Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorTobón, Jorge Iván
dc.contributor.authorBerrío Solarte, Ariel
dc.date.accessioned2023-06-26T13:59:22Z
dc.date.available2023-06-26T13:59:22Z
dc.date.issued2023-06-21
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84063
dc.descriptionilustraciones, diagramas
dc.description.abstractEn el mundo de los materiales de la construcción cada vez crece más la demanda de productos que puedan ofrecer ventajas no solo desde el punto de vista constructivo sino desde el punto de vista ambiental. En el caso particular del cemento, se busca que los productos basados en este material sean más amigables con el medio ambiente, esto es, que generen menores emisiones de CO2 y que posean un menor consumo energético. Además, dado que se requiere mantener un alto desempeño de los materiales, alta resistencia física y química, así como durabilidad bajo condiciones extremas, la exigencia sobre estos materiales cementantes seguirá incrementándose cada vez más desde las diferentes aristas de la sostenibilidad. Sobre el cemento Portland ordinario existe un amplio campo de estudios tecnológicos bastante desarrollados que abarcan desde las materias primas hasta su uso y sus aplicaciones industriales, estos estudios han permitido tener claridad en los beneficios y retos de este material. Entre ellos están los relacionados con su alto consumo per-cápita, sus características de endurecimiento y el uso del material en el desarrollo de la compleja infraestructura de la que hoy se beneficia la humanidad. Muchos investigadores y empresas han concentrado sus esfuerzos y recursos en identificar materiales alternativos al cemento Portland tradicional, buscando maximizar alguna característica particular del cemento y/o buscando mayores eficiencias económicas, sociales o ambientales. Un ejemplo de dichos materiales alternativos son los llamados Cementos de Tercera Generación entre los que se destaca el cemento base sulfoaluminato cálcico (CSA, por sus siglas en inglés), con sus variaciones. En los últimos 15 años, y particularmente en 2018, se evidencia un incremento en las publicaciones científicas asociadas a este tipo de cemento de acuerdo con varias bases de datos disponibles, Science Direct, Scopus, entre otras, donde se exploran las diferentes características y propiedades de desempeño del cemento, así como también se observan aspectos por solucionar de la química del material, interacciones con aditivos y durabilidad. A partir de estas características se genera una amplia discusión sobre los retos técnicos del cemento CSA, lo cual permite ampliar el conocimiento de la comunidad sobre el mismo, así como la materialización de su producción y el aprovechamiento de sus características de desempeño para cubrir las necesidades de infraestructura que requieren los países. Actualmente se sigue profundizando cada vez más en varios aspectos relevantes del cemento CSA, como los relacionados con su producción eficiente, usando materias primas alternativas; mejorando su desempeño mecánico, la regulación del proceso de hidratación del cemento CSA, identificación de los productos de la hidratación, mezclas con otros materiales cementantes, entre otros. Uno de los campos de estudio relacionados con el cemento CSA está enfocado a la síntesis del clinker CSA, en la cual, se identifican oportunidades de mejora al reducir la energía requerida para la combinación de los óxidos de calcio, aluminio y azufre necesarios para la formación de sulfoaluminato cálcico en sus diferentes formas cristalinas (polimorfos), oportunidades en la optimización de las reacciones en estado sólido usando temperaturas relativamente más bajas que las del cemento Portland (entre 1000 °C y 1300 °C). La determinación de la velocidad de reacción en función del grado de conversión, es decir, la identificación de la fuerza impulsora, o potencial energético, que gobierna la cinética de reacción necesaria para que las moléculas participantes de la rección de formación del clinker CSA se combinen para formar los compuestos de ye’elimita con unas estructuras cristalinas deseadas, alcanzando la estabilización de las fases, en unas proporciones particulares de dichas estructuras, permitirán aportar en el entendimiento del comportamiento mecánico del cemento CSA producido, que contiene los polimorfos de ye’elimita. En este caso, el estudio sobre la formación de las diferentes fases cristalinas del cemento CSA, la ye’elimita y sus polimorfos cúbico y ortorrómbico, y particularmente la velocidad a la que cada uno de ellos se forma durante el proceso de sinterización, esto es, los aspectos cinéticos y termodinámicos, representan el mayor interés de esta investigación, en la que los modelos de reacción de los compuestos fundamentales y mayoritarios en un cemento CSA mencionados (ye’elimita, en sus formas cristalinas cúbica y ortorrómbica), son base fundamental para entender posteriormente la capacidad que tendrá el material (cemento CSA) para hidratarse y endurecer y ofrecer mejoras en los proceso productivo y de uso en los procesos de construcción. Como se mencionó, el tema planteado en esta investigación sobre la cinética de formación de la ye’elimita, como fase principal, mayoritaria y característica de los cementos CSA es fundamental para entender y controlar la formación de las fases polimórficas del cemento CSA. La velocidad de hidratación de cada uno de los polimorfos de ye’elimita descritos como los mayoritariamente presentes en el cemento CSA tiene una incidencia directa en el desempeño en estado fresco y endurecido del cemento CSA; mayor contenido de ye’elimita ortorrómbica aumenta la velocidad de hidratación del cemento CSA, sin embargo la presencia del polimorfo cúbico hace que el cemento CSA se hidrate más lentamente que si solo el polimorfo ortorrómbico está presente en el cemento CSA durante la mezcla con el agua, la mezcla de los polimorfos puede entonces aportar un comportamiento intermedio del cemento CSA al momento de hidratarse. Por lo tanto, usando el modelo cinético producto de este trabajo de investigación, se puede concluir que la velocidad formación de cada polimorfo durante las reacciones en estado sólido en un rango de temperaturas definido, permite controlar la presencia o no de cada compuesto de ye’elimita en el cemento CSA y su desempeño. Se han planteado algunos mecanismos de reacción y algunas cinéticas de reacción en algunas publicaciones científicas para describir la formación de la ye’elimita, pero varias de estas referencias asumen la presencia de una única fase cristalina de la ye’elimita, otros plantean una cinética usando productos intermedios como reactivos llevándolos a temperaturas que pueden influir sustancialmente en la estabilización de la ye’elimita (>= 1350 °C). Estas experimentaciones han permitido avanzar en el entendimiento general de la cinética de formación de la ye’elimita, pero es necesario diferenciar la cinética asociada a cada polimorfo dado que sus comportamientos al momento de hidratarse varían. Al identificar la cinética particular de cada polimorfo es posible estimar y/o determinar el comportamiento del cemento al momento de su uso. Este conocimiento de la cinética de formación de los polimorfos ofrece una mejor oportunidad para controlar los procesos de formación de cada polimorfo y posteriormente la hidratación del cemento CSA y permitirá orientar los resultados obtenidos en esta escala de laboratorio hacia el escalamiento de producción del cemento CSA a nivel industrial. Se ha reportado la presencia de diferentes polimorfos de ye’elimita en el cemento CSA: cúbica, tetragonal y ortorrómbica, las cuales ocurren a temperatura ambiente y basados en la estequiometría de cada una de estas fases cristalinas; sin embargo, se ha encontrado que la fases ye’elimiticas predominantes en los cementos CSA sinterizados a nivel de laboratorio y en los cementos CSA disponibles en el mercado, son la fase cúbica como base estructural y la ortorrómbica como una derivación de la primera. Se ha identificado la presencia de esta fase cristalina y sus dos formas polimórficas mencionadas, las cuales son las más estables y abundantes en muchos de los cementos CSA analizados desde el punto de vista mineralógico. Esto aplicado tanto para los cementos elaborados a escala laboratorio como los cementos producidos a escala industrial. A partir de la cinética definida para cada uno de los polimorfos de ye’elimita, modelo difusivo combinado con contracción geométrica, modelo de orden de reacción (primero, segundo o tercer orden de reacción), entre otros, identificados mayoritariamente durante la síntesis del cemento CSA a diferentes escalas (desde laboratorio hasta escala industrial), este trabajo describe como favorecer, desde el punto de vista cinético (temperatura y velocidad de reacción), la presencia mayoritaria de uno y otro polimorfo en producción del compuesto denominado ye’elimita, como fase cristalina mayoritaria y característica que otorga las propiedades mecánicas al cemento CSA. El comportamiento diferencial de los polimorfos cúbico y ortorrómbico al momento de hidratarse y en presencia de yeso, encontrados en esta investigación, coinciden con los trabajos de investigación realizados en la Universidad de málaga [1]. Los resultados de las evaluaciones de micro calorimetría de los cementos CSA con diferentes proporciones de cada polimorfos presentados son coherentes con las velocidades de hidratación referidas, esto permite validar que los modelos de velocidad de reacción (cinética de reacción) desarrollados para cada polimorfo en este trabajo representan adecuadamente su formación y permiten controlar su producción. El modelo cinético planteado para las reacciones en estado sólido que describe la formación de cada polimorfo de ye’elimita, se basa en las reacciones químicas que ocurren en los procesos de sinterización de clinker CSA y que funcionan en analogía con el proceso de producción de clinker OPC, pero que hasta ahora no se ha reportado el mecanismo que represente la formación de uno y otro polimorfo. El fundamento del desarrollo de esta investigación radica en el modelo de reacción, que para los polimorfos de ye’elimita se basa en una combinación de eventos químicos entre la difusión en estado sólido, la contracción geométrica de las partículas, el efecto de fases fundentes, materiales vítreos y la dependencia en la concentración de los reactivos o reactantes y que son considerados influyentes y/o etapas controlantes de la reacción. Por lo tanto, como resultado final se concluye que el modelo de difusión propuesto por Jander es el que mejor representa la cinética de formación para el polimorfo ortorrómbico y el modelo de tercer orden para el cúbico. Para la identificación de cada modelo se parte de procesos de síntesis previamente realizados a partir de reacciones en estado sólido a nivel de laboratorio y en hornos industriales, adicionalmente, gracias a la caracterización y refinamiento de las estructuras mineralógicas de los polimorfos se logra su adecuada discriminación y caracterización usando la técnica de difracción de rayos X. Luego del planteamiento del modelo a partir de las síntesis de referencia preliminares, se valida el ajuste del modelo de cada polimorfo a partir de la comparación de los contenidos de los compuestos en nuevas síntesis y la comparación de las curvas cinéticas que correlacionan el grado de reacción con la ecuación cinética de cada modelo. Finalmente, esta investigación identifica, a partir del modelo cinético que mejor se ajusta, cuanta energía de activación es necesaria para que ocurra la formación de cada polimorfo, lo cual está directamente relacionado con su velocidad de reacción, y describe la constante de velocidad que determina la formación de cada polimorfo, desde el punto de vista del modelo cinético determinado. De esta forma se tiene que, la energía de activación obtenida para la ye’elimita ortorrómbica Ea= 395.5 kJ/mol y para la ye’elimita cúbica Ea= 327.8 kJ/mol, el factor de frecuencia, A, 1.6033x10+10 min-1 y 5.0581x10+9 min-1 para ye’elimita ortorrómbica y cúbica respectivamente. Como se mencionó anteriormente, En las reacciones en estado sólido de los procesos de clinkerización predominan los factores como la contracción geométrica y la difusividad, esta última se reconoce como la etapa controlante de la reacción de formación de las fases del cemento OPC y CSA, y describe la formación de los polimorfos de la fase cristalina conocida como ye’elimita (o compuesto/sal de Klein), la ye’elimita ortorrómbica (OY) y la ye’elimita cúbica (CY). Estas fases presentes en los cementos CSA fueron sinterizadas a escala de laboratorio usando compuestos grado reactivo. A nivel industrial se usan materiales de origen natural, por lo que para favorecer uno u otro polimorfo se requiere un mayor esfuerzo, este es un resultado fundamental pues, como consecuencia de este entendimiento de la cinética, se puede influir y favorecer la presencia de cada polimorfo a nivel industrial, así controlar el desempeño del cemento CSA al momento se su uso y aplicación, es decir, se pueden diseñar diferentes cementos CSA al favorecer la presencia de uno u otro polimorfo de ye’elimita en la producción del mismo. El resultado generado en esta investigación permite avanzar en el entendimiento básico de la fase ye’elimita y la velocidad de formación de sus polimorfos cúbico y ortorrómbico, en la producción del cemento CSA. Trabajos de investigación posteriores permitirán optimizar el proceso su producción a escala industrial y validar el efecto de la hidratación de los polimorfos en el desempeño y capacidad de cemento de ser más sostenible respecto al Cemento Portland Ordinario (OPC, por sus siglas en inglés). (Texto tomado de la fuente)
dc.description.abstractIn the world of construction materials, the demand for products that can offer advantages not only from a construction point of view but also from an environmental point of view is growing. In the particular case of cement, products based on this material are intended to be more environmentally friendly, that is, they generate lower CO2 emissions and have lower energy consumption. In addition, given that it is required to maintain a high performance of the materials, high physical and chemical resistance, as well as their durability under extreme conditions, the demand for these cementitious materials will continue to increase from the different aspects of sustainability. There is a wide field of well-developed technological studies on Ordinary Portland Cement, from raw materials to its use and applications, which has made it possible to have clarity on the benefits and challenges of this material. One of the challenges of cement is related to its high per capita demand, its hardening characteristics, and the use of the material in the development of the infrastructure that humanity benefits from today. Many researchers and companies have concentrated their efforts and resources on identifying alternative materials to traditional Portland cement, seeking to maximize some characteristic of cement and/or seeking greater economic, social, or environmental efficiencies. An example of these alternative materials is the so-called Third Generation Cement, among which calcium sulfoaluminate-based cement (CSA) stands out, among others. In the last 15 years, and particularly in 2018, there has been an increase in scientific publications associated with this type of cement according to several available databases, Science Direct, Scopus, among others, where its different characteristics and properties are explored and the performance of the CSA cement evaluated, as well as aspects of the chemistry of this material, its interactions with additives, and its durability. These characteristics, which generate a broad discussion about the technical challenges of CSA cement, expand the community's knowledge about it, as well as the materialization and use of its performance characteristics at the service of the infrastructure that countries require. Currently, various relevant aspects of CSA cement are being studied more and more, such as those related to its production, but using alternative raw materials, improving its mechanical performance, regulation of the hydration process, identification of hydration products, mixtures with other cementing materials, among others. One of the fields of study related to CSA cement is focused on the synthesis of CSA clinker, in which opportunities are identified to reduce the energy required for the combination of calcium, aluminum, and sulfur oxides necessary for the formation of calcium sulfoaluminate in its different crystalline forms (polymorphs), in solid-state reactions and at relatively high temperatures (over 1000 °C). The determination of the reaction rate as a function of the degree of conversion, that is, the identification of the driving force, or energy potential, that governs the reaction kinetics, necessary for the molecules participating in said reaction to combine to form compounds of ye'elimite with desired crystalline structures, reaching the precision of the phases, in particular proportions of said structures, will allow us to contribute to the understanding of the mechanical behavior of the CSA cement produced, which contains the polymorphs of ye'elimite. In this case, the study on the formation of the different crystalline phases of the CSA cement, the ye'elimite and his cubic and orthorhombic polymorphs, and particularly the speed at which each of them is formed during the sintering process, that is, the kinetic and thermodynamic aspects, represent the greatest interest of this research, in which the reaction models of the fundamental and majority compounds in a mentioned CSA cement (ye'elimite, in its cubic and orthorhombic crystalline forms), are the fundamental basis. to later understand the capacity that the material (CSA cement) will have to hydrate and resist and offer improvements in production processes and use in construction processes. As mentioned, the issue raised in this research on the kinetics of ye'elimite formation, as the main, majority, and characteristic phase of CSA cement, is essential to understand and control the formation of polymorphic phases of CSA cement. The hydration rate of each of the ye'elimite polymorphs described as the ones mostly present in CSA cement has a direct impact on the performance in the fresh and hardened state of CSA cement; higher content of orthorhombic ye'elimite increases the rate of hydration of CSA cement, however, the presence of the cubic polymorph causes the CSA cement to hydrate more slowly than if only the orthorhombic polymorph is present in the CSA cement during mixing with water, the mixture of the polymorphs can then provide an intermediate behavior of the CSA cement when it hydrates. Using the kinetic model resulting from this research work, it can be concluded that the rate of formation of each polymorph during solid-state reactions in a defined temperature range allows the presence or absence of each ye'elimite compound in the cement to be controlled. CSA and its performance. Some reaction mechanisms and reaction kinetics have been proposed in some publications to describe the formation of ye'elimite, but several of these references assume the presence of a single crystalline phase of ye'elimite, others propose kinetics using products intermediates as reagents, bringing them to temperatures that can substantially influence the stabilization of the ye'elimite (>= 1350 °C), these experiments have allowed us to advance in the general understanding of the kinetics of ye'elimite formation, but it is necessary to differentiate the kinetics associated with each polymorph given that their behaviors at the time of hydration vary. By identifying the kinetics of each polymorph, it is possible to estimate and/or determine the behavior of the cement at the time of its use. This understanding of the formation kinetics of the polymorphs offers a better opportunity to control the processes of formation of each polymorph and subsequently the hydration of the CSA cement and will allow directing the results obtained in this laboratory scale towards the scale-up of CSA cement production at industrial level. The presence of different polymorphs of ye'elimite in CSA cement has been reported: cubic, tetragonal, and orthorhombic, which occur at room temperature and based on the stoichiometry of each of these crystalline phases; however, it has been found that the predominant ye'elimitic phases in laboratory-sintered CSA types of cement and in commercially available CSA types of cement are the cubic phase as the structural basis and the orthorhombic phase as a derivation of the first. The presence of this crystalline phase and its two mentioned polymorphic forms, which are the most stable and abundant, has been identified in many of the CSA cements analyzed from the mineralogical point of view. This applies to both types of cement made on a laboratory scale and types of cement produced on an industrial scale. Based on the kinetics defined for each of the ye'elimite polymorphs, a diffusive model combined with geometric contraction, a reaction order model (first, second or third reaction order), among others, identified mainly during cement synthesis CSA at different scales (from laboratory to industrial scale), this work describes how to favor, from the kinetic point of view (temperature and reaction speed), the majority presence of one or the other polymorph in the production of the compound called ye'elimite, as majority and characteristic crystalline phase that gives the mechanical properties to CSA cement. The differential behavior of the cubic and orthorhombic polymorphs at the time of hydration and in the presence of gypsum, found in this research, coincides with the research carried out at the University of Malaga [1]. The results of the microcalorimetry evaluations of the CSA cements with different proportions of each polymorph presented here are consistent with the referred hydration rates, this allows validating that the reaction rate models (reaction kinetics) developed for each polymorph in this report adequately represent your training and allow you to control its content. The proposed kinetic model for the solid-state reactions that describe the formation of each ye'elimite polymorph is based on the chemical reactions that occur in the CSA clinker sintering processes and that work in analogy with the clinker production process. OPC, but until now a mechanism that represents the formation of one and the other polymorph has not been reported. The basis for the development of this research lies in the reaction model, which for ye'elimite polymorphs is based on a combination of chemical events between diffusion in the solid state, geometric contraction of the particles, the effect of flux phases, vitreous materials, and the dependence on the concentration of the reagents or reactants are considered as controlling stages of the reaction, therefore, as a final result, it is concluded that the Jander model is the one that best represents the kinetics of formation for the orthorhombic polymorph and the third-order model for the cubic. For the identification of the model, we start from synthesis processes previously carried out from solid-state reactions at the laboratory level and in industrial furnaces, additionally, thanks to the characterization and refinement of the mineralogical structures of the polymorphs, their adequate discrimination, and characterization using the X-ray diffraction technique. After the approach of the model from the preliminary reference syntheses, the adjustment of the model of each polymorph is validated from the comparison of the contents of the compounds in new syntheses and the comparison of the kinetic curves that correlate the degree of reaction with the kinetic equation of each model. Finally, this research identifies, from the kinetic model that best fits, how much activation energy is necessary for the formation of each polymorph to occur, which is directly related to its reaction rate, and describes the rate constant that determines the formation of each polymorph, from the point of view of the determined kinetic model. In this way, the activation energy obtained for the orthorhombic ye'elimite Ea= 395.5 kJ/mol and for the cubic ye'elimite Ea= 327.8 kJ/mol, the frequency factor, A, 1.6033x10+10 min-1 and 5.0581x10+9 min-1 for orthorhombic and cubic ye'elimite respectively. As mentioned above, in the solidstate reactions of the clinkering processes, factors such as geometric contraction and diffusivity predominate, the latter being recognized as the controlling stage of the formation reaction of the OPC and CSA cement phases and describes the formation of the crystalline phase polymorphs known as ye'elimite (or Klein’s compound/salt), orthorhombic ye'elimite (OY), and cubic ye'elimite (CY). These phases present in the CSA cement were sintered on a laboratory scale using reagent-grade compounds. At the industrial level, materials of natural origin are used, so to favor one or another polymorph requires a greater effort, this is a fundamental result because, because of this understanding of kinetics, the presence of each can be influenced and favored. polymorph at an industrial level, thus controlling the performance of CSA cement at the time of its use and application, that is, different CSA cement can be designed by favoring the presence of one or another ye'elimite polymorph in its production. The result generated in this research allows us to advance in the basic understanding of the ye'elimite phase and the rate of formation of its cubic and orthorhombic polymorphs, in the production of CSA cement. Subsequent research work will allow optimization of the production process on an industrial scale and validation of the effect of hydration of polymorphs on the performance and ability of the cement to be more sustainable compared to Ordinary Portland Cement (OPC).
dc.description.sponsorshipCementos ARGOS S.A. Servicio Nacional de Aprendizaje SENA
dc.format.extentxxvii, 213 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.subject.ddc690 - Construcción de edificios::691 - Materiales de construcción
dc.titleModelo cinético para la obtención de polimorfos de ye’elimita, C_4 A_3 S ̅
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales
dc.contributor.researchgroupGrupo del Cemento y Materiales de Construcción
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ingeniería
dc.description.researchareaMateriales para la Construcción
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedRedCol
dc.relation.indexedLaReferencia
dc.relation.references[1] G. Álvarez-Pinazo et al., “Rietveld quantitative phase analysis of Yeelimite-containing cements,” Cem Concr Res, vol. 42, no. 7, pp. 960–971, Jul. 2012, doi: 10.1016/j.cemconres.2012.03.018.
dc.relation.references[2] S. Ma, R. Snellings, X. Li, X. Shen, and K. L. Scrivener, “Alite-ye’elimite cement: Synthesis and mineralogical analysis,” Cem Concr Res, vol. 45, pp. 15–20, 2013, doi: 10.1016/j.cemconres.2012.10.020.
dc.relation.references[3] E. Gartner and T. Sui, “Alternative cement clinkers,” Cem Concr Res, vol. 114, pp. 27–39, 2018, doi: 10.1016/j.cemconres.2017.02.002.
dc.relation.references[4] E. Gartner, “Industrially interesting approaches to ‘low-CO2’ cements,” Cem Concr Res, vol. 34, no. 9, pp. 1489–1498, Sep. 2004, doi: 10.1016/j.cemconres.2004.01.021.
dc.relation.references[5] R. M. Andrew, “Global CO2 emissions from cement production, 1928–2018,” Earth Syst Sci Data, vol. 11, no. 4, pp. 1675–1710, Nov. 2019, doi: 10.5194/essd-11-1675-2019.
dc.relation.references[6] Federación Interamericana del Cemento. FICEM., “FICEM,” Informe Estadístico 2018. [En línea]., 2018. http://ficem.org/
dc.relation.references[7] P. L. Tiffany Vass, Araceli Fernandez-Pales, “Cement Tracking Clean Energy Progress,” Cement Tracking Clean Energy Progress, 2019.
dc.relation.references[8] C. W. Hargis, A. Telesca, and P. J. M. M. Monteiro, “Calcium sulfoaluminate (Ye’elimite) hydration in the presence of gypsum, calcite, and vaterite,” Cem Concr Res, vol. 65, pp. 15–20, 2014, doi: 10.1016/j.cemconres.2014.07.004.
dc.relation.references[9] J. C. Restrepo, A. Chavarriaga, O. J. Restrepo, and J. I. Tobón, “Synthesis of Hydraulically Active Calcium Silicates Produced by Combustion Methods,” MRS Proceedings, vol. 1768, pp. imrc2014-6d–008, Mar. 2015, doi: 10.1557/opl.2015.321.
dc.relation.references[10] N. Betancur-Granados, J. E. Molina, H. Pöllmann, J. I. Tobón, and O. J. Restrepo-Baena, “Influence of metallic precursors in the mineralogy and reactivity of belite cement clinkers obtained by flame spray pyrolysis,” Mater Today Commun, vol. 26, no. May, 2021, doi: 10.1016/j.mtcomm.2020.101917.
dc.relation.references[11] E. Gartner and H. Hirao, “A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete,” Cem Concr Res, vol. 78, pp. 126–142, 2015, doi: 10.1016/j.cemconres.2015.04.012.
dc.relation.references[12] O. Canbek, S. Shakouri, and S. T. Erdoğan, “Laboratory production of calcium sulfoaluminate cements with high industrial waste content,” Cem Concr Compos, vol. 106, p. 103475, Feb. 2020, doi: 10.1016/j.cemconcomp.2019.103475.
dc.relation.references[13] K. L. Scrivener, V. M. John, and E. M. Gartner, “Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry,” Cem Concr Res, vol. 114, no. February, pp. 2–26, Dec. 2018, doi: 10.1016/j.cemconres.2018.03.015.
dc.relation.references[14] A. De Torre, a. J. M. Cuberos, G. Alvarez-Pinazo, a Cuesta, and M. a G. Arenda, “In-Situ Clinkering Study of Belite Sulfoaluminate Clinkers by Synchrotron X-Ray Powder Diffraction,” 13th International Congress on the Chemistry of Cement., pp. 1–7, 2011.
dc.relation.references[15] I. Bolaños-Vásquez, R. Trauchessec, J. I. Tobón, and A. Lecomte, “Influence of the ye’elimite/anhydrite ratio on PC-CSA hybrid cements,” Mater Today Commun, vol. 22, 2020, doi: 10.1016/j.mtcomm.2019.100778.
dc.relation.references[16] P. Ptáček, E. Bartoníčková, J. Švec, T. Opravil, F. Šoukal, and F. Frajkorová, “The kinetics and mechanism of thermal decomposition of SrCO3 polymorphs,” Ceram Int, vol. 41, no. 1, pp. 115–126, 2015, doi: 10.1016/j.ceramint.2014.08.043.
dc.relation.references[17] J. Amparo Rodríguez, E. G. Ríos Rodríguez, E. Rocha Rangel, J. M. Almanza Robles, J. Torres, and E. Refugio García, “Kinetics of Formation and Crystal Structure Determination of Sr4Al6O12SO4,” Materials Research, vol. 19, no. suppl 1, pp. 125–132, Feb. 2017, doi: 10.1590/1980-5373-mr-2016-0639.
dc.relation.references[18] O. Andac and F. P. Glasser, “Polymorphism of calcium sulphoaluminate (Ca 4 Al 6 O16·SO 3 ) and its solid solutions,” Advances in Cement Research, vol. 6, no. 22, pp. 57–60, Apr. 1994, doi: 10.1680/adcr.1994.6.22.57.
dc.relation.references[19] G. Álvarez-Pinazo et al., “In-situ early-age hydration study of sulfobelite cements by synchrotron powder diffraction,” Cem Concr Res, vol. 56, pp. 12–19, Feb. 2014, doi: 10.1016/j.cemconres.2013.10.009.
dc.relation.references[20] A. Cuesta, G. Álvarez-Pinazo, S. G. Sanfélix, I. Peral, M. A. G. Aranda, and A. G. de la Torre, “Hydration mechanisms of two polymorphs of synthetic ye’elimite,” Cem Concr Res, vol. 63, pp. 127–136, Sep. 2014, doi: 10.1016/j.cemconres.2014.05.010.
dc.relation.references[21] X. Li, Y. Zhang, X. Shen, Q. Wang, and Z. Pan, “Kinetics of calcium sulfoaluminate formation from tricalcium aluminate, calcium sulfate and calcium oxide,” Cem Concr Res, vol. 55, pp. 79–87, Jan. 2014, doi: 10.1016/j.cemconres.2013.10.006.
dc.relation.references[22] J. Zhao, J. Huang, C. Yu, and C. Cui, “Synthesis and formation process of a typical doped solid-solution ye’elimite (Ca3.8Na0.2Al5.6Fe0.2Si0.2SO16): Experiments and kinetic analysis,” Applied Sciences (Switzerland), vol. 11, no. 17, 2021, doi: 10.3390/app11178015.
dc.relation.references[23] A. Cuesta, A. G. de la Torre, E. R. Losilla, I. Santacruz, and M. A. G. Aranda, “Pseudocubic Crystal Structure and Phase Transition in Doped Ye’elimite,” Cryst Growth Des, vol. 14, no. 10, pp. 5158–5163, Oct. 2014, doi: 10.1021/cg501290q.
dc.relation.references[24] J. I. Tobón, A. Berrío, C. Giraldo, and D. Londoño, “Formulación de cemento en base a sulfoaluminato con proporción particular de sistemas yelemíticos,” 14265789, 2016 [Online]. Available: https://patentimages.storage.googleapis.com/71/6d/97/aa575ddfb236e0/WO2016088083A1.pdf
dc.relation.references[25] J. I. Molina, S. C. Navarro, and A. Berrio, “Proceso para la producción de cemento con base en sulfoaluminato cálcico en un horno apto para la producción de un cemento portland convencional,” 14007639, 2016
dc.relation.references[26] A. Berrio, J. I. Tobón, and A. G. De la Torre, “Kinetic model for ye’elimite polymorphs formation during clinkering production of CSA cement,” Constr Build Mater, vol. 321, no. January, p. 126336, Feb. 2022, doi: 10.1016/j.conbuildmat.2022.126336.
dc.relation.references[27] A. Berrio, C. Rodriguez, and J. I. Tobón, “Effect of Al2O3/SiO2 ratio on ye’elimite production on CSA cement,” Constr Build Mater, vol. 168, 2018, doi: 10.1016/j.conbuildmat.2018.02.153.
dc.relation.references[28] I. Kaprálik and F. Hanic, “Phase relations in the subsystem C4A3S-CSH2-CH-H2O of the system CaO-Al2O3-CS-H2O referred to hydration of sulphoaluminate cement,” Cem Concr Res, vol. 19, no. 1, pp. 89–102, Jan. 1989, doi: 10.1016/0008-8846(89)90069-0.
dc.relation.references[29] J. Ambroise and J. Péra, “Use of calcium sulfoaluminate cement to improve strength of mortars at low temperature,” pp. 881–886, 2009.
dc.relation.references[30] P. K. MEHTA, “Effect of lime on hydration of pastes containing gypsum and calcium aluminates or calcium sulfoaluminate,” Chemischer Informationsdienst, vol. 4, no. 35, p. no-no, Aug. 1973, doi: 10.1002/chin.197335444.
dc.relation.references[31] P. K. Mehta, “Mechanism of expansion associated with ettringite formation,” Cem Concr Res, vol. 3, no. 1, pp. 1–6, 1973, doi: 10.1016/0008-8846(73)90056-2.
dc.relation.references[32] J. Péra and J. Ambroise, “New applications of calcium sulfoaluminate cement,” Cem Concr Res, vol. 34, no. 4, pp. 671–676, Apr. 2004, doi: 10.1016/j.cemconres.2003.10.019.
dc.relation.references[33] J. Péra and J. Ambroise, “New applications of calcium sulfoaluminate cement,” Cem Concr Res, vol. 34, no. 4, pp. 671–676, 2004, doi: 10.1016/j.cemconres.2003.10.019.
dc.relation.references[34] D. Londono-Zuluaga, J. I. Tobón, M. A. G. Aranda, I. Santacruz, and A. G. De la Torre, “Clinkering and hydration of belite-alite-ye´elimite cement,” Cem Concr Compos, vol. 80, pp. 333–341, 2017, doi: 10.1016/j.cemconcomp.2017.04.002.
dc.relation.references[35] M. García-Maté et al., “Tailored setting times with high compressive strengths in bassanite calcium sulfoaluminate eco-cements,” Cem Concr Compos, vol. 72, pp. 39–47, Sep. 2016, doi: 10.1016/j.cemconcomp.2016.05.021.
dc.relation.references[36] C. A. Luz, J. Rocha, M. Cheriaf, and J. Pera, “Valorization of galvanic sludge in sulfoaluminate cement,” Constr Build Mater, vol. 23, no. 2, pp. 595–601, Feb. 2009, doi: 10.1016/j.conbuildmat.2008.04.004.
dc.relation.references[37] K. Pimraksa and P. Chindaprasirt, “Sulfoaluminate cement-based concrete,” in Eco-efficient Repair and Rehabilitation of Concrete Infrastructures, Elsevier Inc., 2018, pp. 355–385. doi: 10.1016/B978-0-08-102181-1.00014-9.
dc.relation.references[38] D. L. Z, J. I. Tobón, and A. Berrio, “Mineralogy Influence on Compressive Strength on Calcium Sulfoaluminate Cement,” 2012.
dc.relation.references[39] A. Berrio and J. I. Tobón, “Calcium sulfoaluminate cement , from laboratory to industrial scale,” 14th International Congress on the Chemistry of Cement, vol. 42, no. 7, p. 2013, 2015, [Online]. Available: http://www.iccc2015beijing.org/dct/page/1
dc.relation.references[40] M. Ben Haha, F. Winnefeld, and A. Pisch, “Advances in understanding ye’elimite-rich cements,” Cem Concr Res, vol. 123, p. 105778, Sep. 2019, doi: 10.1016/j.cemconres.2019.105778.
dc.relation.references[41] D. Londoño, “Incidencia de la mineralogía en la resistencia mecánica del cemento de sulfoaluminato cálcico,” Universidad Nacional de Colombia, 2012.
dc.relation.references[42] F. P. Glasser and L. Zhang, “High-performance cement matrices based on calcium sulfoaluminate–belite compositions,” Cem Concr Res, vol. 31, no. 12, pp. 1881–1886, Dec. 2001, doi: 10.1016/S0008-8846(01)00649-4.
dc.relation.references[43] M. M. Ali, S. Gopal, and S. K. Handoo, “Studies on the formation kinetics of calcium sulphoaluminate,” Cem Concr Res, vol. 24, no. 4, pp. 715–720, 1994, doi: 10.1016/0008-8846(94)90196-1.
dc.relation.references[44] T. Duvallet, Y. Zhou, T. Robl, and R. Andrews, “Synthesis and Characterization of High-Iron Alite-Calcium Sulfoaluminate-Ferrite Cements Produced from Industrial By-Products,” Coal Combustion and Gasification Products, vol. 6, pp. 29–34, 2014, doi: 10.4177/CCGP-D-14-00007.1.
dc.relation.references[45] M. Zajac, J. Skocek, F. Bullerjahn, and M. Ben Haha, “Effect of retarders on the early hydration of calcium-sulpho-aluminate (CSA) type cements,” Cem Concr Res, vol. 84, pp. 62–75, 2016, doi: 10.1016/j.cemconres.2016.02.014.
dc.relation.references[46] M. Idrissi, A. Diouri, D. Damidot, J. M. Greneche, M. A. Talbi, and M. Taibi, “Characterization of iron inclusion during the formation of calcium sulfoaluminate phase,” Cem Concr Res, vol. 40, no. 8, pp. 1314–1319, 2010, doi: 10.1016/j.cemconres.2010.02.009.
dc.relation.references[47] F. Hannawayya, “X-ray diffraction studies of hydration reaction of cement components and sulfoaluminate (C4A3S̄),” Materials Science and Engineering, vol. 17, no. 1, pp. 81–115, Jan. 1975, doi: 10.1016/0025-5416(75)90034-8.
dc.relation.references[48] E. V. Sokol, S. N. Kokh, Y. Vapnik, V. Thiery, and S. A. Korzhova, “Natural analogs of belite sulfoaluminate cement clinkers from Negev Desert, Israel,” American Mineralogist, vol. 99, no. 7, pp. 1471–1487, Jul. 2014, doi: 10.2138/am.2014.4704.
dc.relation.references[49] W. Yanmou, “Development and application of sulphoaluminate cement,” SAC 2013. Wuhan, 2013.
dc.relation.references[50] M. A. G. Aranda and A. G. de la Torre, “18 - Sulfoaluminate cement,” in Eco-Efficient Concrete, Elsevier, 2013, pp. 488–522. doi: 10.1533/9780857098993.4.488.
dc.relation.references[51] N. Khalil, G. Aouad, K. el Cheikh, and S. Rémond, “Use of calcium sulfoaluminate cements for setting control of 3D-printing mortars,” Constr Build Mater, vol. 157, pp. 382–391, 2017, doi: 10.1016/j.conbuildmat.2017.09.109.
dc.relation.references[52] R. Trauchessec, J.-M. Mechling, A. Lecomte, A. Roux, and B. le Rolland, “Hydration of ordinary Portland cement and calcium sulfoaluminate cement blends,” Cem Concr Compos, vol. 56, pp. 106–114, Feb. 2015, doi: 10.1016/j.cemconcomp.2014.11.005.
dc.relation.references[53] J. Zhang, G. Li, W. Ye, Y. Chang, Q. Liu, and Z. Song, “Effects of ordinary Portland cement on the early properties and hydration of calcium sulfoaluminate cement,” Constr Build Mater, vol. 186, pp. 1144–1153, 2018, doi: 10.1016/j.conbuildmat.2018.08.008.
dc.relation.references[54] C. Cau Dit Coumes, S. Courtois, S. Peysson, J. Ambroise, and J. Pera, “Calcium sulfoaluminate cement blended with OPC: A potential binder to encapsulate low-level radioactive slurries of complex chemistry,” Cem Concr Res, vol. 39, no. 9, pp. 740–747, Sep. 2009, doi: 10.1016/j.cemconres.2009.05.016.
dc.relation.references[55] Y. Shen, J. Qian, J. Chai, and Y. Fan, “Calcium sulphoaluminate cements made with phosphogypsum: Production issues and material properties,” Cem Concr Compos, vol. 48, pp. 67–74, Apr. 2014, doi: 10.1016/j.cemconcomp.2014.01.009.
dc.relation.references[56] T. Hanein, J. L. Galvez-Martos, and M. N. Bannerman, “Carbon footprint of calcium sulfoaluminate clinker production,” J Clean Prod, vol. 172, pp. 2278–2287, Jan. 2018, doi: 10.1016/j.jclepro.2017.11.183.
dc.relation.references[57] M. Gallardo, J. M. Almanza, D. A. Cortés, J. C. Escobedo, and J. I. Escalante-García, “Synthesis and mechanical properties of a calcium sulphoaluminate cement made of industrial wastes,” Materiales de Construcción, vol. 64, no. 315, p. e023, Sep. 2014, doi: 10.3989/mc.2014.04513.
dc.relation.references[58] M. C. G. Juenger and R. Siddique, “Recent advances in understanding the role of supplementary cementitious materials in concrete,” Cem Concr Res, vol. 78, pp. 71–80, Dec. 2015, doi: 10.1016/j.cemconres.2015.03.018.
dc.relation.references[59] M. C. G. Juenger, F. Winnefeld, J. L. Provis, and J. H. Ideker, “Advances in alternative cementitious binders,” Cem Concr Res, vol. 41, no. 12, pp. 1232–1243, Dec. 2011, doi: 10.1016/j.cemconres.2010.11.012.
dc.relation.references[60] I. a. Chen and M. C. G. Juenger, “Synthesis and hydration of calcium sulfoaluminate-belite cements with varied phase compositions,” J Mater Sci, vol. 46, no. 8, pp. 2568–2577, Dec. 2010, doi: 10.1007/s10853-010-5109-9.
dc.relation.references[61] I. a. Chen, C. W. Hargis, and M. C. G. Juenger, “Understanding expansion in calcium sulfoaluminate–belite cements,” Cem Concr Res, vol. 42, no. 1, pp. 51–60, Jan. 2012, doi: 10.1016/j.cemconres.2011.07.010.
dc.relation.references[62] L. Pelletier-Chaignat, F. Winnefeld, B. Lothenbach, and C. J. Müller, “Beneficial use of limestone filler with calcium sulphoaluminate cement,” Constr Build Mater, vol. 26, no. 1, pp. 619–627, Jan. 2012, doi: 10.1016/j.conbuildmat.2011.06.065.
dc.relation.references[63] A. Telesca, M. Marroccoli, M. L. Pace, M. Tomasulo, G. L. Valenti, and P. J. M. Monteiro, “A hydration study of various calcium sulfoaluminate cements,” Cem Concr Compos, vol. 53, pp. 224–232, 2014, doi: 10.1016/j.cemconcomp.2014.07.002.
dc.relation.references[64] D. Gastaldi et al., “Hydration products in sulfoaluminate cements: Evaluation of amorphous phases by XRD/solid-state NMR,” Cem Concr Res, vol. 90, pp. 162–173, 2016, doi: 10.1016/j.cemconres.2016.05.014.
dc.relation.references[65] M. G. Maté, “Processing and characterization of calcium sulphoaluminate (CSA) eco-cements with tailored performances,” 2014.
dc.relation.references[66] M. Ben Haha, F. Winnefeld, and A. Pisch, “Advances in understanding ye’elimite-rich cements,” Cement and Concrete Research, vol. 123. Elsevier Ltd, Sep. 01, 2019. doi: 10.1016/j.cemconres.2019.105778.
dc.relation.references[67] H. Zhou et al., “Effect and mechanism of composite early-strength agents on sulfoaluminate cement-based UHPC,” Case Studies in Construction Materials, vol. 18, p. e01768, Jul. 2023, doi: 10.1016/j.cscm.2022.e01768.
dc.relation.references[68] C. W. Hargis, J. Moon, B. Lothenbach, F. Winnefeld, H.-R. Wenk, and P. J. M. Monteiro, “Calcium Sulfoaluminate Sodalite (Ca4Al6O12SO4) Crystal Structure Evaluation and Bulk Modulus Determination,” Journal of the American Ceramic Society, vol. 97, no. 3, pp. 892–898, Mar. 2014, doi: 10.1111/jace.12700.
dc.relation.references[69] A. Cuesta et al., “Structure, Atomistic Simulations, and Phase Transition of Stoichiometric Yeelimite,” Chemistry of Materials, vol. 25, no. 9, pp. 1680–1687, May 2013, doi: 10.1021/cm400129z.
dc.relation.references[70] D. Gastaldi et al., “Hydration products in sulfoaluminate cements: Evaluation of amorphous phases by XRD/solid-state NMR,” Cem Concr Res, vol. 90, pp. 162–173, Dec. 2016, doi: 10.1016/j.cemconres.2016.05.014.
dc.relation.references[71] A. Cuesta et al., “Structure, Atomistic Simulations, and Phase Transition of Stoichiometric Yeelimite,” Chemistry of Materials, vol. 25, no. 9, pp. 1680–1687, May 2013, doi: 10.1021/cm400129z.
dc.relation.references[72] J. Beretka, M. Marroccoli, N. Sherman, and G. L. Valenti, “The influence of C4A3S̄ content and W/S ratio on the performance of calcium sulfoaluminate-based cements,” Cem Concr Res, vol. 26, no. 11, pp. 1673–1681, 1996, doi: 10.1016/S0008-8846(96)00164-0.
dc.relation.references[73] F. Winnefeld and S. Barlag, “Calorimetric and thermogravimetric study on the influence of calcium sulfate on the hydration of ye’elimite,” J Therm Anal Calorim, vol. 101, no. 3, pp. 949–957, 2010, doi: 10.1007/s10973-009-0582-6.
dc.relation.references[74] F. Winnefeld and B. Lothenbach, “Hydration of calcium sulfoaluminate cements — Experimental findings and thermodynamic modeling,” Cem Concr Res, vol. 40, no. 8, pp. 1239–1247, Aug. 2010, doi: 10.1016/j.cemconres.2009.08.014.
dc.relation.references[75] F. Winnefeld and B. Lothenbach, “Thermodynamic modeling of hydration of calcium sulfoaluminate cements blended with mineral additions,” 2013. [Online]. Available: https://www.researchgate.net/publication/311766157
dc.relation.references[76] N. Ukrainczyk, N. Franković-Mihelj, and J. Šipušić, “KINETIC STUDY OF CALCIUM SULFOALUMINATE CEMENT HYDRATION,” MATRIB 2013 International …, no. June, pp. 421–433, 2013.
dc.relation.references[77] H. Zhou, J. Liu, J. Liu, and C. Li, “Hydration kinetics process of low alkalinity sulphoaluminate cement and its thermodynamical properties,” Procedia Eng, vol. 27, no. 2011, pp. 323–331, Jan. 2012, doi: 10.1016/j.proeng.2011.12.459.
dc.relation.references[78] N. Ukrainczyk, N. Franković Mihelj, and J. Šipušić, “Calcium sulfoaluminate eco-cement from industrial waste,” in Chemical and Biochemical Engineering Quarterly, 2013, pp. 83–93.
dc.relation.references[79] B. Clark and P. Brown, “The formation of calcium sulfoaluminate hydrate compounds: Part II,” Cem Concr Res, vol. 30, pp. 233–240, 2000.
dc.relation.references[80] B. A. Clark and P. W. Brown, “The formation of calcium sulfoaluminate hydrate compounds Part I,” Cem Concr Res, vol. 29, no. 1999, pp. 1943–1948, 2000.
dc.relation.references[81] F. Puertas, M. T. B. Varela, and S. G. Molina, “Kinetics of the thermal decomposition of C4A3S̄ in air,” Cem Concr Res, vol. 25, no. 3, pp. 572–580, Apr. 1995, doi: 10.1016/0008-8846(95)00046-F.
dc.relation.references[82] H. Guo and J. Xie, “Thermodynamics and kinetics of calcium sulphoaluminate,” Journal of Wuhan University of Technology-Mater. Sci. Ed., vol. 26, no. 4, pp. 719–722, Aug. 2011, doi: 10.1007/s11595-011-0300-7.
dc.relation.references[83] L. Pelletier, F. Winnefeld, and B. Lothenbach, “The ternary system Portland cement–calcium sulphoaluminate clinker–anhydrite: Hydration mechanism and mortar properties,” Cem Concr Compos, vol. 32, no. 7, pp. 497–507, Aug. 2010, doi: 10.1016/j.cemconcomp.2010.03.010.
dc.relation.references[84] My. Y. Benarchid and J. Rogez, “The effect of Cr2O3 and P2O5 additions on the phase transformations during the formation of calcium sulfoaluminate C4A3S¯,” Cem Concr Res, vol. 35, no. 11, pp. 2074–2080, Nov. 2005, doi: 10.1016/j.cemconres.2005.06.005.
dc.relation.references[85] G. Á. Pinazo, “Active sulpho-belite cements. Hydration mechanisms and mechanical,” Universidad de Málaga, 2015. Accessed: Feb. 11, 2023. [Online]. Available: https://riuma.uma.es/xmlui/handle/10630/10348
dc.relation.references[86] F. Bullerjahn, D. Schmitt, and M. Ben Haha, “Effect of raw mix design and of clinkering process on the formation and mineralogical composition of ( ternesite ) belite calcium sulphoaluminate ferrite clinker,” Cem Concr Res, vol. 59, pp. 87–95, 2014, doi: 10.1016/j.cemconres.2014.02.004.
dc.relation.references[87] H. Saalfeld and W. Depmeier, “Silicon‐Free Compounds with Sodalite Structure,” Kristall und Technik, vol. 7, no. 1–3, pp. 229–233, 1972, doi: 10.1002/crat.19720070125.
dc.relation.references[88] N. J. Calos, C. H. L. Kennard, A. K. Whittaker, and R. L. Davis, “Structure of Calcium Aluminate Sulfate Ca4Al6O16S,” J Solid State Chem, vol. 119, no. 11, pp. 1–7, 1995.
dc.relation.references[89] D. Kurokawa, S. Takeda, M. Colas, T. Asaka, P. Thomas, and K. Fukuda, “Phase transformation of Ca4[Al6O12]SO4and its disordered crystal structure at 1073 K,” J Solid State Chem, vol. 215, pp. 265–270, 2014, doi: 10.1016/j.jssc.2014.03.040.
dc.relation.references[90] A. Khawam and D. R. Flanagan, “Solid-State Kinetic Models: Basics and Mathematical Fundamentals,” J Phys Chem B, vol. 110, no. 35, pp. 17315–17328, Sep. 2006, doi: 10.1021/jp062746a.
dc.relation.references[91] M. Matsuoka, J. Hirata, and S. Yoshizawa, “Kinetics of solid-state polymorphic transition of glycine in mechano-chemical processing,” Chemical Engineering Research and Design, vol. 88, no. 9, pp. 1169–1173, Sep. 2010, doi: 10.1016/j.cherd.2010.01.011.
dc.relation.references[92] A. K. Galwey and M. E. Brown, Eds., “Chapter 3: Kinetic models for solid state reactions,” in Thermal Decomposition of Ionic Solids, 1999, pp. 75–115.
dc.relation.references[93] B. Xingyuan, Z. Piqi, L. Chen, L. Quanwei, W. Shoude, and C. Xin, “Phase formation mechanism and kinetics in solid-state synthesis of Ba-doped ye′elimite: the effect of Ba-doping concentration on C4-xBxA₃$ systems,” Ceramics - Silikaty, vol. 64, no. 3, pp. 338–347, Mar. 2020, doi: 10.13168/cs.2020.0022.
dc.relation.references[94] Y. Huang, S. Wang, P. Hou, Y. Chen, C. Gong, and L. Lu, “Mechanisms and kinetics of the decomposition of calcium barium sulfoaluminate,” J Therm Anal Calorim, vol. 119, no. 3, pp. 1731–1737, Mar. 2015, doi: 10.1007/s10973-014-4340-z.
dc.relation.references[95] S. Giménez-Molina and M. T. Blanco-Varela, “Solid state phases relationship in the CaOSiO2Al2O3CaF2CaSO4 system,” Cem Concr Res, vol. 25, no. 4, pp. 870–882, 1995, doi: 10.1016/0008-8846(95)00078-Q.
dc.relation.references[96] B. Touzo, K. L. Scrivener, and F. P. Glasser, “Phase compositions and equilibria in the CaO-Al2O 3-Fe2O3-SO3 system, for assemblages containing ye’elimite and ferrite Ca2(Al,Fe)O5,” Cem Concr Res, vol. 54, pp. 77–86, 2013, doi: 10.1016/j.cemconres.2013.08.005.
dc.relation.references[97] L. Ã. Zhang and F. P. Ã. Glasser, “Hydration of calcium sulfoaluminate cement at less than 24 h,” no. 4, pp. 141–155, 2011.
dc.relation.references[98] “The damage of calcium sulfoaluminate cement paste partially immersed in MgSO4 solution,” no. JANUARY, 2015, doi: 10.1617/s11527-015-0532-7.
dc.relation.references[99] G. Walenta and C. Comparet, “Innovation to improve carbon footprint in the Cement industry,” ECRA Conference on “New Cements and Innovative Binder Technologies,” 2011.
dc.relation.references[100] A. Wesselsky and O. M. Jensen, “Cement and Concrete Research Synthesis of pure Portland cement phases,” Cem Concr Res, vol. 39, no. 11, pp. 973–980, 2009, doi: 10.1016/j.cemconres.2009.07.013.
dc.relation.references[101] H. Guo and J. Xie, “Kinetics of desulfuration product sulphoaluminate calcium,” Adv Mat Res, vol. 113–116, pp. 1814–1817, Jun. 2010, doi: 10.4028/www.scientific.net/AMR.113-116.1814.
dc.relation.references[102] J. D. Zea-Garcia, I. Santacruz, M. A. G. Aranda, and A. G. de la Torre, “Alite-belite-ye’elimite cements: Effect of dopants on the clinker phase composition and properties,” Cem Concr Res, vol. 115, no. July 2018, pp. 192–202, Jan. 2019, doi: 10.1016/j.cemconres.2018.10.019.
dc.relation.references[103] M. García-Maté, Á. G. De la Torre, L. León-Reina, E. R. Losilla, M. A. G. Aranda, and I. Santacruz, “Effect of calcium sulfate source on the hydration of calcium sulfoaluminate eco-cement,” vol. 55, pp. 53–61, 2015, doi: 10.1016/j.cemconcomp.2014.08.003.
dc.relation.references[104] A. G. De La Torre, S. Bruque, and M. A. G. Aranda, “Rietveld quantitative amorphous content analysis,” J Appl Crystallogr, vol. 34, no. 2, pp. 196–202, Apr. 2001, doi: 10.1107/S0021889801002485.
dc.relation.references[105] Larson A C, “General Structure Analysis System (GSAS),” Los Alamos Laboratory Report, vol. 748, pp. 86–748, 1994, doi: 10.1103/PhysRevLett.101.107006.
dc.relation.references[106] L. W. Finger, D. E. Cox, and A. P. Jephcoat, “A correction for powder diffraction peak asymmetry due to axial divergence,” J Appl Crystallogr, vol. 27, no. 6, pp. 892–900, Dec. 1994, doi: 10.1107/S0021889894004218.
dc.relation.references[107] W. A. Dollase, “Correction of intensities for preferred orientation in powder diffractometry: application of the March model,” J Appl Crystallogr, vol. 19, no. 4, pp. 267–272, Aug. 1986, doi: 10.1107/S0021889886089458.
dc.relation.references[108] Glasser F. P., “5 The Burning of Portland Cement,” in Lea’s Chemistry of Cement and Concrete, P. P. C. Hewlett, Ed., Fourth Edi.Elsevier Ltd., 2003, pp. 195–240. doi: 10.1016/B978-0-7506-6256-7.50017-5.
dc.relation.references[109] A. Maciel-Camacho, H. Rodríguez Hernández, A. W. D. Hills, and R. D. Morales, “Hydration kinetics of lime,” ISIJ International, vol. 37, no. 5, pp. 468–476, 1997, doi: 10.2355/isijinternational.37.468.
dc.relation.references[110] J. S. Ndzila, “The effect of Fe3+ ion substitution on the crystal structure of ye‘elimite,” Ceramics - Silikaty, vol. 64, no. 1, pp. 18–28, Oct. 2019, doi: 10.13168/cs.2019.0044.
dc.relation.references[111] F. Winnefeld, L. H. J. Martin, C. J. Müller, and B. Lothenbach, “Using gypsum to control hydration kinetics of CSA cements,” Constr Build Mater, vol. 155, pp. 154–163, 2017, doi: 10.1016/j.conbuildmat.2017.07.217.
dc.relation.references[112] M. García-Maté, I. Santacruz, Á. G. De la Torre, L. León-Reina, and M. A. G. Aranda, “Rheological and hydration characterization of calcium sulfoaluminate cement pastes,” Cem Concr Compos, vol. 34, no. 5, pp. 684–691, May 2012, doi: 10.1016/j.cemconcomp.2012.01.008.
dc.relation.references[113] C. T. Kniess, J. C. de Lima, and P. B. Prates, “The Quantification of Crystalline Phases in Materials: Applications of Rietveld Method,” in Sintering - Methods and Products, InTech, 2012, pp. 293–316. doi: 10.5772/34400.
dc.relation.references[114] D. Kurokawa, S. Takeda, M. Colas, T. Asaka, P. Thomas, and K. Fukuda, “Phase transformation of Ca4[Al6O12]SO 4 and its disordered crystal structure at 1073 K,” J Solid State Chem, vol. 215, pp. 265–270, 2014, doi: 10.1016/j.jssc.2014.03.040.
dc.relation.references[115] W. E. Brown, D. Dollimore, and A. K. Galwey, “Reactions in the solid state,” in Comprehensive Chemical Kinetics, C. H. Bamford and C.F.H. Tipper, Eds., Elsevier Scientific Publishing Company, 1980, pp. 1–289.
dc.relation.references[116] K. Measurements, T. H. E. Experimental, and R. Various, “Chapter 5 ANALYSIS AND INTERPRETATION OF EXPERIMENTAL KINETIC MEASUREMENTS,” in Studies In Physical and Theoretical Chemistry, 1999, pp. 139–171.
dc.relation.references[117] H. N. Yoon, J. Seo, S. Kim, H. K. Lee, and S. Park, “Hydration of calcium sulfoaluminate cement blended with blast-furnace slag,” Constr Build Mater, vol. 268, no. xxxx, p. 121214, Jan. 2021, doi: 10.1016/j.conbuildmat.2020.121214.
dc.relation.references[118] M. de los Á. Gómez de la Torre, “Estudio de cementos y materiales relacionados por el método de Rietveld,” 2003, Universidad de Málaga, Málaga, 2003. Accessed: Feb. 11, 2023. [Online]. Available: https://www.semanticscholar.org/paper/Estudio-de-cementos-y-materiales-relacionados-por-Torre/4200ce42df622eb73faceccf13bdd54f2e2691cc
dc.relation.references[119] G. Jing et al., “Effects of graphene oxide on the hydration behavior of ye’elimite,” J Mater Sci, vol. 54, no. 19, pp. 12582–12591, 2019, doi: 10.1007/s10853-019-03801-4.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembCemento
dc.subject.lembCement
dc.subject.lembMateriales de construcción
dc.subject.lembBuilding materials
dc.subject.proposalCemento CSA
dc.subject.proposalye’elimita
dc.subject.proposalPolimorfos
dc.subject.proposalCúbico
dc.subject.proposalOrtorrómbico
dc.subject.proposalCinética
dc.subject.proposalCSA cement
dc.subject.proposalyeʹelimite
dc.subject.proposalPolymorphs
dc.subject.proposalCubic
dc.subject.proposalOrthorhombic
dc.subject.proposalKinetics
dc.title.translatedKinetic model for obtaining ye'elimite polymorphs, C_4 A_3 S ̅
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleConvenio especial de cooperación número 00284 de 2011
oaire.fundernameCementos ARGOS S.A.
oaire.fundernameServicio Nacional de Aprendizaje SENA
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaÁrea Curricular de Materiales y Nanotecnología
dc.contributor.orcidBerrío Solarte, Ariel [0009-0001-1879-5775]
dc.contributor.orcidTobón, Jorge Iván [0000-0002-1451-1309]
dc.contributor.researchgatehttps://www.researchgate.net/profile/Ariel-Berrio-2


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito