Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorBarbosa Parada, Nathaly
dc.contributor.advisorPlazas de Pinzon, Maria Cristina
dc.contributor.authorCastellanos Castellanos, Deisy Nataly
dc.date.accessioned2023-07-07T15:14:28Z
dc.date.available2023-07-07T15:14:28Z
dc.date.issued2023-06-06
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84163
dc.descriptionilustraciones
dc.description.abstractUn método muy utilizado en los últimos años debido a sus excelentes resultados para tratar tumores neuroendocrinos, cáncer de próstata metástasis resistente a la castración y cáncer de tiroides es el teragnóstico, un ́área de la medicina nuclear que emplea moléculas unidas a radionúclidos y que combina el diagnóstico y la terapia dirigida específica para lograr un tratamiento personalizado para el paciente. Se conoce la terapia con yodo radiactivo I-131 para tratar el carcinoma diferenciado de tiroides y el radioisótopo Lu-177 para tratar tumores neuroendocrinos y cáncer de próstata resistente a la castración. Debido a las características físicas de estos radionuclidos, ya que son emisores de radiación gamma y beta, mediante las emisiones gamma es posible obtener imágenes posteriores a la terapia conocidas como rastreo posterapia, que nos da información de la biodistribución del radiofármaco y estimar la respuesta exitosa de la terapia. En el presente trabajo se evalúa la calidad de la imagen de rastreos Post-terapia I-131 cuando se utilizan colimadores HEGP y MEGP para imágenes I-131 post-terapia utilizando un fantoma y un protocolo clínico de adquisición y reconstrucción. El trabajo se limita al análisis de imagen SPECT de I-131, ya que en los meses precedentes a esta entrega se da un desabastecimiento de Lu-177 a nivel global, producto de la falla que presentó uno de los reactores que producen este radioisótopo. (Texto tomado de la fuente)
dc.description.abstractA method widely used in recent years due to its excellent results in treating neuroendocrine tumors, metastatic castration-resistant prostate cancer and thyroid cancer is teragnostics, an area of nuclear medicine that uses molecules bound to radionuclides and combines diagnosis and targeted therapy to achieve a personalized treatment for the patient. Radioactive iodine I-131 therapy is known to treat differentiated thyroid carcinoma and the radioisotope Lu-177 to treat neuroendocrine tumors and castration-resistant prostate cancer. Due to the physical characteristics of these radionuclides, since they are emitters of gamma and beta radiation, by means of gamma emissions it is possible to obtain post-therapy images known as post-therapy tracking, which gives us information on the biodistribution of the radiopharmaceutical and to estimate the successful response of the therapy. In the present work we evaluate the image quality of I-131 post-therapy tracings when using HEGP and MEGP collimators for I-131 post-therapy imaging using a phantom and a clinical acquisition and reconstruction protocol. The work is limited to SPECT image analysis of I-131, since in the months preceding this delivery there was a global shortage of Lu-177, due to the failure of one of the reactors that produce this radioisotope.
dc.format.extent60 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleEvaluación de la calidad de la imagen de spect/ct en rastreos posterapia con 131I y 177Lu
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Física Médica
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Física Médica
dc.description.researchareaFísica Medica/Medicina Nuclear
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá,Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesRachel A Powsner, Matthew R Palmer, and Edward R Powsner. Essentials of nuclear medicine physics and instrumentation. John Wiley & Sons, 2013.
dc.relation.referencesAshutosh Dash, Maroor Raghavan Ambikalmajan Pillai, and Furn F Knapp. Production of 177lu for targeted radionuclide therapy: available options. Nuclear medicine and molecular imaging, 49(2):85–107, 2015.
dc.relation.referencesErvin B Podgorsak. Radiation physics for medical physicists. Springer, 2006
dc.relation.referencesDavid Dowsett, Patrick A Kenny, and R Eugene Johnston. The physics of diagnostic imaging. CRC Press, 2006.
dc.relation.referencesGabriela Kramer-Marek and Jacek Capala. The role of nuclear medicine in modern therapy of cancer. Tumor Biology, 33(3):629–640, 2012.
dc.relation.referencesYuni K Dewaraja, Eric C Frey, George Sgouros, A Bertrand Brill, Peter Roberson, Pat B Zanzonico, and Michael Ljungberg. Mird pamphlet no. 23: quantitative spect for patient- specific 3-dimensional dosimetry in internal radionuclide therapy. Journal of Nuclear Medicine, 53(8):1310–1325, 2012.
dc.relation.referencesSimon R Cherry, James A Sorenson, and Michael E Phelps. Physics in nuclear medicine e-Book. Elsevier Health Sciences, 2012.
dc.relation.referencesHEALTH SAFETY GUIDELINE ENVIRONMENTAL. Radiation Safety Service: Iodine-131. University Of Michigan, 2020.
dc.relation.referencesHojjat Ahmadzadehfar, Hans-J ̈urgen Biersack, Leonard M Freeman, and Lionel S Zuckier. Clinical nuclear medicine. Springer Nature, 2020.
dc.relation.referencesGE Healthcare. Discovery nm/ct 670, 2011.
dc.relation.referencesHyuna Sung, Jacques Ferlay, Rebecca L Siegel, Mathieu Laversanne, Isabelle Soerjomataram, Ahmedin Jemal, and Freddie Bray. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 71(3):209–249, 2021.
dc.relation.referencesLuca Filippi, Agostino Chiaravalloti, Orazio Schillaci, Roberto Cianni, and Oreste Bagni. Theranostic approaches in nuclear medicine: Current status and future prospects. Expert review of medical devices, 17(4):331–343, 2020.
dc.relation.referencesNasim Vahidfar, Elisabeth Eppard, Saeed Farzanehfar, Anna Yordanova, Maryam Fallahpoor, and Hojjat Ahmadzadehfar. An impressive approach in nuclear medicine: Theranostics. PET clinics, 16(3):327–340, 2021.
dc.relation.referencesM D’Arienzo, M Cazzato, ML Cozzella, M Cox, Marco D’Andrea, A Fazio, A Fenwick, G Iaccarino, L Johansson, Lidia Strigari, et al. Gamma camera calibration and validation for quantitative spect imaging with 177lu. Applied Radiation and Isotopes, 112:156164, 2016.
dc.relation.referencesMichael Ljungberg, Anna Celler, Mark W Konijnenberg, Keith F Eckerman, Yuni K Dewaraja, and Katarina Sj ̈ogreen-Gleisner. Mird pamphlet no. 26: joint eanm/mird guidelines for quantitative 177lu spect applied for dosimetry of radiopharmaceutical therapy. Journal of nuclear medicine, 57(1):151–162, 2016.
dc.relation.referencesLidia Strigari, Mark Konijnenberg, Carlo Chiesa, Manuel Bardies, Yong Du, Katarina Sj ̈ogreen Gleisner, Michael Lassmann, and Glenn Flux. The evidence base for the use of internal dosimetry in the clinical practice of molecular radiotherapy. European journal of nuclear medicine and molecular imaging, 41(10):1976–1988, 2014.
dc.relation.referencesRichard L Wahl, George Sgouros, Amir Iravani, Heather Jacene, Daniel Pryma, Babak Saboury, Jacek Capala, and Stephen A Graves. Normal-tissue tolerance to radiopharmaceutical therapies, the knowns and the unknowns. Journal of Nuclear Medicine, 62 (Supplement 3):23S–35S, 2021.
dc.relation.referencesElse A Aalbersberg, Daphne de Vries-Huizing, Margot ET Tesselaar, Marcel PM Stokkel, and Michelle WJ Versleijen. Post-prrt scans: which scans to make and what to look for. Cancer Imaging, 22(1):1–8, 2022.
dc.relation.referencesAlejandro Perera Pintado, Leonel A Torres Aroche, Alex Vergara Gil, Juan F Batista Cu ́ellar, and Analis ́ıs Prats Capote. Spect/ct: principales aplicaciones en la medicina nuclear. Nucleus, (62):2–9, 2017.
dc.relation.referencesMasato Kobayashi, Hiroshi Wakabayashi, Daiki Kayano, Takahiro Konishi, Hironori Kojima, Hiroto Yoneyama, Koichi Okuda, Hiroyuki Tsushima, Masahisa Onoguchi, Keiichi Kawai, et al. Application of a medium-energy collimator for i-131 imaging after ablation treatment of differentiated thyroid cancer. Annals of nuclear medicine, 28(6):551–558, 2014.
dc.relation.referencesAnna Yordanova, Elisabeth Eppard, Stefan K ̈urpig, Ralph A Bundschuh, Stefan Schonberger, Maria Gonzalez-Carmona, Georg Feldmann, Hojjat Ahmadzadehfar, and Markus Essler. Theranostics in nuclear medicine practice. OncoTargets and therapy, 10:4821, 2017.
dc.relation.referencesHojjat Ahmadzadehfar. Targeted therapy for metastatic prostate cancer with radionuclides. Prostate Cancer–Leading–Edge Diagnostic Procedures and Treatments, pages 60–4, 2016.
dc.relation.referencesSerengulam V Govindan, Gary L Griffiths, Hans J Hansen, Ivan D Horak, and David M Goldenberg. Cancer therapy with radiolabeled and drug/toxin-conjugated antibodies. Technology in cancer research & treatment, 4(4):375–391, 2005.
dc.relation.referencesAbdelhamid H Elgazzar. The pathophysiologic basis of nuclear medicine. Springer Science Business Media, 2006.
dc.relation.referencesAnna Wyszomirska. Iodine-131 for therapy of thyroid diseases. physical and biological basis. Nuclear Medicine Review, 15(2):120–123, 2012.
dc.relation.referencesLudwike WM van Kalmthout, Esm ́ee CA van der Sar, Arthur JAT Braat, Bart de Keizer, and Marnix GEH Lam. Lutetium-177-psma therapy for prostate cancer patients—a brief overview of the literature. Tijdschrift voor Urologie, 10(6):141–146, 2020.
dc.relation.referencesFerdinando Calabria and Orazio Schillaci. Radiopharmaceuticals. Springer, 2020.
dc.relation.referencesKenyoung Kim and Seong-Jang Kim. Lu-177-based peptide receptor radionuclide therapy for advanced neuroendocrine tumors. Nuclear medicine and molecular imaging, 52(3):208–215, 2018.
dc.relation.referencesRichard B Firestone, SY Chu, and Coral M Baglin. of the table of isotopes: 1998 update. In APS Division of Nuclear Physics Meeting Abstracts, pages BD–11, 1997.
dc.relation.referencesFF Knapp Jr, S Mirzadeh, AL Beets, and M Du. Production of therapeutic radioisotopes in the ornl high flux isotope reactor (hfir) for applications in nuclear medicine, oncologyand interventional cardiology. Journal of radioanalytical and nuclear chemistry, 263(2):503– 509, 2005.
dc.relation.referencesJeong Won Lee, Sang Mi Lee, Gwan Pyo Koh, and Dae Ho Lee. The comparison of 131i whole-body scans on the third and tenth day after 131i therapy in patients with well-differentiated thyroid cancer: preliminary report. Annals of nuclear medicine, 25(6): 439–446, 2011.
dc.relation.referencesAri Chong, Ho-Chun Song, Jung-Joon Min, Shin Young Jeong, Jung-Min Ha, Jahae Kim, Su-Ung Yoo, Jong-Ryool Oh, and Hee-Seung Bom. Improved detection of lung or bone metastases with an i-131 whole body scan on the 7th day after high-dose i-131 therapy in patients with thyroid cancer. Nuclear Medicine and Molecular Imaging, 44(4):273–281, 2010.
dc.relation.referencesAngela Spanu, Maria E Solinas, Francesca Chessa, Daniela Sanna, Susanna Nuvoli, and Giuseppe Madeddu. 131i spect/ct in the follow-up of differentiated thyroid carcinoma: incremental value versus planar imaging. Journal of Nuclear Medicine, 50(2):184–190, 2009.
dc.relation.referencesFrank Herbert Attix. Introduction to radiological physics and radiation dosimetry. John Wiley & Sons, 2008.
dc.relation.referencesJames E Turner. Atoms, radiation, and radiation protection. John Wiley & Sons, 2008.
dc.relation.referencesFaiz M Khan and John P Gibbons. Khan’s the physics of radiation therapy. Lippincott Williams & Wilkins, 2014.
dc.relation.referencesulong Yan and Eduardo G Moros. Radiation oncology physics: A handbook for teachers and students, eb podgorsak (ed.), international atomic energy association, vienna, austria (2005), 657 pages, euro 65, paperbound, isbn 92-0-107304-6, 2006.
dc.relation.referencesMichael Ljungberg. Handbook of Nuclear Medicine and Molecular Imaging for Physicists: Instrumentation and Imaging Procedures, Volume I. CRC Press, 2022.
dc.relation.referencesSyed Naeem Ahmed. Physics and engineering of radiation detection. Academic Press, 2007.
dc.relation.referencesjennifer Prekeges. Nuclear Medicine Instrumentation (book). Jones & Bartlett Publishers, 2012.
dc.relation.referencesPhilippe P Bruyant. Analytic and iterative reconstruction algorithms in spect. Journal of Nuclear Medicine, 43(10):1343–1358, 2002.
dc.relation.referencesJames A Patton and Timothy G Turkington. Spect/ct physical principles and attenuation correction. Journal of nuclear medicine technology, 36(1):1–10, 2008.
dc.relation.referencesJerry L Prince and Jonathan M Links. Medical imaging signals and systems, volume 37. Pearson Prentice Hall Upper Saddle River, 2006.
dc.relation.referencesRichard L Van Metter. Handbook of medical imaging, volume 1. Physics and psychophysics, 2000.
dc.relation.referencesAlbert Rose. The sensitivity performance of the human eye on an absolute scale. JOSA, 38(2):196–208, 1948.
dc.relation.referencesLouis Sibille, Benjamin Chambert, Sandrine Alonso, Corinne Barrau, Emmanuel D’Estanque, Yassine Al Tabaa, Laurent Collombier, Christophe Demattei, Pierre-Olivier Kotzki, and Vincent Boudousq. Impact of the adaptive statistical iterative reconstruction technique on radiation dose and image quality in bone spect/ct. Journal of Nuclear Medicine, 57(7):1091–1095, 2016.
dc.relation.referencesJohannes Schindelin, Curtis T Rueden, Mark C Hiner, and Kevin W Eliceiri. The imagej ecosystem: An open platform for biomedical image analysis. Molecular reproduction and development, 82(7-8):518–529, 2015.
dc.relation.referencesMarcin Wojdyr. Fityk: a general-purpose peak fitting program. Journal of applied crystallography, 43(5-1):1126–1128, 2010.
dc.relation.referencesMansour M Alqahtani, Kathy P Willowson, Chris Constable, Roger Fulton, and Peter L Kench. Optimization of 99mtc wholebody spect/ct image quality: A phantom study. Journal of Applied Clinical Medical Physics, 23(4):e13528, 2022.
dc.relation.referencesSilje Kjærnes Øen, Lars Birger Aasheim, Live Eikenes, and Anna Maria Karlberg. Image quality and detectability in siemens biograph pet/mri and pet/ct systems—a phantom study. EJNMMI physics, 6:1–16, 2019.
dc.relation.referencesWesley Wooten and Tri Tran. Megp vs hegp collimator for i-131 thyroid scintigraphy, 2010.
dc.relation.referencesMasato Kobayashi, Hiroshi Wakabayashi, Daiki Kayano, Koudai Nishi, Masahisa Onoguchi, Keiichi Kawai, and Seigo Kinuya. Comparison between a high-and medium-energy collimator for na131i imaging of differentiated thyroid cancer, 2013.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsPróstata
dc.subject.decsProstate
dc.subject.decsMedicina nuclear
dc.subject.decsNuclear Medicine
dc.subject.proposalTerapias metabólicas
dc.subject.proposalCalidad de la imagen
dc.subject.proposalSPECT/CT
dc.subject.proposalMedicina Nuclear
dc.subject.proposalRastreos post-terapia
dc.subject.proposalMetabolic therapies
dc.subject.proposalImage quality
dc.subject.proposalSPECT/CT
dc.subject.proposalNuclear Medicine
dc.subject.proposalPost-therapy Rastray
dc.subject.proposalCollimators
dc.subject.proposalColimadores
dc.title.translatedEvaluation of spect/ct image quality in post-therapy rastrays with 131i and 131I y 177Lu
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dc.contributor.orcidhttps://orcid.org/0000-0003-1317-7289
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000098087


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito