Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorSalazar Villegas, Alejandro
dc.contributor.advisorSalgado Negret, Beatriz
dc.contributor.authorFranco Londoño, Catalina
dc.date.accessioned2023-06-06T20:20:34Z
dc.date.available2023-06-06T20:20:34Z
dc.date.issued2023-01
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83980
dc.descriptionilustraciones, graficas, mapas
dc.description.abstractThis study investigates the effects of succession on soil respiration and litter decomposition in high Andean forests. These processes are an important part of the global carbon budget as they are responsible for the emission and sequestration of carbon in the soil and can be affected by the successional stage due to the properties of vegetation, such as forest structure and functional composition. We measured actual soil respiration using an infrared gas analyzer and both potential litter decomposition and stabilization factor using the tea bag index. We characterized the stand structure and community-level functional composition. Microclimate variables, including soil water content, temperature, and pH, were also measured. A structural equation model approach was used to evaluate the cascade of effects from succession to soil processes, passing through forest attributes and microclimate. Results indicate that even though we did not find differences in the soil processes between the successional stages, succession plays an important role in determining soil process rates, but that the combination of mutually counterbalancing interactions results in neutral total effects. Our study provides insights into the mechanisms driving carbon sequestration and biodiversity in high Andean forests and highlights the importance of considering succession in conservation and management efforts in these ecosystems.
dc.description.abstractSe evaluó la respiración y la descomposición en los suelos comparando entre dos etapas sucesionales en bosques altoandinos. Estos procesos son una parte importante del balance de carbono global ya que están directamente ligados a la emisión y secuestro de carbono en el suelo. Sin embargo, no está claro cómo estos procesos pueden verse afectados por la etapa sucesional debido a las propiedades de la vegetación, como la estructura del bosque y la composición funcional. Medimos la respiración con un analizador de gases infrarrojo (IRGA, por sus siglas en inglés) y utilizamos el índice de bolsitas de té (TBI, por sus siglas en inglés) para medir la descomposición potencial de la hojarasca y el factor de estabilización. También medimos la estructura del bosque y la composición funcional a nivel de comunidad, así como la humedad, la temperatura y el pH del suelo. Luego, utilizamos un enfoque de modelo de ecuaciones estructurales para evaluar la cascada de efectos de la sucesión a los procesos del suelo, pasando a través de los atributos del bosque y el microclima. El modelo ajustado muestra que, mientras que la combinación de interacciones mutuamente compensatorias dio como resultado efectos totales neutrales sobre las tasas de respiración y descomposición del suelo, la sucesión juega un papel importante en la determinación de esto procesos del suelo. Este estudio brinda nuevas perspectivas sobre los mecanismos que impulsan el secuestro de carbono y la biodiversidad en los bosques de los Andes altos y destaca la importancia de considerar la sucesión en los esfuerzos de conservación y manejo de estos ecosistemas. (Texto tomado de la fuente)
dc.format.extent35 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc570 - Biología::577 - Ecología
dc.titleDecomposition and respiration in high-andean forest soils at different successional stages
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Biología
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Biología
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAcuña, A. (2013). Potencial de regeneracion de rastrojos y bosques secundarios en la Sabana de Bogotá. PhD thesis, Pontificia Universidad Javeriana.
dc.relation.referencesAerts, R. (1997). Climate, Leaf Litter Chemistry and Leaf Litter Decomposition in Terrestrial Ecosystems: A Triangular Relationship. Oikos, 79(3):439.
dc.relation.referencesAhmed, I. U., Assefa, D., and Godbold, D. L. (2022). Land-Use Change Depletes Quantity and Quality of Soil Organic Matter Fractions in Ethiopian Highlands. Forests, 13(1):1–20.
dc.relation.referencesAmoakwah, E., Lucas, S. T., Didenko, N. A., Rahman, M. A., and Islam, K. R. (2022). Impact of deforestation and temporal landuse change on soil organic carbon storage, quality, and lability. PLoS ONE, 17(8 August):1–25.
dc.relation.referencesAnselm, N., Brokamp, G., and Schütt, B. (2018). Assessment of land cover change in peri-urban high Andean environments south of Bogotá, Colombia. Land, 7(2):1–28.
dc.relation.referencesArmenteras, D., Gast, F., and Villareal, H. (2003). Andean forest fragmentation and the representativeness of protected natural areas in the eastern Andes , Colombia. Biological Conservation, 113:245–256.
dc.relation.referencesArmenteras, D., Rodríguez, N., Retana, J., and Morales, M. (2011). Understanding deforestation in montane and lowland forests of the Colombian Andes. Regional Environmental Change, 11(3):693–705
dc.relation.referencesArroyo-Rodríguez, V., Melo, F. P., Martínez-Ramos, M., Bongers, F., Chazdon, R. L., Meave, J. A., Norden, N., Santos, B. A., Leal, I. R., and Tabarelli, M. (2017). Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research. Biological Reviews, 92(1):326–340.
dc.relation.referencesAryal, D. R., De Jong, B. H., Ochoa-Gaona, S., Esparza-Olguin, L., and Mendoza-Vega, J. (2014). Carbon stocks and changes in tropical secondary forests of southern Mexico. Agriculture, Ecosystems and Environment, 195:220–230
dc.relation.referencesBakker, M. A., Carreño-Rocabado, G., and Poorter, L. (2011). Leaf economics traits predict litter decomposition of tropical plants and differ among land use types. Functional Ecology, 25(3):473–483.
dc.relation.referencesBautista-Cruz, A. and del Castillo, R. F. (2005). Soil Changes During Secondary Succession in a Tropical Montane Cloud Forest Area. Soil Science Society of America Journal, 69(3):906–914.
dc.relation.referencesBekku, Y., Koizumi, H., Nakadai, T., and Iwaki, H. (1995). Measurement of soil respiration using closed chamber method: An IRGA technique. Ecological Research, 10(3):369–373.
dc.relation.referencesBerg, B. and Meentemeyer, V. (2002). Litter quality in a north European transect versus carbon storage potential. Plant and Soil, 242(1):83–92.
dc.relation.referencesBongers, F., Chazdon, R. L., and Poorter, L. (2015). The potential of secondary forests. Science, 348(6235):642–643.
dc.relation.referencesCavelier, J., Estevez, J., Arjona, B., Cavelier, J., Estevez, J., and Arjona, B. (2015). Fine-root Biomass in Three Successional Stages of an Andean Cloud Forest in Colombia. Biotropica, 28(4):728–736.
dc.relation.referencesChapin, F. S., Matson, P. A., and Vitousek, P. M. (2011). Decomposition and Ecosystem Carbon Budgets. In Principles of Terrestrial Ecosystem, pages 183–228. Springer, second edi edition.
dc.relation.referencesChazdon, R. L., Letcher, S. G., Van Breugel, M., Martínez-Ramos, M., Bongers, F., and Finegan, B. (2007). Rates of change in tree communities of secondary Neotropical forests following major disturbances. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1478):273–289
dc.relation.referencesChen, Y., Liu, Y., Zhang, J., Yang, W., He, R., and Deng, C. (2018). Microclimate exerts greater control over litter decomposition and enzyme activity than litter quality in an alpine foresttundra ecotone. Scientific Reports, 8:e14998.
dc.relation.referencesChokkalingam, U. and De Jong, W. (2001). Secondary forest: A working definition and typology. International Forestry Review, 3(1):19–26
dc.relation.referencesConnell, J. H. and Slatyer, R. (1977). Mechanisms of Succession in Natural Communities and Their Role in Community Stability and Organization. The American naturalist, 111(982):1119 – 1144.
dc.relation.referencesCornwell, W. K., Cornelissen, J. H. C., Amatangelo, K., Dorrepaal, E., Eviner, V. T., Godoy, O., Hobbie, S. E., Hoorens, B., Kurokawa, H., Pérez-Harguindeguy, N., Quested, H. M., Santiago, L. S., Wardle, D. A., Wright, I. J., Aerts, R., Allison, S. D., Van Bodegom, P., Brovkin, V., Chatain, A., Callaghan, T. V., Díaz, S., Garnier, E., Gurvich, D. E., Kazakou, E., Klein, J. A., Read, J., Reich, P. B., Soudzilovskaia, N. A., Vaieretti, M. V., and Westoby, M. (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 11(10):1065–1071.
dc.relation.referencesDe Deyn, G. B., Cornelissen, J. H. C., and Bardgett, R. D. (2008). Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters, 11(5):516–531
dc.relation.referencesde Godoy Fernandes, P. H., de Souza, A. L. T., Tanaka, M. O., and Sebastiani, R. (2021). Decomposition and stabilization of organic matter in an old-growth tropical riparian forest: effects of soil properties and vegetation structure. Forest Ecosystems, 8(1).
dc.relation.referencesDeng, L., Wang, K. B., Chen, M. L., Shangguan, Z. P., and Sweeney, S. (2013). Soil organic carbon storage capacity positively related to forest succession on the Loess Plateau, China. Catena, 110:1–7.
dc.relation.referencesDíaz, S., Lavorel, S., De Bello, F., Quétier, F., Grigulis, K., and Robson, T. M. (2007). Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences of the United States of America, 104(52):20684–20689
dc.relation.referencesDuan, B., Man, X., Cai, T., Xiao, R., and Ge, Z. (2020). Increasing soil organic carbon and nitrogen stocks along with secondary forest succession in permafrost region of the Daxing’an mountains, northeast China. Global Ecology and Conservation, 24:e01258.
dc.relation.referencesDuque, A., Peña, M. A., Cuesta, F., González-Caro, S., Kennedy, P., Phillips, O. L., CalderónLoor, M., Blundo, C., Carilla, J., Cayola, L., Farfán-Ríos, W., Fuentes, A., Grau, R., Homeier, J., Loza-Rivera, M. I., Malhi, Y., Malizia, A., Malizia, L., Martínez-Villa, J. A., Myers, J. A., Osinaga-Acosta, O., Peralvo, M., Pinto, E., Saatchi, S., Silman, M., Tello, J. S., Terán-Valdez, A., and Feeley, K. J. (2021). Mature Andean forests as globally important carbon sinks and future carbon refuges. Nature Communications, 12(1):1–10.
dc.relation.referencesEichenberg, D., Trogisch, S., Huang, Y., He, J. S., and Bruelheide, H. (2013). Shifts in community leaf functional traits are related to litter decomposition along a secondary forest succession series in subtropical China. Journal of Plant Ecology, 8(4):401–410.
dc.relation.referencesEtter R., A. and Van Wyngaarden, W. (2000). Patterns of landscape transformation in Colombia, with emphasis in the Andean region. Ambio, 29(7):432–439
dc.relation.referencesFang, X., Zhao, L., Zhou, G., Huang, W., and Liu, J. (2015). Increased litter input increases litter decomposition and soil respiration but has minor effects on soil organic carbon in subtropical forests. Plant and Soil, 392(1-2):139–153.
dc.relation.referencesFlores-Rentería, D., Rincón, A., Morán-López, T., Hereş, A. M., Pérez-Izquierdo, L., Valladares, F., and Yuste, J. C. (2018). Habitat fragmentation is linked to cascading effects on soil functioning and CO2 emissions in Mediterranean holm-oak-forests. PeerJ, 2018(10)
dc.relation.referencesGromova, M. S., Matvienko, A. I., Makarov, M. I., Cheng, C. H., and Menyailo, O. V. (2020). Temperature Sensitivity (Q10) of Soil Basal Respiration as a Function of Available Carbon Substrate, Temperature, and Moisture. Eurasian Soil Science, 53(3):377–382.
dc.relation.referencesGuariguata, M. R. and Ostertag, R. (2001). Neotropical secondary forest succession: Changes in structural and functional characteristics. Forest Ecology and Management, 148(1-3):185–206
dc.relation.referencesHardwick, S. R., Toumi, R., Pfeifer, M., Turner, E. C., Nilus, R., and Ewers, R. M. (2015). The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: Forest disturbance drives changes in microclimate. Agricultural and Forest Meteorology, 201:187–195.
dc.relation.referencesHastwell, G. T. and Morris, E. C. (2013). Structural features of fragmented woodland communities affect leaf litter decomposition rates. Basic and Applied Ecology, 14(4):298–308.
dc.relation.referencesHertel, D., Hölscher, D., Köhler, L., and Leuschner, C. (2006). Changes in Fine Root System Size and Structure During Secondary Succession in a Costa Rican Montane Oak Forest. In Kappelle, M., editor, Ecology and Conservation of Neotropical Montane Oak Forests, volume 185 of Ecological Studies, pages 283–297. Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg.
dc.relation.referencesHuang, W., Han, T., Liu, J., Wang, G., and Zhou, G. (2016). Changes in soil respiration components and their specific respiration along three successional forests in the subtropics. Functional Ecology, 30(8):1466–1474.
dc.relation.referencesHuang, Y., Zhou, G., Tang, X., Jiang, H., Zhang, D., and Zhang, Q. (2011). Estimated soil respiration rates decreased with long-term soil microclimate changes in successional forests in Southern China. Environmental Management, 48(6):1189–1197
dc.relation.referencesHurtado-M, A. B., Echeverry-Galvis, M. Á., Salgado-Negret, B., Muñoz, J. C., Posada, J. M., and Norden, N. (2020). Little trace of floristic homogenization in peri-urban Andean secondary forests despite high anthropogenic transformation. Journal of Ecology, 0:1–11.
dc.relation.referencesHurtado-M, A. B., Muñoz, J. C., Ángela Echeverry-Galvis, M., and Norden, N. (2022). Bosques sucesionales en Colombia: una oportunidad para la recuperación de paisajes transformados Successional forests in Colombia: an opportunity for recovery of transformed landscapes. Caldasia, 44(2):332–344
dc.relation.referencesJewell, M. D., Shipley, B., Low-Décarie, E., Tobner, C. M., Paquette, A., Messier, C., and Reich, P. B. (2017). Partitioning the effect of composition and diversity of tree communities on leaf litter decomposition and soil respiration. Oikos, 126(7):959–971.
dc.relation.referencesJiang, L., Ma, S., Zhou, Z., Zheng, T., Jiang, X., Cai, Q., Li, P., Zhu, J., Li, Y., and Fang, J. (2016). Soil respiration and its partitioning in different components in tropical primary and secondary mountain rain forests in Hainan Island, China. Journal of Plant Ecology, 10(5):791– 799.
dc.relation.referencesKeuskamp, J. A., Dingemans, B. J., Lehtinen, T., Sarneel, J. M., and Hefting, M. M. (2013). Tea Bag Index: A novel approach to collect uniform decomposition data across ecosystems. Methods in Ecology and Evolution, 4(11):1070–1075.
dc.relation.referencesKovács, B., Tinya, F., and Ódor, P. (2017). Stand structural drivers of microclimate in mature temperate mixed forests. Agricultural and Forest Meteorology, 234-235:11–21.
dc.relation.referencesLal, R. (2004). Soil carbon sequestration to mitigate climate change. Geoderma, 123:1–22.
dc.relation.referencesLe Quéré, C., Andrew, R. M., Canadell, J. G., Sitch, S., Ivar Korsbakken, J., Peters, G. P., Manning, A. C., Boden, T. A., Tans, P. P., Houghton, R. A., Keeling, R. F., Alin, S., Andrews, O. D., Anthoni, P., Barbero, L., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Currie, K., Delire, C.,Doney, S. C., Friedlingstein, P., Gkritzalis, T., Harris, I., Hauck, J., Haverd, V., Hoppema, M., Klein Goldewijk, K., Jain, A. K., Kato, E., Körtzinger, A., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Melton, J. R., Metzl, N., Millero, F., Monteiro, P. M., Munro, D. R., Nabel, J. E., Nakaoka, S. I., O’Brien, K., Olsen, A., Omar, A. M., Ono, T., Pierrot, D., Poulter, B., Rödenbeck, C., Salisbury, J., Schuster, U., Schwinger, J., Séférian, R., Skjelvan, I., Stocker, B. D., Sutton, A. J., Takahashi, T., Tian, H., Tilbrook, B., Van Der Laan-Luijkx, I. T., Van Der Werf, G. R., Viovy, N., Walker, A. P., Wiltshire, A. J., Zaehle, S., Quéré, C. L., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., Peters, G. P., Manning, A. C., Boden, T. A., Tans, P. P., Houghton, R. A., Keeling, R. F., Alin, S., Andrews, O. D., Anthoni, P., and Barbero, L. (2016). Global Carbon Budget 2016. Earth System Science Data, 8:605–649.
dc.relation.referencesLebrija-Trejos, E., Meave, J. A., Poorter, L., Pérez-García, E. A., and Bongers, F. (2010). Pathways, mechanisms and predictability of vegetation change during tropical dry forest succession. Perspectives in Plant Ecology, Evolution and Systematics, 12(4):267–275.
dc.relation.referencesLefcheck, J. S. (2016). piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods in Ecology and Evolution, 7(5):573–579.
dc.relation.referencesLewis, D. B., Castellano, M. J., and Kaye, J. P. (2014). Forest succession, soil carbon accumulation, and rapid nitrogen storage in poorly remineralized soil organic matter. Ecology, 95(10):2687–2693
dc.relation.referencesLi, Y., Yang, F., Ou, Y., Zhang, D., Liu, J., Chu, G., Zhang, Y., Otieno, D., and Zhou, G. (2013). Changes in forest soil properties in different successional stages in lower tropical China. PLoS ONE, 8(11):1–10
dc.relation.referencesLin, L. C., Huang, P. H., and Weng, L. J. (2017). Selecting Path Models in SEM: A Comparison of Model Selection Criteria. Structural Equation Modeling, 24(6):855–869.
dc.relation.referencesLohbeck, M., Poorter, L., Martínez-Ramos, M., Bongers, F., and Craft, N. J. B. (2015). Biomass is the main driver of changes in ecosystem process rates during tropical forest succession. Ecology, 96(5):1242–1252.
dc.relation.referencesLohbeck, M., Poorter, L., Martínez-Ramos, M., Rodriguez-Velázquez, J., van Breugel, M., and Bongers, F. (2014). Changing drivers of species dominance during tropical forest succession. Functional Ecology, 28(4):1052–1058.
dc.relation.referencesLuyssaert, S., Inglima, I., Jung, M., Richardson, A. D., Reichstein, M., Papale, D., Piao, S. L., Schulze, E. D., Wingate, L., Matteucci, G., Aragao, L., Aubinet, M., Beer, C., Bernhofer, C., Black, K. G., Bonal, D., Bonnefond, J. M., Chambers, J., Ciais, P., Cook, B., Davis, K. J., Dolman, A. J., Gielen, B., Goulden, M., Grace, J., Granier, A., Grelle, A., Griffis, T., Grünwald, T., Guidolotti, G., Hanson, P. J., Harding, R., Hollinger, D. Y., Hutyra, L. R., Kolari, P., Kruijt, B., Kutsch, W., Lagergren, F., Laurila, T., Law, B. E., Le Maire, G., Lindroth, A., Loustau, D., Malhi, Y., Mateus, J., Migliavacca, M., Misson, L., Montagnani, L., Moncrieff, J., Moors, E. J., Munger, J. W., Nikinmaa, E., Ollinger, S. V., Pita, G., Rebmann, C., Roupsard, O., Saigusa, N., Sanz, M. J., Seufert, G., Sierra, C., Smith, M. L., Tang, J., Valentini, R., Vesala, T., and Janssens, I. A. (2007). CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology, 13:2509–2537.
dc.relation.referencesMarkesteijn, L., Poorter, L., Bongers, F., Paz, H., and Sack, L. (2011). Hydraulics and life history of tropical dry forest tree species: Coordination of species’ drought and shade tolerance. New Phytologist, 191(2):480–495
dc.relation.referencesMayer, M., Sandén, H., Rewald, B., Godbold, D. L., and Katzensteiner, K. (2017). Increase in heterotrophic soil respiration by temperature drives decline in soil organic carbon stocks after forest windthrow in a mountainous ecosystem. Functional Ecology, 31(5):1163–1172
dc.relation.referencesMcCook, L. J. (1994). Understanding ecological community succession: Causal models and theories, a review. Vegetatio, 110(2):115–147.
dc.relation.referencesMéndez-Alonzo, R., Paz, H., Zuluaga, R. C., Rosell, J. A., and Olson, M. E. (2012). Coordinated evolution of leaf and stem economics in tropical dry forest trees. Ecology, 93(11):2397–2406.
dc.relation.referencesMendoza S., J. E. and Etter R., A. (2002). Multitemporal analysis (1940-1996) of land cover changes in the southwestern Bogotá highplain (Colombia). Landscape and Urban Planning, 59(3):147–158
dc.relation.referencesMetzger, J. C., Wutzler, T., Dalla Valle, N., Filipzik, J., Grauer, C., Lehmann, R., Roggenbuck, M., Schelhorn, D., Weckmüller, J., Küsel, K., Totsche, K. U., Trumbore, S., and Hildebrandt, A. (2017). Vegetation impacts soil water content patterns by shaping canopy water fluxes and soil properties. Hydrological Processes, 31(22):3783–3795.
dc.relation.referencesMuñoz, J. C., Hurtado-M, A. B., and Norden, N. (2017). COMPOSICIÓN FLORÍSTICA DE TRES FRAGMENTOS DE BOSQUE ALTOANDINO EN LOS ALREDEDORES DE LA SABANA DE BOGOTÁ. Technical report, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá D.C.
dc.relation.referencesNakai, T., Sumida, A., Kodama, Y., Hara, T., and Ohta, T. (2010). A comparison between various definitions of forest stand height and aerodynamic canopy height. Agricultural and Forest Meteorology, 150:1225–1233.
dc.relation.referencesOrrego, M., Ugawa, S., Inoue, A., Laplace, S., Kume, T., Koga, S., Hishi, T., and Enoki, T. (2022). Climate, Soil, and Plant Controls on Early-Stage Litter Decomposition in Moso Bamboo Stands at a Regional Scale. Frontiers in Forests and Global Change, 5(July):1–11
dc.relation.referencesPan, Y., Birdsey, R. A., Fang, J., Houghton, R. A., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A., Sitch, S., and Hayes, D. (2011). A large and persistent carbon sink in the world’s forests. Science, 333:988–993.
dc.relation.referencesPetraglia, A., Cacciatori, C., Chelli, S., Fenu, G., Calderisi, G., Gargano, D., Abeli, T., Orsenigo, S., and Carbognani, M. (2019). Litter decomposition: effects of temperature driven by soil moisture and vegetation type. Plant and Soil, 435(1-2):187–200.
dc.relation.referencesPfeifer, M. (2015). Manual to measure and model leaf area index and its spatial variability on local and landscape scale.
dc.relation.referencesPoorter, L., Craven, D., Jakovac, C. C., van der Sande, M. T., Amissah, L., Bongers, F., Chazdon, R. L., Farrior, C. E., Kambach, S., Meave, J. A., Muñoz, R., Norden, N., Rüger, N., van Breugel, M., Zambrano, A. M. A., Amani, B., Andrade, J. L., Brancalion, P. H., Broadbent, E. N., de Foresta, H., Dent, D. H., Derroire, G., DeWalt, S. J., Dupuy, J. M., Durán, S. M., Fantini, A. C., Finegan, B., Hernández-Jaramillo, A., Hernández-Stefanoni, J. L., Hietz, P., Junqueira, A. B., N’dja, J. K., Letcher, S. G., Lohbeck, M., López-Camacho, R., Martínez-Ramos, M., Melo, F. P., Mora, F., Müller, S. C., N’Guessan, A. E., Oberleitner, F., Ortiz-Malavassi, E., Pérez-García, E. A., Pinho, B. X., Piotto, D., Powers, J. S., Rodríguez-Buriticá, S., Rozendaal, D. M., Ruíz, J., Tabarelli, M., Teixeira, H. M., De Sá Barretto Sampaio, E. V., van der Wal,H., Villa, P. M., Fernandes, G. W., Santos, B. A., Aguilar-Cano, J., de Almeida-Cortez, J. S., Alvarez-Davila, E., Arreola-Villa, F., Balvanera, P., Becknell, J. M., Cabral, G. A., CastellanosCastro, C., de Jong, B. H., Nieto, J. E., Espírito-Santo, M. M., Fandino, M. C., García, H., García-Villalobos, D., Hall, J. S., Idárraga, A., Jiménez-Montoya, J., Kennard, D., MarínSpiotta, E., Mesquita, R., Nunes, Y. R., Ochoa-Gaona, S., Peña-Claros, M., Pérez-Cárdenas, N., Rodríguez-Velázquez, J., Villanueva, L. S., Schwartz, N. B., Steininger, M. K., Veloso, M. D., Vester, H. F., Vieira, I. C., Williamson, G. B., Zanini, K., and Hérault, B. (2021). Multidimensional tropical forest recovery. Science, 374(6573):1370–1376.
dc.relation.referencesPrescott, C. E. and Vesterdal, L. (2021). Decomposition and transformations along the continuum from litter to soil organic matter in forest soils. Forest Ecology and Management, 498(July):119522.
dc.relation.referencesQuested, H., Eriksson, O., Fortunel, C., and Garnier, E. (2007). Plant traits relate to wholecommunity litter quality and decomposition following land use change. Functional Ecology, 21(6):1016–1026.
dc.relation.referencesRaich, J. W. and Tufekcioglu, A. (2000). Vegetation and soil respiration: Correlations and controls. Biogeochemistry, 48(1):71–90.
dc.relation.referencesRawat, M., Arunachalam, K., and Arunachalam, A. (2015). Plant functional traits and carbon accumulation in forest. Climate Change and Environmental Sustainability, 3(1):1–12.
dc.relation.referencesRodtassana, C., Unawong, W., Yaemphum, S., Chanthorn, W., Chawchai, S., Nathalang, A., Brockelman, W. Y., and Tor-ngern, P. (2021). Different responses of soil respiration to environmental factors across forest stages in a Southeast Asian forest. Ecology and Evolution, 11(21):15430–15443
dc.relation.referencesSalazar-Villegas, A., Blagodatskaya, E., and Dukes, J. S. (2016). Changes in the size of the active microbial pool explain short-term soil respiratory responses to temperature and moisture. Frontiers in Microbiology, 7(APR):1–10.
dc.relation.referencesSalazar-Villegas, A., Sulman, B. N., and Dukes, J. S. (2018). Microbial dormancy promotes microbial biomass and respiration across pulses of drying-wetting stress. Soil Biology and Biochemistry, 116(October 2017):237–244.
dc.relation.referencesSalgado-Negret, B., Pulido Rodriguez, E. N., Cabrera, M., Ruiz Osorio, C., and Paz, H. (2016). Protocolo para la medición de rasgos funcionales en plantas. In Salgado-Negret, B., editor, Ecología Funcional como apróxmación al estudo, conservación, manejo y conservación de la biodiversidad, chapter 2, pages 36–79. Editorial Alexander von Humboldt, Bogotá D.C.
dc.relation.referencesSarneel, J. M., Sundqvist, M. K., Molau, U., Björkman, M. P., and Alatalo, J. M. (2020). Decomposition rate and stabilization across six tundra vegetation types exposed to >20 years of warming. Science of the Total Environment, 724:1–8.
dc.relation.referencesSayer, E. J. (2006). Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biological Reviews of the Cambridge Philosophical Society, 81(1):1–31.
dc.relation.referencesSchedlbauer, J. L. and Kavanagh, K. L. (2008). Soil carbon dynamics in a chronosequence of secondary forests in northeastern Costa Rica. Forest Ecology and Management, 255(3-4):1326– 1335.
dc.relation.referencesSedjo, R. and Sohngen, B. (2012). Carbon sequestration in forests and soils. Annual Review of Resource Economics, 4:127–144
dc.relation.referencesSeidelmann, K. N., Scherer-Lorenzen, M., and Niklaus, P. A. (2016). Direct vs. Microclimatedriven effects of tree species diversity on litter decomposition in young subtropical forest stands. PLoS ONE, 11(8):1–17.
dc.relation.referencesSix, J., Frey, S. D., Thiet, R. K., and Batten, K. M. (2006). Bacterial and Fungal Contributions to Carbon Sequestration in Agroecosystems. Soil Science Society of America Journal, 70(2):555– 569.
dc.relation.referencesSøe, A. R. and Buchmann, N. (2005). Spatial and temporal variations in soil respiration in relation to stand structure and soil parameters in an unmanaged beech forest. Tree Physiology, 25(11):1427–1436.
dc.relation.referencesStoy, P. C., Lin, H., Novick, K. A., Siqueira, M. B. S., and Juang, J. Y. (2014). The role of vegetation on the ecosystem radiative entropy budget and trends along ecological succession. Entropy, 16(7):3710–3731.
dc.relation.referencesSuseela, V., Conant, R. T., Wallenstein, M. D., and Dukes, J. S. (2012). Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment. Global Change Biology, 18(1):336–348.
dc.relation.referencesTrivedi, P., Wallenstein, M. D., Delgado-Baquerizo, M., and Singh, B. K. (2018). Microbial modulators and mechanisms of soil carbon storage. In Soil Carbon Storage: Modulators, Mechanisms and Modeling, pages 73–115. Elsevier
dc.relation.referencesValentini, C. M. A., Sanches, L., De Paula, S. R., Vourlitis, G. L., De Nogueira, J. S., Pinto, O. B., and De Lobo, F. A. (2009). Soil respiration and aboveground litter dynamics of a tropical transitional forest in northwest mato grosso, brazil. Journal of Geophysical Research: Biogeosciences, 114(1):1–11.
dc.relation.referencesVargas-Terminel, M. L., Flores-Rentería, D., Sánchez-Mejía, Z. M., Rojas-Robles, N. E., Sandoval-Aguilar, M., Chávez-Vergara, B., Robles-Morua, A., Garatuza-Payan, J., and Yépez, E. A. (2022). Soil Respiration Is Influenced by Seasonality, Forest Succession and Contrasting Biophysical Controls in a Tropical Dry Forest in Northwestern Mexico. Soil Systems, 6(4):75
dc.relation.referencesWang, C., Ma, Y., Trogisch, S., Huang, Y., Geng, Y., Scherer-Lorenzen, M., and He, J. S. (2017). Soil respiration is driven by fine root biomass along a forest chronosequence in subtropical China. Journal of Plant Ecology, 10(1):36–46
dc.relation.referencesWardle, D. A., Bardgett, R. D., Walker, L. R., and Bonner, K. I. (2009). Among- and withinspecies variation in plant litter decomposition in contrasting long-term chronosequences. Functional Ecology, 23(2):442–453
dc.relation.referencesWeiss, M. and Baret, F. (2017). CAN _ EYE V6.4.91 user manual. INRA SCIENCE & IMPACT
dc.relation.referencesWen, Z., Zheng, H., Smith, J. R., and Ouyang, Z. (2021). Plant functional diversity mediates indirect effects of land-use intensity on soil water conservation in the dry season of tropical areas. Forest Ecology and Management, 480(18):118646.
dc.relation.referencesWright, S. J. (2010). The future of tropical forests. Annals of the New York Academy of Sciences, 1195:1–27.
dc.relation.referencesXiao, W., Ge, X., Zeng, L., Huang, Z., Lei, J., Zhou, B., and Li, M. (2014). Rates of litter decomposition and soil respiration in relation to soil temperature and water in different-aged Pinus massoniana forests in the three gorges reservoir area, China. PLoS ONE, 9(7):1–12.
dc.relation.referencesYou, S. J., Yin, Y., and Allen, H. E. (1999). Partitioning of organic matter in soils: Effects of pH and water/soil ratio. Science of the Total Environment, 227(2-3):155–160.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembHOJARASCA FORESTAL-BIODEGRADACION
dc.subject.lembForest Litter - Biodegradation
dc.subject.lembCONSERVACION DE BOSQUES
dc.subject.lembForest conservation
dc.subject.proposalRespiración del suelo
dc.subject.proposalDescomposición de hojarasca
dc.subject.proposalBosques secundarios
dc.subject.proposalSecuestro de carbono
dc.subject.proposalRasgos funcionales
dc.subject.proposalÍndice de bolsas de té
dc.subject.proposalModelos de ecuaciones estructurales
dc.subject.proposalBosques altoandinos
dc.subject.proposalSoil respiration
dc.subject.proposalLitter decomposition
dc.subject.proposalSecondary forests
dc.subject.proposalCarbon sequestration
dc.subject.proposalFunctional traits
dc.subject.proposalTea Bag Index
dc.subject.proposalStructural equation models
dc.subject.proposalHigh-andean forests
dc.title.translatedDescomposición y respiración en suelos de bosques altoandinos en diferentes estados sucesionales
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentConsejeros
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
dc.contributor.orcid0000-0002-3483-6792
dc.contributor.researchgatehttps://www.researchgate.net/profile/Catalina-Franco-2


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito