Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.contributor.advisorMontes, Luis Alfredo
dc.contributor.advisorZuluaga, Carlos
dc.contributor.authorQuintana Puentes, Robinson
dc.date.accessioned2023-06-27T20:46:02Z
dc.date.available2023-06-27T20:46:02Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84087
dc.descriptionilustraciones, mapas
dc.description.abstractLa forma de la topografía de la superficie en la parte sur del territorio colombiano es el resultado de la deformación producida por la subducción de la placa de Nazca debajo de la Placa de Suramérica. Se genera un modelado numérico termo-mecánico para solucionar varias ecuaciones que describen los fenómenos físicos principales asociados a calor y esfuerzo. Este proceso de subducción es modelado bajo el marco de la mecánica de los medios continuos. Se presenta la evolución en la subducción escogida modelando los escenarios en aproximadamente 150 millones de años desde el periodo geológico Jurásico hasta ahora, parametrizado por el control que ejerce la forma de la topografía actual. Este modelamiento se realiza con el programa computacional MatLab y se tienen en cuenta códigos computacionales de varios autores que están trabajando en estas soluciones. Un aspecto fundamental es discretizar el espacio basándose en coordenadas planas formando un grillado de 24.888 marcas y representando un área de 300 km de alto y 3000 km de largo sobre la latitud de 3° grados. Se determinan esfuerzo, temperatura, composición, velocidad, geometría y propiedades de las cortezas oceánica y continental para un total de 10 escenarios. El código i3Elvis resulta ser un código robusto para modelar fenómenos de la subducción tales como; la ruptura, ángulo bajo con respecto al horizonte de la placa oceánica. Pero no resulta ser efectivo para el desprendimiento de la placa cuando se adhiere un terreno oceánico. Se genera un modelo de geometría actual de las rocas involucradas en la subducción por medio de datos de gravimetría y magnetometría, el cual, es el objetivo de llegada del modelamiento. (Texto tomado de la fuente)
dc.description.abstractThe shape of the surface topography in the southern part of the Colombian territory is the result of the deformation produced by the subduction of the Nazca plate under the South American Plate. We generate a thermo-mechanical numerical modeling to solve several equations that describe the main physical phenomena associated with heat and stress. We model this subduction process under the framework of continuum mechanics. We present the evolution in the chosen subduction modeling the scenarios in approximately 150 million years from the Jurassic geologic period until now, parameterized by the control exerted by the shape of the current topography. This modeling was carried out with the MatLab computer program and computer codes of various authors who are working on these solutions were taken into account. A fundamental aspect is to discretize the space based on plane coordinates, forming a grid of 24,888 marks and representing an area 300 km high and 3000 km long on the latitude of 3° degrees. We determined stress, temperature, composition, velocity, geometry, and properties of the oceanic and continental crusts for a total of 10 scenarios. The i3Elvis code turned out to be a robust code to model subduction phenomena such as; the rupture, low angle with respect to the horizon of the oceanic plate. But it did not turn out to be effective for plate detachment when an oceanic terrain is attached. We generated a current geometry model of the rocks involved in the subduction through gravimetry and magnetometry data, which was the goal of the modeling.
dc.format.extentxv, 90 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.ddc550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
dc.subject.ddc530 - Física::532 - Mecánica de fluidos
dc.subject.ddc510 - Matemáticas::518 - Análisis numérico
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicada
dc.titleModelado de deformación termo-mecánico de la zona de subducción del sur de Colombia
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Doctorado en Geociencias
dc.contributor.researchgroupGrupo de geofísica
dc.coverage.countryColombia
dc.coverage.countryColombia
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Geociencias
dc.description.researchareaEstratigrafía, tectónica y Geodinámica
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá,Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAllmendinger, R., Reilinger, R., y Loveless, J. (2007). Strain and rotation rate from GPS in Tibet, Anatolia, and the Altiplano. TECTONICS, 1-8. doi: https://doi.org/10.1029/2006TC002030
dc.relation.referencesAltamimi, Z., Rebischung, P., Métivier, L., y Collilieux, X. (2014). ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. Journal of Geophysical Research: Solid Earth, 6109-6131. doi: https://doi.org/10.1002/2016JB013098
dc.relation.referencesBahrouni, N., Masson, F., Meghraoui, F., Saleh, M., Maamri, R., Dhaha, F., y Arfaoui, M. (2020). Active tectonics and GPS data analysis of the Maghrebian thrust belt and Africa-Eurasia plate convergence in Tunisia. Tectonophysics, 228440. doi: https://doi.org/10.1016/j.tecto.2020.228440
dc.relation.referencesBriseño Guarupe, L. A., y Díaz Campos, R. (1995). Medidas de propiedades dinámicas en rocas "in situ" y computo de parámetros elastomecánicos. Geofísica Colombiana, 73-79. Obtenido de https://revistas.unal.edu.co/index.php/esrj/article/view/31238
dc.relation.referencesBustamante, C., Archanjo, C. J., Cardona, A., Andrés, B., y Valencia, V. (2017). U-Pb Ages and Hf Isotopes in Zircons from Parautochthonous Mesozoic Terranes in the Western Margin of Pangea: Implications for the Terrane Configurations in the Northern Andes. (T. U. Journals, Ed.) The Journal of Geology, 487–500. doi: https://www.journals.uchicago.edu/doi/10.1086/693014
dc.relation.referencesCardona, A., Cordani, H., y Macdonald, W. (2006). Tectonic correlations of pre-Mesozoic crust from the northern termination of the Colombian Andes, Caribbean region. Journal of South American Earth Sciences, 337-354. doi: https://doi.org/10.1016/j.jsames.2006.07.009
dc.relation.referencesCardozo, N., Allmendinger, R., y Fisher, D. (2012). Structural Geology Algorithms vector and tensor. New York: CAMBRIDGE UNIVERSITY PRESS. doi: https://doi.org/10.1017/CBO9780511920202
dc.relation.referencesEgbue, O., Kellogg, J., Aguirre, H., y Torres, C. (2013). Evolution of the stress and strain fields in the Eastern Cordillera, Colombia. Journal of Structural Geology, 8-21. doi: https://doi.org/10.1016/j.jsg.2013.10.004
dc.relation.referencesEngelkemeir, R., Khan, S. D., y Burke, K. (2010). Surface deformation in Houston, Texas using GPS. Tectonophysics, 47–54. doi: https://doi.org/10.1016/j.tecto.2010.04.016
dc.relation.referencesFreymueller, J., Kellogg, J., y Vega, V., (1993). Plate Motions in the North Andean Region. Journal of Geophysical Research, 21853-21863. Doi: https://scholarcommons.sc.edu/cgi/viewcontent.cgi?article=1003&context=geol_facpub
dc.relation.referencesGonzález, C. P., Quintana, P. R., y Montes, L. V. (2019). Cálculo de la elongación, dilatación y vectores de rotación de la deformación con algunas estaciones GPS en Colombia. Vínculos, 16, 262–269. doi: https://doi.org/10.14483/2322939X.15749
dc.relation.referencesHeidbach, O., Rajabi, M., Cui, X., Fuchs, K., Müller, B,. Reinecker, J., Reiter, K., Tingay, M., Wenzel, F., Xie, F., Ziegler, M., Zoback, M., y Zoback, M. (2016). The World Stress Map database release 2016: Crustal stress pattern across scales. Tectonophysics, 484-498. doi: https://doi.org/10.1016/j.tecto.2018.07.007
dc.relation.referencesJi, K. H., y Henrring, T. A. (2013). A method for detecting transient signals in GPS position time-series: smoothing and principal component analysis. Geophysical Journal International, 171–186. doi: https://doi.org/10.1093/gji/ggt003
dc.relation.referencesKellogg, J.N., Freymueller, J.T., Dixon, T.H., Neilan, R.E., Ropain, C.U., Camargo, S.M., Fernandez, B., Stowell, J.L., Salazar, A., Mora, J., Espin, L., Perdue, V., Leos, L., (1990). First GPS baseline results from the north Andes, CASA UNO special issue. Geophys. Res. Lett. 17, 211-214. https://doi.org/10.1029/GL017i003p00211
dc.relation.referencesKlos, A., Bogusz, J., Figurski, M., & Kosek, W. (2014). Uncertainties of geodetic velocities from permanent GPS observations: the sudeten case study. Geomater, 201–209. doi: https://doi.org/10.13168/AGG.2014.0005
dc.relation.referencesMartínez-Garzón, P., Heidbach, O., y Bohnhoff, M. (2020). Contemporary stress and strain field in the Mediterranean from stress inversion of focal mechanisms and GPS data. Tectonophysics, 228286. doi: https://doi.org/10.1016/j.tecto.2019.228286
dc.relation.referencesMora Páez, H., y Audemard, F. (2021). GNSS Networks for Geodynamics in the Caribbean, Northwestern South America, and Central America. En B. E. Erol, Geodetic Sciences - Theory, Applications and Recent Developments (págs. 1-22). Bogotá, Colombia: Intechopen. doi: https://www.intechopen.com/chapters/76166
dc.relation.referencesMora-Páez, H., J. R. Peléz-Gaviria, H. Diederix, O. Bohórquez-Orozco, L. Cardona-Piedrahita, y. Cochuelo-Cuervo, . . . F. Díaz-Mila. (2018). Space Geodesy Infrastructure in Colombia for Geodynamics Research. Seismological Research Letter, 446-451. doi: https://doi.org/10.1785/0220170185
dc.relation.referencesMora-Páez, H., Kellog, J. N., Freymuller, J. T., Mencin, D., Rui, F. M., Hans, D., . . . Corchuelo, Y. (2019). Crustal deformation in the northern Andes – A new GPS velocity field. Journal of South American Earth Sciences, 76-91. doi: https://doi.org/10.1016/j.jsames.2018.11.002
dc.relation.referencesMora-Páez, H., Kellogg, J. N., y Freymuller, J. T. (2020). Contributions of space geodesy for geodynamic studies in Colombia: 1988 to 2017. En S. G. Colombiano, The Geology of Colombia (págs. 479–498). Bogotá: Gómez, J. y Pinilla–Pachon. doi: https://doi.org/10.32685/pub.esp.38.2019.14
dc.relation.referencesMostafavi, M., Gold, C., y Dakowicz, M. (2003). Delete and insert operations in Voronoi/Delaunay methods. Computers y Geosciences, 523–530 doi: https://doi.org/10.1016/S0098-3004(03)00017-7
dc.relation.referencesParra, M., Mora, A., López, C., Luis, R., y Horton, B. (2012). Detecting earliest shortening and deformation advance in thrust belt hinterlands: Example from the Colombian Andes. Geology. doi: https://doi.org/10.1130/G32519.1
dc.relation.referencesRestrepo, J., Ordoñez, O., Armstrong, R., y Pimentel, M. (2011). Triassic metamorphism in the northern part of the Tahamí Terrane of the central cordillera of Colombia. Journal of South American Earth Sciences, 497-507. doi: https://doi.org/10.1016/j.jsames.2011.04.009
dc.relation.referencesSaikia, M., y Hussain, A. (2019). Delaunay Triangulation Based Key Distribution for Wireless Sensor Network. Journal of Communications, 530-537. doi: https://doi.org/10.12720/jcm.14.7.530-537
dc.relation.referencesToussaint, J. F., y Restrepo, J. J. (2020). Tectonostratigraphic Terranes in Colombia. In S. G. Colombiano, The Geology of Colombia (pp. 237–260). Bogotá: Publicaciones Geológicas Especiales. doi: https://doi.org/10.32685/pub.esp.36.2019.07
dc.relation.referencesTurcotte, D., y Schubert, G. (2001). Geodynamics. En D. Turcotte, y G. Schubert, Geodynamics (págs. 185-188). Cambridge: Cambridge University. doi: https://doi.org/10.1017/CBO9780511807442
dc.relation.referencesVargas, C. A. (2020). Subduction Geometries in Northwestern South America. En S. G. Colombiano, The Geology of Colombia, Volume 4 Quaternary (págs. 397–422). Bogotá: Publicaciones Geológicas Especiales. doi: https://doi.org/10.32685/pub.esp.38.2019.11
dc.relation.referencesVargas, C. A., y Durán Tovar, J. (2005). State of strain and stress in northwestern of South America. Earth sciences research journal, 43-50. Obtenido de http://www.scielo.org.co/scielo.php?script=sci_arttex t&pid=S1794-61902005000100005
dc.relation.referencesZhu, S., Chen, J., y Shi, Y. (2022). Earthquake potential in the peripheral zones of the Ordos Block based on contemporary GPS strain rates and seismicity. Tectonophysics, 229224. doi: https://doi.org/10.1016/j.tecto.2022.229224
dc.relation.referencesZoback, M. (1992). First and second order patterns of stress in the lithosphere: The World Stress Map Project, J. Geophys. Res., 97, 11703-11728, http://doi.org/10.1029/92jb00132
dc.relation.referencesAndersen, O. B. (2013). Marine gravity and geoid from satellite altimetry. Lecture Notes in Earth System Sciences, 401–451. doi:https://doi.org/10.1007/978-3-540-74700-0_9
dc.relation.referencesAntokoletz, E. D. (2017). Red gravimétrica de primer orden de la República Argentina. Mar de Plata: Doctoral Dissertation, Universidad Nacional de La Plata.
dc.relation.referencesBlakely, R. (1996). Potential Theory in gravity and magnetic applications. Cambridge, United Kingdom: Cambridge University Press.
dc.relation.referencesChai, Y. H. (1988). Gravity inversion of an interface above which the density contrast varies exponentially with depth. Geophysics, 837–845. doi:https://doi.org/10.1190/1.1442518
dc.relation.referencesGómez-Ortiz, D. A. (2005). 3DINVER.M: A MATLAB program to invert the gravity anomaly over a 3D horizontal density interface by Parker-Oldenburg’s algorithm. Computers and Geosciences, 513–520. doi:https://doi.org/10.1016/j.cageo.2004.11.004
dc.relation.referencesHackney, R. I. (2003). Geodetic versus geophysical perspectives of the ’gravity anomaly. Geophysical Journal International, 35–43. doi:https://doi.org/10.1046/j.1365-246X.2003.01941.x
dc.relation.referencesHall A. R. y Tilling L., (1978). The Correspondence of Isaac Newton. Cambridge University Press. Vol. 2 (1676-1687). doi:https://doi.org/10.1017/9781108651820
dc.relation.referencesHernández Moraleda, A. y. (2013). Determinación de la profundidad de la discontinuidad de Mohorovičić en la península lbérica a partir del problema isostático inverso de Vening Meinesz. comparación con el método sísmico. Boletín Geológico y Minero, 563–571.
dc.relation.referencesHernandez, F. S. (2000). Altimetric Mean Sea Surfaces and Gravity Anomaly maps. (I. o. Development, Ed.) d’Etudes Spatiales.
dc.relation.referencesHofmann Wellenhof, B. M. (2005). Physical geodesy. Springer Science y Business Media. Kane, M. F. (1962). A comprehensive system of terrain corrections using a digital computer. Geophysicists, 455-462. doi:https://doi.org/10.1190/1.1439044
dc.relation.referencesLópez, E. (2020). Estudio de microgravimetría urbana en el centro histórico de Querétaro en relación con el proceso de subsidencia en el área metropolitana. IPICYT, 1-15.
dc.relation.referencesLowrie, W. (2007). Fundamentals of Geophysics. Cambridge University Press, Cambridge, UK. doi: https://doi.org/10.1017/CBO9780511807107
dc.relation.referencesKane, M. F. (1962). A comprehensive system of terrain corrections using a digital computer. Geophysicists, 455-462. doi:https://doi.org/10.1190/1.1439044
dc.relation.referencesNagy, D. (1966). The gravitational attraction of a right rectangular prism. GEOPHYSICS, 320-428. doi:https://doi.org/10.1190/1.1439779
dc.relation.referencesNiño Ferro, E. M. (2018). Sistema de Inversión de Datos Gravimétricos Basados en Simulated Annealing para Objetos Geométricos Simples. Bucaramanga: Universidad Industrial de Santander.
dc.relation.referencesParker R.L. y Oldenburg L. (1972). The rapid calculation of potential anomalies. Geophys, J. R. astr. Soc. 31, 447-455.
dc.relation.referencesPham, L. T. (2018). GCH_gravinv: A MATLAB-based program for inverting gravity anomalies over sedimentary basins. Computers and Geosciences, 40–47. doi:https://doi.org/10.1016/j.cageo.2018.07.009
dc.relation.referencesSandwell, D. T. (2002). Laplace’s Equation in Cartesian Coordinates and Satellite Altimetry. Science, 346.
dc.relation.referencesSears, F. W. (2005). Física Universitaria Con Física Moderna Vol II. México: Pearson Education. doi:https://doi.org/10.2307/j.ctvvn8f6.8
dc.relation.referencesSLRG. (2020). Sea Level Research Group. University of Colorado. https://sealevel.colorado.edu
dc.relation.referencesSmith, W. H. (2010). The Marine Geoid and Satellite Altimetry. Oceanography from Space: Revisited, 1–375. doi:https://doi.org/10.1007/978-90-481-8681-5
dc.relation.referencesSuriñach, E. F.-M. (2006). Inversión numérica 3D de datos gravimétricos procedentes de campañas marinas y de satélite. Aplicación a un área antártica. (Dialnet, Ed.) Madrid: Física de La Tierra. doi:https://doi.org/10.5209/rev_FITE. 2006.v18.12515
dc.relation.referencesSutra, E. M. (2012). How does the continental crust thin in a hyperextended rifted margin? Insights from the iberia margin. Geology, 139–142. Obtenido de https://doi.org/10.1130/G32786.1 Torge, W. (1991). Geodesy. Berlin: Gruyter.
dc.relation.referencesAlken, P. T. (11 de 02 de 2021). International Geomagnetic Reference Field: the thirteenth generation. doi:https://doi.org/10.1186/s40623-020-01288-x
dc.relation.referencesANH, 2010. Agencia Nacional de Hidrocarburos. Anomaías intensidad magnética total. https://www.anh.gov.co/es/hidrocarburos/informaci%C3%B3n-geol%C3%B3gica-y-geof%C3%ADsica/m%C3%A9todos-remotos/anomal%C3%ADas-intensidad-magn%C3%A9tica-total/
dc.relation.referencesBlakely, R. (1996). Potential Theory in gravity and magnetic applications. Cambridge, United Kingdom: Cambridge University Press.
dc.relation.referencesButler, R. (2004). PALEOMAGNETISM: Magnetic Domains to Geologic Terranes. Portland, Oregon: University of Portland. Obtenido de https://www.geo.arizona.edu/Paleomag/tocpref.pdf
dc.relation.referencesCooper, G., y Cowan, D. (2005). Differential reduction to the pole. Computers y Geosciences, 989-999. doi:10.1016/j.cageo.2005.02.005
dc.relation.referencesDobrin, M., y Sabit, C. (1988). Introduction to geophysical prospecting Fourth edition. New York: McGraw-Hill.
dc.relation.referencesGombert, B., Duputel, Z., Jolivet, R., Simons, M., Jiang, J., Liang, C., . . . Rivera, L. (2018). Strain budget of the Ecuador–Colombia subduction zone a stochastic. Earth and Planetary Science Letters, 288-299. doi:https://doi.org/10.1016/j.epsl.2018.06.046
dc.relation.referencesGubbins, D., y Herrero, E. (2007). Encyclopedia of Geomagnetism and Paleomagnetism. Dordrecht, The Netherlands: Springer.
dc.relation.referencesHuangu, P., Wang, Y., Fan, W., Li, Z., y Zhou, Y. (2007). Three-dimensional gravity and magnetic modeling of crustal indentation and wedging in the western Pyrenees-Cantabrian Mountains. Journal of Geophysical Research, 1-19. doi:10.1029/2007JB005021
dc.relation.referencesIdárraga-García, J., y Vargas, C. (2018). Depth to the bottom of magnetic layer in South America and its relationship to Curie isotherm, Moho depth and seismicity behavior. Geodesy and Geodynamics, 93-107.
dc.relation.referencesKearey, P., Brooks, M., & Hill, I.A. (2002). An Introduction to Geophysical Exploration. Oxford U.K. Blackwell Science Ltd.
dc.relation.referencesKaufman, A. (1992). Geophysical Field Theory and Method. Colorado: Academic Press, Inc.
dc.relation.referencesLallemand, S., y Arcay, D. (2021). Magnetic anomaly interpretation across the southern central. Earth-Science Reviews, 103779. doi: https://doi.org/10.1016/j.earscirev.2021.103779
dc.relation.referencesLangel, R., y Hinze, W. (1998). The magnetic field of the earth's Lithosphere. Cambridge, United Kindom: Cambridge University Press.
dc.relation.referencesLeón, S., Monsalve, G., Jaramillo, C., Posada, G., Siquiera, T., Echeverri, S., y Valencia, V. (2021). Increased megathrust shear force drives topographic uplift in the Colombian coastal forearc. Tectonophysics, 229132
dc.relation.referencesMonsalve-Jaramillo, H., Valencia-Mina, W., Cano-Saldaña, L., y Vargas, C. (2018). Modeling subduction earthquake sources in the central-western region of Colombia using waveform inversion of body waves. Journal of Geodynamics, 47-61. doi: https://doi.org/10.1016/j.jog.2018.02.005
dc.relation.referencesMoreno, E., y Manea, M. (2021). Geodynamic evaluation of the pacific tectonic model for chortis block evolution using 3D numerical models of subduction. Journal of South American Earth Sciences, 103604. doi:https://doi.org/10.1016/j.jsames.2021.103604
dc.relation.referencesValenta, J. (2015). Introduction to Geophysics. Czech: Development Cooperation. Obtenido de http://www.geology.cz/projekt681900/english/learning-resources/Geophysics_lecture_notes.pdf
dc.relation.referencesVargas, C. A. (2020). Subduction Geometries in Northwestern. En S. G. Colombiano, The Geology of Colombia, Volume 4 Quaternary (págs. 397–422). Bogotá: Publicaciones Geológicas Especiales.
dc.relation.referencesYáñez, G., Ranero, C., Huene, R., y Díaz, J. (2001). Magnetic anomaly interpretation across the southern central Andes (32°-34°S): The role of the Juan Fernández Ridge in the late Tertiary evolution of the margin. Journal of Geophtsical Research, 6325-6345. doi:https://doi.org/10.1029/2000JB900337
dc.relation.referencesBarrero, D., Pardo, A., Vargas, C., y Martínez, J. (2007). Colombian Sedimentary Basins. Bogotá: ANH and ByM Exploration Ltda.
dc.relation.referencesBaumann, J. (2016). Appraisal of geodynamic inversion results: a data mining approach. Geophysical Journal International, 667–679. doi:10.1093/gji/ggw279 Becker, T., y Boris, K. (2011). Numerical Geodynamics. California: University of Southern California.
dc.relation.referencesBriseño Guarupe, L. A., y Díaz Campos, R. (1995). Medidas de propiedades dinámicas en rocas "in situ" y computo de parámetros elastomecánicos. Geofísica Colombiana, 73-79.
dc.relation.referencesCardozo, N., Allmendinger, R., y Fisher, D. (2012). Structural Geology Algorithms vector and tensor. New York: CAMBRIDGE UNIVERSITY PRESS.
dc.relation.referencesCediel, F., Shaw, R.P., Cáceres, C., 2003, Tectonic assembly of the Northern Andean Block, in C. Bartolini, R.T. Buffler, and J. Blickwede, eds., The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics. Am. Assoc. Petrol. Geol., Memoir, v. 79, p. 815-848.
dc.relation.referencesChai, Y. H. (1988). Gravity inversion of an interface above which the density contrast varies exponentially with depth. Geophysics, 837–845. doi:https://doi.org/10.1190/1.1442518
dc.relation.referencesCrameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. Geoscientific Model Development, 2541–2562.
dc.relation.referencesDobrin, M., y Sabit, C. (1988). Introduction to geophysical prospecting Fourth edition. New York: McGraw-Hill.
dc.relation.referencesDabrowski, M., M. Krotkiewski, and D. W. Schmid, (2008). MILAMIN: MATLAB-based finite element method solver for large problems, Geochem. Geophys. Geosyst., 9, Q04030, doi:10.1029/2007GC001719.
dc.relation.referencesEarle, S. y Panchuk, K. (2019). Physical Geology – 2nd Edition. British, Columbia. Retrieved from https://opentextbc.ca/physicalgeology2ed/
dc.relation.referencesEgbue, O., Kellogg, J., Aguirre, H., y Torres, C. (2013). Evolution of the stress and strain fields in the Eastern Cordillera, Colombia. Journal of Structural Geology, 8-21.
dc.relation.referencesFraters, M., Thieulot, C., den, A., y Spakman, W. (2019). The Geodynamic World Builder: a solution for complex initial conditions in numerical modelling. Journal Solid Earth, 1-27. doi:10.5194/se-2019-24
dc.relation.referencesJaillard, E. (1987), Sedimentary evolution of an active margin during middle and upper Cretaceous times: the North Peruvian margin from Late Aptian up to Senonian. Geologische Rundschau, 76, 677-697.
dc.relation.referencesJaillard, E. P., Solar, P., Carlier, G. and Mourier, T., (1990), Geodynamic evolution of the northern and central Andes during early to midle Mesozoic times: a Tethyan model. Jour. Geol. Soc., London, 147:1009-1022.
dc.relation.referencesJaillard, E., Soler, P., Carlier, G., Mourier, T., (1990), Geodynamic evolution of the northern and central Andes during early to middle Mesozoic times: a Tethyan model. Journal of the Geological Society, London 147, 1009e1022.
dc.relation.referencesFullsack, P., (1995). An arbitrary Lagrangian-Eulerian formulation for creeping flows and applications in tectonic models, Geophys. J. Int ., 120 , 1-23.
dc.relation.referencesGerya, T.V., y Meilick, F.I., (2011). Geodynamic regimes of subduction under an active margin: effects of rheological weakening by fluids and melts. Journal of Metamorphic Geology. 29, 7-39. doi:10.1111/j.1525-1314.2010.00904.x
dc.relation.referencesGerya, T. (2010). Introduction to Numerical Geodynamic Modelling. Cambridge. Cambridge University Press.
dc.relation.referencesGerya, T. (2018). Numerical Geodynamic Modelling. Second Edition. Swiss Federal University (ETH), Zürich. http://jupiter.ethz.ch/~tgerya/Book
dc.relation.referencesGombert, B., Duputel, Z., Jolivet, R., Simons, M., Jiang, J., Liang, C., Rivera, L. (2018). Strain budget of the Ecuador–Colombia subduction zone a stochastic. Earth and Planetary Science Letters, 288-299. doi:https://doi.org/10.1016/j.epsl.2018.06.046
dc.relation.referencesGómez Ortiz, D. A. (2005). 3DINVER.M: A MATLAB program to invert the gravity anomaly over a 3D horizontal density interface by Parker-Oldenburg’s algorithm. Computers and Geosciences, 513–520. doi:https://doi.org/10.1016/j.cageo.2004.11.004
dc.relation.referencesGonzález, C. P., Quintana, P. R., y Montes, L. V. (2019). Cálculo de la elongación, dilatación y vectores de rotación de la deformación con algunas estaciones GPS en Colombia. Vínculos, 16, 262–269. Obtenido de https://revistas.udistrital.edu.co/index.php/vinculos/article/view/15749
dc.relation.referencesGray, R. (2013). Numerical Geodynamic Experiments of Continental Collision: Past and Present. Toronto: University of Toronto.
dc.relation.referencesGuerrero, J. (1 de Octubre de 2018). Pre-andean tectonic events from albian to eocene in the middle magdalena valley and situation of the western flank of the proto-eastern cordillera (Colombia). Tesis. Bogotá: Universidad Nacional de Colombia.
dc.relation.referencesKane, M. F. (1962). A comprehensive system of terrain corrections using a digital computer. Geophysicists, 455-462. doi:https://doi.org/10.1190/1.1439044
dc.relation.referencesKaufman, A. (1992). Geophysical Field Theory and Method. Colorado: Academic Press, Inc.
dc.relation.referencesKaus, B. (2010). Factors that control the angle of shear bands in geodynamic numerical models of brittle deformation. Tectonophysics, 36-47. doi:10.1016/j.tecto.2009.08.042
dc.relation.referencesKaus, B., y Mühlhaus, H. (2009). A stabilization algorithm for geodynamic numerical simulations with a free surface. Physics of the Earth and Planetary Interiors, 9-18. doi:10.1016/j.pepi.2010.04.007
dc.relation.referencesKlos, A., Bogusz, J., Figurski, M., y Kosek, W. (2014). Uncertainties of geodetic velocities from permanent GPS observations: the sudeten case study. Geomater, 201–209.
dc.relation.referencesLallemand, S., y Arcay, D. (2021). Magnetic anomaly interpretation across the southern central. Earth-Science Reviews, 103779. doi:https://doi.org/10.1016/j.earscirev.2021.103779
dc.relation.referencesLangel, R., y Hinze, W. (1998). The magnetic field of the earth's Lithosphere. Cambridge, United Kindom: Cambridge University Press.
dc.relation.referencesLeón, S., Monsalve, G., Jaramillo, C., Posada, G., Siquiera, T., Echeverri, S., y Valencia, V. (2021). Increased megathrust shear force drives topographic uplift in the Colombian coastal forearc. Tectonophysics, 229132.
dc.relation.referencesLópez, E. (2020). Estudio de microgravimetría urbana en el centro histórico de Querétaro en relación con el proceso de subsidencia en el área metropolitana. IPICYT, 1-15.
dc.relation.referencesMonsalve-Jaramillo, H., Valencia-Mina, W., Cano-Saldaña, L., y Vargas, C. (2018). Modeling subduction earthquake sources in the central-western region of Colombia using waveform inversion of body waves. Journal of Geodynamics, 47-61. doi:https://doi.org/10.1016/j.jog.2018.02.005
dc.relation.referencesMonsalve-Jaramillo, H. y Mora-Páez, H., 2005. Esquema geodinámico regional para el noroccidente de Suramérica (Modelo de subducción y desplazamientos relativos). Boletín de Geología, Vol. 27, No. 1. Bogotá, Colombia. https://revistas.uis.edu.co/index.php/revistaboletindegeologia/article/download/865/1195/2543
dc.relation.referencesMora-Páez, H., y Audemard, F. (2021). GNSS Networks for Geodynamics in the Caribbean, Northwestern South America, and Central America. En B. E. Erol, Geodetic Sciences - Theory, Applications and Recent Developments (págs. 1-22). Bogotá, Colombia: Intechopen.
dc.relation.referencesMora-Páez, H., J. R. Peléz-Gaviria, H. Diederix, O. Bohórquez-Orozco, L. Cardona-Piedrahita, y. Cochuelo-Cuervo, . . . F. Díaz-Mila. (2018). Space Geodesy Infrastructure in Colombia for Geodynamics Research. Seismological Research Letter, 446-451. doi:10.1785/0220170185
dc.relation.referencesMoreno, E., y Manea, M. (2021). Geodynamic evaluation of the pacific tectonic model for chortis block evolution using 3D numerical models of subduction. Journal of South American Earth Sciences, 103604. doi:https://doi.org/10.1016/j.jsames.2021.103604
dc.relation.referencesMoseri L., Quenette S., Lemiale V., Meriaux C., Appelbe B., and Mühlhaus H. B. (2007). Computational approaches to studying non-linear dynamics of the crust and mantle. Physics of the Earth and Planetary Interiors 163, 69 - 82.
dc.relation.referencesMoseri, L.N., F. Dufour, and H.-B. Mühlhaus, (2003). A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials, J. Comp. Phys., 184, pp. 476-497.
dc.relation.referencesNagy, D. (1966). The gravitational attraction of a right rectangular prism. GEOPHYSICS, 320-428. doi:https://doi.org/10.1190/1.1439779
dc.relation.referencesNiño Ferro, E. M. (2018). Sistema de Inversión de Datos Gravimétricos Basados en Simulated Annealing para Objetos Geométricos Simples. Bucaramanga: Universidad Industrial de Santander.
dc.relation.referencesOlivella, X., y Saracíbar, C. (2010). Mecánica de los medios continuos para ingenieros. Barcelona: Universiad Politécnica de Cataluña.
dc.relation.referencesPham, L. T. (2018). GCH_gravinv: A MATLAB-based program for inverting gravity anomalies over sedimentary basins. Computers and Geosciences, 40–47. doi:https://doi.org/10.1016/j.cageo.2018.07.009
dc.relation.referencesPindell, J., Kennan, L., (2001), Kinematic evolution of the Gulf of Mexico and Caribbean, in R.H. Fillon, N.C. Rosen, and P. Weimer (Eds.), Petroleum Systems of Deep-Water Basins: Global and Gulf of Mexico Experience: GCS-SEPM Foundation, XXI Annual Research Conference, Transactions, p.193-220.
dc.relation.referencesPindell, J.L., Kennan, L. (2001), Kinematic evolution of the Gulf of Mexico and Caribbean. In: Petroleum Systems of Deep-water Basins: Global and Gulf of Mexico Experience, SEPM Gulf Coast Section, Proceedings of the 21st Annual Research Conference. Society for Sedimentary Geology (SEPM), 193–220.
dc.relation.referencesPindell, J., Kennan, L., (2009), Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update. In: The Origin and Evolution of the Caribbean Plate (K.H. James, M.A. Lorente and J. Pindell, eds), Geol.Soc. [Lond.] Spec. Publ., 328, 1–56. doi:10.1144/SP328.1
dc.relation.referencesPindell, J.L. and Kennan, L., (2009), Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update.
dc.relation.referencesRamos, V. A. (2010). The tectonic regime along the Andes: Present-day and Mesozoic regimes. Geological Journal, 45, 2-25. DOI:10.1002/gj.1193
dc.relation.referencesRestrepo-Pace P. A., Colmenares, F., Higuera, C., and Mayorga, M., et al., (2004), A fold and Thrust belt along the western flank of the Eastern Cordillera of Colombia. Style, Kinematics, and timing constrains derived from seismic data and detailed surface mapping. In: McClay, K. R. (ed.) Thrust Tectonics and Hydrocarbon Systems. American Association of Petroleum Geologists, Tulsa, OK, Memoirs, 82, 598-613.
dc.relation.referencesSaikia, M., y Hussain, A. (2019). Delaunay Triangulation Based Key Distribution for Wireless Sensor Network. Journal of Communications, 530-537
dc.relation.referencesSears, F. W. (2005). Física Universitaria Con Física Moderna Vol II. México: Pearson Education. doi:https://doi.org/10.2307/j.ctvvn8f6.8
dc.relation.referencesStrauss, W. (2008). Partial Differencial Equations. Danvers: John Wiley y Sons, Inc.
dc.relation.referencesStüwe, K. (2007). Geodynamics of the Lithosphere. Austria: Springer.
dc.relation.referencesSuriñach, E. F.-M. (2006). Inversión numérica 3D de datos gravimétricos procedentes de campañas marinas y de satélite. Aplicación a un área antártica. (Dialnet, Ed.) Madrid: Física de La Tierra. doi:https://doi.org/10.5209/rev_FITE.2006.v18.12515
dc.relation.referencesSutra, E. M. (2012). How does the continental crust thin in a hyperextended rifted margin? Insights from the iberia margin. Geology, 139–142. Obtenido de https://doi.org/10.1130/G32786.1
dc.relation.referencesTarbuck, E. J. (2017). Earth: an introduction to physical geology. Canadá: Pearson.
dc.relation.referencesToussaint, J. F., y Restrepo, J. J. (2020). Tectonostratigraphic Terranes in Colombia. In S. G. Colombiano, The Geology of Colombia (pp. 237–260). Bogotá: Publicaciones Geológicas Especiales. doi:https://doi.org/10.32685/pub.esp.36.2019.07
dc.relation.referencesTurcotte, D., y Schubert, G. (2001). Geodynamics. En D. Turcotte, y G. Schubert, Geodynamics (págs. 185-188). Cambridge: Cambridge University.
dc.relation.referencesValenta, J. (2015). Introduction to Geophysics. Czech: Development Cooperation. Obtenido de http://www.geology.cz/projekt681900/english/learning-resources/Geophysics_lecture_notes.pdf
dc.relation.referencesVargas, C. A. (2020). Subduction Geometries in Northwestern. En S. G. Colombiano, The Geology of Colombia, Volume 4 Quaternary (págs. 397–422). Bogotá: Publicaciones Geológicas Especiales. Vargas, C. A., y Durán Tovar, J. (2005). State of strain and stress in northwestern of south America. Earth sciences research journal, 43-50.
dc.relation.referencesVillagómez D. D. (2010). Thermochronology, geochronology and geochemistry of the Western and Central cordilleras and Sierra Nevada de Santa Marta, Colombia: The tectonic evolution of NW South America. Terre & Environement. Thesis.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembTopografía
dc.subject.lembSurveying
dc.subject.lembMedición de superficies
dc.subject.lembArea measurement
dc.subject.lembModelos geométricos
dc.subject.lembGeometrical models
dc.subject.proposalModelo 2D
dc.subject.proposalSubducción
dc.subject.proposalModelamiento termo-mecánico
dc.subject.proposalEuleriano
dc.subject.proposalLagrangiano y Colombia
dc.subject.proposal2D model
dc.subject.proposalSubduction
dc.subject.proposalThermo-mechanical
dc.subject.proposalEulerian
dc.subject.proposalLagrangian and Colombia modeling
dc.title.translatedThermo-mechanical deformation modeling of the southern Colombian subduction zone
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentAdministradores
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentConsejeros
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentGrupos comunitarios
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentMedios de comunicación
dcterms.audience.professionaldevelopmentPadres y familias
dcterms.audience.professionaldevelopmentPersonal de apoyo escolar
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantes
dcterms.audience.professionaldevelopmentPúblico general
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantes
dcterms.audience.professionaldevelopmentResponsables políticos
dc.contributor.orcidQuintana Puentes, Robinson [0000-0002-3523-6203]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-CompartirIgual 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito