. 51, pp. 16585–9, Dec. 2008, doi: 10.1021/jp8067624.
dc.relation.referencesR. Wetzel, ‘Temperature Behaviour of Human Serum Albumin’, Eur J Biochem, vol. 104, no. 2, pp. 469–478, Mar. 1980, https://doi.org/10.1111/j.1432-1033.1980.tb04449.x.
dc.relation.referencesM. Noelken and S. Timasheff, ‘Preferential solvation of bovine serum albumin in aqueous guanidine hydrochloride.’, Journal of Biological Chemistry, vol. 242, no. 21, pp. 5080–5085, 1967, https://doi.org/10.1016/s0021-9258(18)99478-0.
dc.relation.referencesT. Arakawa and S. Timasheff, ‘Preferential interactions of proteins with solvent components in aqueous amino acid solutions.’, Arch Biochem Biophys, vol. 224, no. 1, pp. 169–77, Jul. 1983, https://doi.org/10.1016/0003-9861(83)90201-1.
dc.relation.referencesS. Baier and D. McClements, ‘Impact of sorbitol on the thermostability and heat-induced gelation of bovine serum albumin’, Food Research International, vol. 36, no. 9–10, pp. 1081–1087, Jan. 2003, https://doi.org/10.1016/j.foodres.2003.09.003.
dc.relation.referencesS. Baier, E. Decker, and D. McClements, ‘Impact of glycerol on thermostability and heat-induced gelation of bovine serum albumin’, Food Hydrocoll, vol. 18, no. 1, pp. 91–100, Jan. 2004, https://doi.org/10.1016/S0268-005X(03)00046-8.
dc.relation.referencesH. A. McKenzie, Milk proteins: chemistry and molecular biology, no. v. 2. New York: Academic Press, 1970. ISBN: 0124852025.
dc.relation.referencesM. Yamasaki, H. Yano, and K. Aoki, ‘Differential scanning calorimetric studies on bovine serum albumin: I. Effects of pH and ionic strength’, Int J Biol Macromol, vol. 12, no. 4, pp. 263–268, Aug. 1990, https://doi.org/10.1016/0141-8130(90)90007-W.
dc.relation.referencesL. Barbosa, M. Ortore, F. Spinozzi, P. Mariani, S. Bernstorff, and R. Itri, ‘The importance of protein-protein interactions on the pH-induced conformational changes of bovine serum albumin: A small-angle x-ray scattering study’, Biophys J, vol. 98, no. 1, pp. 147–157, 2010, https://doi.org/10.1016/j.bpj.2009.09.056.
dc.relation.referencesG. McDonnell and a D. Russell, ‘Antiseptics and disinfectants: activity, action, and resistance.’, Clin Microbiol Rev, vol. 12, no. 1, pp. 147–79, Jan. 1999, https://doi.org/10.1128/cmr.12.1.147.
dc.relation.referencesS. Duce, A. Mateo, I. Alonso, J. García Ruano, and M. Cid, ‘Role of quaternary ammonium salts as new additives in the enantioselective organocatalytic β-benzylation of enals.’, Chem Commun (Camb), vol. 48, no. 42, pp. 5184–6, May 2012, https://doi.org/10.1039/c2cc31451g.
dc.relation.referencesJ. Kinsella and N. Melachouris, ‘Functional properties of proteins in foods: A survey’, C R C Critical Reviews in Food Science and Nutrition, vol. 7, no. 3, pp. 219–280, Apr. 1976, https://doi.org/10.1080/10408397609527208.
dc.relation.referencesF. Franks, Water: A Matrix of Life, 2nd ed. Cambridge: Royal Society of Chemistry, 2000. Accessed: Jul. 03, 2013. ISBN: 085404583X.
dc.relation.referencesR. Apenten, S. Khokhar, and D. Galani, ‘Stability parameters for β-lactoglobulin thermal dissociation and unfolding in phosphate buffer at pH 7.0’, Food Hydrocoll, vol. 16, no. 2, pp. 95–103, 2002, https://doi.org/10.1016/S0268-005X(01)00067-4.
dc.relation.referencesJ. Oremusová, ‘Micellization of alkyl trimethyl ammonium bromides in aqueous solutions-part 1: Critical micelle concentration (cmc) and ionization degree’, Tenside, Surfactants, Detergents, vol. 49, no. 3, pp. 231–240, 2012, https://doi.org/10.3139/113.110187.
dc.relation.referencesJ. Boye, C. Ma, and V. Harwalkar, Thermal denaturation and coagulation of food proteins. New York: Marcel Dekker, 1997. ISBN: 9780203755617.
dc.relation.referencesG. Kontopidis, C. Holt, and L. Sawyer, ‘Invited review: β-lactoglobulin: Binding properties, structure, and function’, J Dairy Sci, vol. 87, no. 4, pp. 785–796, 2004, https://doi.org/10.3168/jds.S0022-0302(04)73222-1.
dc.relation.referencesS. Hambling, A. McAlpine, and L. Sawyer, ‘Beta-lactoglobulin’, in Advanced Dairy Chemistry—1 Proteins, 3rd ed., P. Fox and K. McSweenney, Eds. Kluwer Academic, 1992, pp. 141–190. ISBN: 9781461447146.
dc.relation.referencesT. Nicolai, M. Britten, and C. Schmitt, ‘β-Lactoglobulin and WPI aggregates: Formation, structure and applications’, Food Hydrocoll, vol. 25, no. 8, pp. 1945–1962, 2011, https://doi.org/10.1016/j.foodhyd.2011.02.006.
dc.relation.referencesN. Turro, X. Lei, K. Ananthapadmanabhan, and M. Aronson, ‘Spectroscopic Probe Analysis of Protein-Surfactant Interaciion: The BSA/SDS System’, Langmuir, vol. 11, no. 7, pp. 2525–2533, 1995, https://doi.org/10.1021/la00007a035.
dc.relation.referencesR. Waninge, M. Paulsson, T. Nylander, B. Ninham, and P. Sellers, ‘Binding of Sodium Dodecyl Sulphate and Dodecyl Trimethyl Ammonium Chloride to beta-Lactoglobulin : A Calorimetric Study’, Int Dairy J, vol. 8, no. 2, pp. 141–148, 1998, doi: 10.1016/S0958-6946(98)00031-4.
dc.relation.referencesA. Moosavi-Movahedi, A. Bordbar, A. Taleshi, H. Naderimanesh, and P. Ghadam, ‘Mechanism of denaturation of bovine serum albumin by dodecyl trimethylammonium bromide’, International Journal of Biochemistry and Cell Biology, vol. 28, no. 9, pp. 991–998, Sep. 1996, https://doi.org/10.1016/1357-2725(96)00044-1.
dc.relation.referencesJ. Wen, K. Arthur, L. Chemmalil, S. Muzammil, J. Gabrielson, and Y. Jiang, ‘Applications of Differential Scanning Calorimetry for Thermal Stability Analysis of Proteins: Qualification of DSC’, J Pharm Sci, vol. 101, no. 3, pp. 955–964, Mar. 2012, https://doi.org/10.1002/JPS.22820.
dc.relation.referencesB. Zhou, J. Tobin, S. Drusch, and S. Hogan, ‘Interfacial properties of milk proteins: A review’, Adv Colloid Interface Sci, vol. 295, p. 102347, Sep. 2021, https://doi.org/10.1016/j.cis.2020.102347.
dc.relation.referencesS. Timasheff, ‘The control of protein stability and association by weak interactions with water: How Do Solvents Affect These Processes ?’, Annu Rev Biophys Biomol Struct, vol. 22, pp. 67–97, 1993, https://doi.org/10.1146/annurev.bb.22.060193.000435.
dc.relation.referencesJ. Sánchez-ruiz, J. López-lacomba, M. Cortijo, and P. Mateo, ‘Differential Scanning Calorimetry of the Irreversible Thermal Denaturation of Thermolysin’, Biochemistry, vol. 27, no. 5, pp. 1648–1652, 1988, https://doi.org/10.1021/bi00405a039.
dc.relation.referencesC. Giancola, C. de Sena, D. Fessas, G. Graziano, and G. Barone, ‘DSC studies on bovine serum albumin denaturation effects of ionic strength and SDS concentration’, Int J Biol Macromol, vol. 20, no. 3, pp. 193–204, 1997, https://doi.org/10.1016/S0141-8130(97)01159-8.
dc.relation.referencesA. Michnik, ‘Thermal stability of bovine serum albumin DSC study’, J Therm Anal Calorim, vol. 71, no. 2, pp. 509–519, 2003, https://doi.org/10.1023/A:1022851809481.
dc.relation.referencesR. Raoufinia, A. Mota, N. Keyhanvar, F. Safari, S. Shamekhi, and J. Abdolalizadeh, ‘Overview of albumin and its purification methods’, Adv Pharm Bull, vol. 6, no. 4, pp. 495–507, 2016, https://doi.org/ 10.15171/apb.2016.063.
dc.relation.referencesW. Norde and C. Giacomelli, ‘BSA structural changes during homomolecular exchange between the adsorbed and the dissolved states’, J Biotechnol, vol. 79, no. 3, pp. 259–268, 2000, https://doi.org/10.1016/S0168-1656(00)00242-X.
dc.relation.referencesS. Chaturvedi, E. Ahmad, J. Khan, P. Alam, M. Ishtikhar, and R. Khan, ‘Elucidating the interaction of limonene with bovine serum albumin: a multi-technique approach’, Mol. BioSyst., vol. 11, no. 1, pp. 307–316, 2015, https://doi.org/10.1039/C4MB00548A.
dc.relation.referencesB. Elysée-Collen and R. Lencki, ‘Effect of ethanol, ammonium sulfate, fatty acids, and temperature on the solution behavior of bovine serum albumin’, Biotechnol Prog, vol. 13, no. 6, pp. 849–856, 1997, https://doi.org/ 10.1021/bp9700768.
dc.relation.referencesT. Vermonden, C. Giacomelli, and W. Norde, ‘Reversibility of structural rearrangements in bovine serum albumin during homomolecular exchange from AgI particles’, Langmuir, vol. 17, no. 12, pp. 3734–3740, 2002, https://doi.org/10.1021/la010162o.
dc.relation.referencesT. Banerjee and N. Kishore, ‘Insights into the energetics and mechanism underlying the interaction of tetraethylammonium bromide with proteins’, Journal of Chemical Thermodynamics, vol. 40, no. 3, pp. 483–491, 2008, https://doi.org/10.1016/j.jct.2007.08.007.
dc.relation.referencesD. Kelley and D. McClements, ‘Interactions of bovine serum albumin with ionic surfactants in aqueous solutions’, Food Hydrocoll, vol. 17, no. 1, pp. 73–85, 2003, https://doi.org/10.1016/S0268-005X(02)00040-1.
dc.relation.referencesM. Pramila, D. Uma, and M. Suprava, ‘Investigation of bovine serum albumin-surfactant aggregation and its physicochemical characteristics’, Colloids Surf A Physicochem Eng Asp, vol. 483, pp. 36–44, 2015, https://doi.org/10.1016/j.colsurfa.2015.06.052.
dc.relation.referencesG. Barone, ‘Comparative DSC study of human and bovine serum albumin’, J Therm Anal Calorim, vol. 40, no. 1, pp. 113–117, Mar. 1997, https://doi.org/10.1007/s10973-005-7170-1.
dc.relation.referencesR. Zieliński, S. Ikeda, H. Nomura, and S. Kato, ‘Effect of temperature on micelle formation in aqueous solutions of alkyltrimethylammonium bromides’, J Colloid Interface Sci, vol. 129, no. 1, pp. 175–184, 1989, https://doi.org/10.1016/0021-9797(89)90428-1.
dc.relation.referencesK. Tamaki, ‘The Surface Activity of Tetra- n -alkylammonium Halides in Aqueous Solutions. The Effect of Hydrophobic Hydration’, Bull Chem Soc Jpn, vol. 47, no. 11, pp. 2764–2767, Nov. 1974, https://doi.org/10.1246/bcsj.47.2764.
dc.relation.referencesK. Dopierala and K. Prochaska, ‘The effect of molecular structure on the surface properties of selected quaternary ammonium salts’, J Colloid Interface Sci, vol. 321, no. 1, pp. 220–226, 2008, https://doi.org/10.1016/j.jcis.2008.01.049.
dc.relation.referencesD. Gómez-Díaz, J. Navaza, and B. Sanjurjo, ‘Density, Kinematic Viscosity, Speed of Sound, and Surface Tension of Hexyl, Octyl, and Decyl Trimethyl Ammonium Bromide Aqueous Solutions’, J Chem Eng Data, vol. 52, no. 3, pp. 889–891, May 2007, https://doi.org/10.1021/je060486k.
dc.relation.referencesA. Escamilla, ‘Concentración micelar crítica de bromuros de octiltrimetilamonio y deciltrimetilamonio en agua y en soluciones acuosas de 1,2-propanodiol a 298,15K’, Universidad Nacional de Colombia, 2015. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/56690
dc.relation.referencesN. Mucic, ‘Adsorption of equimolar aqueous sodium dodecyl sulphate/dodecyl trimethylammonium bromide mixtures at solution/air and solution/oil interfaces’, Colloid Polym Sci, vol. 293, no. 11, pp. 3099–3106, Nov. 2015, https://doi.org/10.1007/s00396-015-3735-0.
dc.relation.referencesJ. Zawala, A. Wiertel-Pochopien, and P. Kowalczuk, ‘Critical Synergistic Concentration of Binary Surfactant Mixtures’, Minerals, vol. 10, no. 2, p. 192, Feb. 2020, https://doi.org/10.3390/min10020192.
dc.relation.referencesV. Bergeron, ‘Disjoining Pressures and Film Stability of Alkyltrimethylammonium Bromide Foam Films’, Langmuir, vol. 13, no. 13, pp. 3474–3482, Jun. 1997, https://doi.org/10.1021/la970004q.
dc.relation.referencesA. Olea and C. Gamboa, ‘Synergism in mixtures of cationic surfactant and anionic copolymers’, J Colloid Interface Sci, vol. 257, no. 2, pp. 321–326, 2003, https://doi.org/10.1016/S0021-9797(02)00019-X.
dc.relation.referencesD. Guzey, D. McClements, and J. Weiss, ‘Adsorption kinetics of BSA at air-sugar solution interfaces as affected by sugar type and concentration’, Food Research International, vol. 36, no. 7, pp. 649–660, 2003, https://doi.org/10.1016/S0963-9969(03)00004-8.
dc.relation.referencesA. Medrano, C. Abirached, L. Panizzolo, P. Moyna, and M. Añón, ‘The effect of glycation on foam and structural properties of β-lactoglobulin’, Food Chem, vol. 113, no. 1, pp. 127–133, 2009, https://doi.org/10.1016/j.foodchem.2008.07.036.
dc.relation.referencesR. Baeza, C. Carrera Sanchez, A. Pilosof, and J. Rodríguez Patino, ‘Interactions of polysaccharides with β-lactoglobulin adsorbed films at the air–water interface’, Food Hydrocoll, vol. 19, no. 2, pp. 239–248, 2005, https://doi.org/10.1016/j.foodhyd.2004.06.002.
dc.relation.referencesC. Rao and S. Damodaran, ‘Is surface pressure a measure of interfacial water activity? Evidence from protein adsorption behavior at interfaces’, Langmuir, vol. 16, no. 24, pp. 9468–9477, 2000, https://doi.org/10.1021/la0007168.
dc.relation.referencesA. Ward and L. Tordai, ‘Time‐Dependence of Boundary Tensions of Solutions I. The Role of Diffusion in Time‐Effects’, J Chem Phys, vol. 14, no. 7, pp. 453–461, Jul. 1946, https://doi.org/10.1063/1.1724167.
dc.relation.referencesV. Alahverdjieva, ‘Adsorption behaviour of hen egg-white lysozyme at the air/water interface’, Colloids Surf A Physicochem Eng Asp, vol. 323, no. 1–3, pp. 167–174, Jun. 2008, https://doi.org/10.1016/j.colsurfa.2007.12.031.
dc.relation.referencesV. Ruíz-Henestrosa, C. Sánchez, Y. Escobar, J. Jiménez, F. Rodríguez, and J. Patino, ‘Interfacial and foaming characteristics of soy globulins as a function of pH and ionic strength’, Colloids Surf A Physicochem Eng Asp, vol. 309, no. 1–3, pp. 202–215, Nov. 2007, https://doi.org/10.1016/j.colsurfa.2007.01.030.
dc.relation.referencesJ. Álvarez Gómez, V. Henestrosa, C. Sánchez, and J. Rodríguez, ‘The role of static and dynamic characteristics of diglycerol esters and β-lactoglobulin mixed films foaming. 1. Dynamic phenomena at the air–water interface’, Food Hydrocoll, vol. 22, no. 6, pp. 1105–1116, 2008, https://doi.org/10.1016/j.foodhyd.2007.06.002.
dc.relation.referencesD. Graham and M. Phillips, ‘Proteins at liquid interfaces. I. Kinetics of adsorption and surface denaturation’, J Colloid Interface Sci, vol. 70, no. 3, pp. 403–414, 1979, https://doi.org/10.1016/0021-9797(79)90048-1.
dc.relation.referencesV. Mosquera, ‘A study of the aggregation behavior of hexyltrimethylammonium bromide in aqueous solution’, J Colloid Interface Sci, vol. 206, no. 1, pp. 66–76, 1998, https://doi.org/10.1006/jcis.1998.5708.
dc.relation.referencesZ. Ryszard, ‘Effect of Temperature on the Viscosity of Aqueous Solutions of Alkyltrimethylammonium Bromides’, Zeitschrift fur Physikalische Chemie, vol. 173, no. 1, pp. 63–78, 1991, https://doi.org/10.1524/zpch.1991.173.Part_1.063.
dc.relation.referencesJ. Oremusová, ‘Micellization of alkyl trimethyl ammonium bromides in aqueous solutions - Part 1: critical micelle concentration (CMC) and ionization degree’, Archive Tenside Surfactants Detergents, vol. 49, no. 3, pp. 231–240, 2012, https://doi.org/10.3139/113.110187.
dc.relation.referencesN. Matubayasi, K. Takayama, and T. Ohata, ‘Thermodynamic quantities of surface formation of aqueous electrolyte solutions. IX. Aqueous solutions of ammonium salts’, J Colloid Interface Sci, vol. 344, no. 1, pp. 209–213, 2010, https://doi.org/10.1016/j.jcis.2009.12.018.
dc.relation.referencesP. Mukerjee and K. Mysels, ‘Critical Micelle Concentrations of Aqueous Surfactant Systems’, J Pharm Sci, vol. 61, no. 2, p. 319, Feb. 1972, https://doi.org/10.1002/jps.2600610254.
dc.relation.referencesW. Wen and S. Saito, ‘Apparent and Partial Molal Volumes of Five Symmetrical Tetraalkylammonium Bromides in Aqueous Solutions’, J Phys Chem, vol. 68, no. 9, pp. 2639–2644, Sep. 1964, https://doi.org/10.1021/j100791a042.
dc.relation.referencesR. Buwalda, J. Engberts, H. Høiland, and M. Blandamer, ‘Volumetric properties and compressibilities of alkyltrimethylammonium bromides and sodium alkylsulphates in aqueous solution’, J Phys Org Chem, vol. 11, no. 1, pp. 59–62, 1998, https://doi.org/10.1002/(SICI)1099-1395(199801)11:1<59::AID-POC971>3.0.CO;2-1.
dc.relation.referencesJ. Corkill, J. Goodman, and T. Walker, ‘Partial molar volumes of surface-active agents in aqueous solution’, Transactions of the Faraday Society, vol. 63, no. 0, pp. 768–772, 1967, https://doi.org/10.1039/TF9676300768.
dc.relation.referencesR. de Lisi, C. Ostiguy, G. Perron, and J. Desnoyers, ‘Complete thermodynamic properties of nonyl- and decyltrimethylammonium bromides in water’, J Colloid Interface Sci, vol. 71, no. 1, pp. 147–166, 1979, https://doi.org/10.1016/0021-9797(79)90229-7.
dc.relation.referencesR. de Lisi, V. Liveri, M. Castagnolo, and A. Inglese, ‘Mass action model for solute distribution between water and micelles. Partial molar volumes of butanol and pentanol in dodecyl surfactant solutions’, J Solution Chem, vol. 15, no. 1, pp. 23–54, 1986, https://doi.org/10.1007/BF00646309.
dc.relation.referencesJ. Abella and C. Romero, ‘Preferential Interaction of Chymotrypsinogen in Aqueous Solutions of Polyols at 298.15 K’, J Solution Chem, vol. 48, no. 11, pp. 1591–1602, 2019, https://doi.org/10.1007/s10953-019-00936-5.
dc.relation.referencesT. Arakawa and S. Timasheff, ‘Preferential interactions of proteins with solvent components in aqueous amino acid solutions’, Arch Biochem Biophys, vol. 224, no. 1, pp. 169–177, Jul. 1983, https://doi.org/10.1016/0003-9861(83)90201-1.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembCALORIMETRIA
dc.subject.lembCalorimeters and calorimetry
dc.subject.proposalAlbúmina sérica bovina
dc.subject.proposalSales de tetraalquilamonio
dc.subject.proposalCalorimetría diferencial de barrido
dc.subject.proposalTensión superficial
dc.subject.proposalInteracción preferencial
dc.subject.proposalBovine serum albumin
dc.subject.proposalTetraalkylammonium salts
dc.subject.proposalDifferential scanning calorimetry
dc.subject.proposalSurface tension
dc.subject.proposalPreferential interaction
dc.title.translatedStability of bovine serum albumin in aqueous solution in the presence of tetraalkylammonium salts
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleEfecto de aminoácidos y sales de amonio sobre la estabilidad térmica de la albúmina sérica bovina y su relación con el cambio en la tensión superficial del solvente
oaire.fundernameDirección de investigación. Sede Bogotá. Universidad Nacional de Colombia.
dc.contributor.orcidSanabria Montealegre, Juan Carlos [0000-0003-0913-0744]
dc.contributor.cvlacSanabria Montealegre, Juan Carlos [0001378521]
dc.contributor.scopusSanabria, Juan Carlos [7006262910]
dc.contributor.researchgateJuan Carlos Sanabria [Juan-Sanabria-10]
dc.contributor.googlescholarJuan Carlos Sanabria Montealegre [jJKPrYMAAAAJ]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito