Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorCubillos Gonzalez, Gloria Ivonne
dc.contributor.advisorEspejo Mora, Edgar
dc.contributor.authorCastañeda Bocanegra, Jhon Jairo
dc.date.accessioned2023-07-17T15:34:31Z
dc.date.available2023-07-17T15:34:31Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84179
dc.descriptionilustraciones, fotografías
dc.description.abstractPara aprovechar un residuo contaminante y mitigar la contaminación ambiental generada por el mismo, se emplearon lodos procedentes de PTAR de procesos galvánicos con altos contenidos de Cr, Ni y Cu en la elaboración a nivel industrial de productos de cerámica tradicional y a nivel laboratorio de pigmentos inorgánicos para esta misma industria. Se sintetizaron piezas para pisos y paredes procesadas, por dos métodos empleados a nivel industrial: prensado en seco, en donde las piezas cerámicas fueron sinterizadas en ciclo rápido de 34 minutos en un horno de rodillos, y por el método de extrusión, sinterizadas en ciclo lento de 42 horas en un horno túnel. Adicionalmente, se sintetizaron pigmentos inorgánicos para la industria cerámica mediante dos métodos: el tradicional mezclando el lodo galvánico con sílice, calcinando a 900°C, 1000°C y 1100°C y por el método Sol-Gel mezclando extracto del lodo con solución de silicato de sodio, calcinando a 600°C, 700°C y 800°C. Los resultados muestran que, aplicado a nivel industrial, la arcilla con adición de lodo hasta de un 8% en peso puede ser utilizada como matriz encapsulante de los metales, evitando su migración al medio ambiente. Que los lodos galvánicos pueden ser utilizados como materia prima en la elaboración de pigmentos inorgánicos para la industria cerámica, siendo el método de Sol-Gel el que aporta mejores resultados al proceso. (Texto tomado de la fuente)
dc.description.abstractIn order to take advantage of a polluting waste and mitigate the environmental pollution generated by it, sludge from WWTP of galvanic processes with high Cr, Ni and Cu contents was used in the industrial production of traditional ceramic products and in the laboratory production of inorganic pigments for the same industry. The pieces were synthesized for floors and walls processed by two methods used at industrial level: dry pressing, where the ceramic pieces were sintered in a fast cycle of 34 minutes in a roller kiln, and by the extrusion method, sintered in a slow cycle of 42 hours in a tunnel kiln. In addition, inorganic pigments for the ceramic industry were synthesized by two methods: the traditional method by mixing the galvanic sludge with silica, calcining at 900°C, 1000°C and 1100°C and by the Sol-Gel method by mixing the sludge extract with sodium silicate solution, calcining at 600°C, 700°C and 800°C. The results show that applied at the industrial level, clay with the addition of sludge up to 8% by weight can be used as an encapsulating matrix for metals, preventing their migration to the environment. That the galvanic sludge can be used as raw material in the elaboration of inorganic pigments for the ceramic industry, being the Sol-Gel method the one that provides better results to the process.
dc.format.extentxx, 126 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc540 - Química y ciencias afines
dc.subject.ddc500 - Ciencias naturales y matemáticas
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.subject.ddc670 - Manufactura
dc.titleUso de lodos galvánicos como Materia Prima en la Industria Cerámica para la Mitigación de la Contaminación Ambiental
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales
dc.contributor.researchgroupGrupo de Investigación Afis (Análisis de Fallas, Integridad y Superficies)
dc.contributor.researchgroupMateriales y Procesos Químicos
dc.description.degreelevelDoctorado
dc.description.degreenameDoctorado en ingeniería
dc.description.researchareaNuevos materiales
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá,Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesF. Rojas Martínez-Parets. Desde la globalización hasta la Conferencia de Estocolmo. Anales de la Universidad de Alicante. Facultad de Derecho. 1994, 9: 245-273 URI: http://hdl.handle.net/10045/55209 DOI: 10.14198/AnDerecho.1994.9.09 ISSN: 0212-1778
dc.relation.referencesM. Hill. Understanding Environmental Pollution (4th ed.). Cambridge: Cambridge University Press. 2020. doi:10.1017/9781108395021
dc.relation.referencesA. Yli-Pentti. 4.11 - Electroplating and Electroless Plating, Editor(s): Saleem Hashmi, Gilmar Ferreira Batalha, Chester J. Van Tyne, Bekir Yilbas, Comprehensive Materials Processing, Elsevier, 2014, Pages 277-306, ISBN 9780080965338, https://doi.org/10.1016/B978-0-08-096532-1.00413-1.
dc.relation.referencesJ.K. Dennis. T.E. Such. Nickel and Chromium Plating, In Woodhead Publishing Series in Metals and Surface Engineering, Nickel and Chromium Plating (Third Edition), Woodhead Publishing, 1993, ISBN 9781845698638.
dc.relation.referencesUE. (2008). Directiva 2008/98/CE del Parlamento Europeo y del Consejo, de 19 de noviembre de 2008, sobre los residuos y por la que se derogan determinadas Directivas. Parlamento Europeo, 28 págs. (43 artículos). Retrieved from http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:312:0003:01:ES:HTML
dc.relation.referencesA. Ghorpade and M. M. Ahammed, “Water treatment sludge for removal of heavy metals from electroplating wastewater,” Environmental Engineering Research, vol. 23, no. 1. Korean Society of Environmental Engineering, pp. 92–98, 06-Sep-2017. https://doi.org/10.4491/eer.2017.065
dc.relation.referencesF. Fenglian. W. Qi. Removal of heavy metal ions from wastewaters: A review, Journal of Environmental Management, Volume 92, Issue 3, 2011, Pages 407-418, ISSN 0301-4797, https://doi.org/10.1016/j.jenvman.2010.11.011.
dc.relation.referencesM. Scholz, Chapter 23 - Sludge treatment and disposal, Editor(s): Miklas Scholz, Wetland Systems to Control Urban Runoff, Elsevier, 2006, Pages 163-174, ISBN 9780444527349, https://doi.org/10.1016/B978-044452734-9/50026-8.
dc.relation.referencesJ.M. Magalhães. J.E. Silva. F.P. Castro. J.A. Labrincha. Physical and chemical characterisation of metal finishing industrial wastes. Journal of Environmental Management, 2005 75(2), 157–166. https://doi.org/10.1016/J.JENVMAN.2004.09.011
dc.relation.referencesDecision 2001/573 - 2001/573/EC: Council Decision of 23 July 2001 amending Commission Decision 2000/532/EC as regards the list of wastes. Recuperado 2022-03-17 de https://eur-lex.europa.eu/eli/dec/2001/573
dc.relation.referencesS.C. Gad, Nickel and Nickel Compounds, Editor(s): Philip Wexler, Encyclopedia of Toxicology (Third Edition), Academic Press, 2014, Pages 506-510, ISBN 9780123864550, https://doi.org/10.1016/B978-0-12-386454-3.00889-7.
dc.relation.referencesS.C. Gad, Chromium, Editor(s): Philip Wexler, Encyclopedia of Toxicology (Third dition), Academic Press, 2014, Pages 952-954, ISBN 9780123864550, https://doi.org/10.1016/B978-0-12-386454-3.00828-9.
dc.relation.referencesS.C. Gad, Copper, Editor(s): Philip Wexler, Encyclopedia of Toxicology (Third Edition), Academic Press, 2014, Pages 1034-1036, ISBN 9780123864550, https://doi.org/10.1016/B978-0-12-386454-3.00834-4.
dc.relation.referencesJ. Száková. M. Krýchová. P. Tlustoš. “The risk element contamination level in soil and vegetation at the former deposit of galvanic sludges,” J. Soils Sediments, vol. 16, no. 3, pp. 924– 938, 2016. https://doi.org/10.1007/s11368-015-1301-5
dc.relation.referencesR. S. Newman. Love Canal: A Toxic History From Colonial Times to The Present. Book. ISBN 9780190262846. 2016. Oxford University Press. https://books.google.com.co/books?id=2GURDAAAQBAJ.
dc.relation.referencesContraloría general de la república. (2021). Informe auditoría de cumplimiento planes de contingencia en rellenos sanitarios. Autoridad Nacional de Licencias Ambientales – ANLA. CGR CDMA No. 020 Diciembre de 2021. https://www.contraloria.gov.co/documents/20125/318948/202102020++Informe+Auditoría+de+Cumplimiento+ANLA+Planes+de+Contingencia+Rellenos+Sanitarios.pdf
dc.relation.referencesJ.E. Silva. D. Soares. A.P. Paiva. J.A. Labrincha. F. Castro. Leaching behaviour of a galvanic sludge in sulphuric acid and ammoniacal media. J Hazard Mater. 2005 May 20;121(1-3):195-202. https:// doi: 10.1016/j.jhazmat.2005.02.008. PMID: 15885422.
dc.relation.referencesF. Vegliò. R. Quaresima. P. Fornar. S. Ubaldini. Recovery of valuable metals from electronic and galvanic industrial wastes by leaching and electrowinning. Waste Manag. 2003;23(3):245-52. https://doi.org/10.1016/S0956-053X(02)00157-5.
dc.relation.referencesT. Pham. T.D. Huyen. M.T. Dang. T.T. Huyen, T.A. Green, S. Roy, Electrochemical copper recovery from galvanic sludge, Hydrometallurgy, Volume 164, 2016, Pages 295-303, ISSN 0304-386X, https://doi.org/10.1016/j.hydromet.2016.06.028.
dc.relation.referencesP. Fornari. C. Abbruzzese. Copper and nickel selective recovery by lectrowinning from electronic and galvanic industrial solutions. Hydrometallurgy 52, 1999. 209–222. https://doi.org/10.1016/S0304-386X(99)00019-5
dc.relation.referencesJ.E. Silva, A.P. Paiva, D. Soares, A. Labrincha, F. Castro, Solvent extraction applied to the recovery of heavy metals from galvanic sludge, Journal of Hazardous Materials, Volume 120, Issues 1–3, 2005, Pages 113-118, ISSN 0304-3894, https://doi.org/10.1016/j.jhazmat.2004.12.008.
dc.relation.referencesM.V. Buzaeva. O.A. Zaval’tseva. O.A. Davydova. Extraction of heavy metals from galvanic sludges. Russ J Appl Chem 84, 727–729 (2011). https://doi.org/10.1134/S1070427211040306
dc.relation.referencesP.T. Souza. E. Silva. N. De Mello. M.M. Menezes Duarte. Conceição B.S.M. Montenegro, A. Araújo, N. Barros Neto, B. Valdinete Lins da Silva, Extraction and recovery of chromium from electroplating sludge, Journal of Hazardous Materials, Volume 128, Issue 1, 2006, Pages 39-43, ISSN 0304-3894, https://doi.org/10.1016/j.jhazmat.2005.07.026.
dc.relation.referencesV. Bednarik. M. Vondruska. M. Koutny. Stabilization/solidification of galvanic ludges by asphalt emulsions, Journal of Hazardous Materials, Volume 122, Issues 1–2, 2005, Pages 139-145, ISSN 0304-3894, https://doi.org/10.1016/j.jhazmat.2005.03.021.
dc.relation.referencesP.G. Ract, D.C.R. Espinosa, J.A.S. Tenório, Determination of Cu and Ni incorporation ratios in Portland cement clinker, Waste Management, Volume 23, Issue 3, 2003, Pages 281-285, ISSN 0956-053X, https://doi.org/10.1016/S0956-053X(02)00061-2.
dc.relation.referencesR Cioffi, M Lavorgna, L Santoro, Environmental and technological effectiveness of a process or the stabilization of a galvanic sludge, Journal of Hazardous Materials, Volume 89, Issues 2–3, 2002, Pages 165-175, ISSN 0304-3894, https://doi.org/10.1016/S0304-3894(01)00310-7.
dc.relation.referencesC.R. Denise. J. Espinosa. A.S. Tenório, Laboratory study of galvanic sludge’s influence on the clinkerization process, Resources, Conservation and Recycling, Volume 31, Issue 1, 2000, Pages 71-82, ISSN 0921-3449, https://doi.org/10.1016/S0921-3449(00)00072-0.
dc.relation.references] S. Dongsheng. M. Huang. F. Huajun. L. Na. Z. Yuyang. L. Yuyang. Effect of waste addition points on the chromium leachability of cement produced by co-processing of tannery sludge, Waste Management, Volume 61, 2017, Pages 345-353, ISSN 0956-053X, https://doi.org/10.1016/j.wasman.2017.01.039.
dc.relation.referencesR. Cioffi, M. Lavorgna, M. Marroccoli, L. Santoro, Stabilization of a Galvanic Sludge by Means of Calcium Sulphoaluminate Cement, Editor(s): J.J.J.M. Goumans, G.J. Senden, H.A. van der Sloot, Studies in Environmental Science, Elsevier, Volume 71, 1997, Pages 823-830, ISSN 0166-1116, ISBN 9780444827715, https://doi.org/10.1016/S0166-1116(97)80267-1.
dc.relation.referencesC.A. Luz, J.C. Rocha, M. Cheriaf, J. Pera, Use of sulfoaluminate cement and bottom ash in the solidification/stabilization of galvanic sludge, Journal of Hazardous Materials, Volume 136, Issue 3, 2006, Pages 837-845, ISSN 0304-3894, https://doi.org/10.1016/j.jhazmat.2006.01.020.
dc.relation.referencesA. Król. Effect Of High Temperature on Immobilization of Heavy Metals in Concrete with An Addition of Galvanic Sludge. WIT Transactions on Ecology and the Environment. Volume 109. Pages 9. Page Range 31 – 339. Published 2008. Paper https://doi10.2495/WM080351.
dc.relation.referencesA. Król. Durability of stabilized galvanic sewage sludge against the impact of sea water and sulfate solutions. Environment Protection Engineering. Vol. 38 2012 No. 4. https//doi/10.5277/EPE120403
dc.relation.referencesZ. Yan-bing. C. Wen-hui. L. Yi-xuan. X. Xiao-xiong. L. Zhao-bo. C. Da-qiang. Influence of slag particle size on performance of ceramic bricks containing red clay and steel-making slag, Journal of the Ceramic Society of Japan, 2019, Volume 127, Issue 2, Pages 105-110, Released on J-STAGE February 01, 2019, Online ISSN 1348-6535, Print ISSN 1882-0743, https://doi.org/10.2109/jcersj2.18137
dc.relation.referencesD. Alvarez Rozo. J. Sánchez Molina. & J.F. Gelves (2017). Influencia de las materias primas y de la técnica de moldeo en la fabricación de productos cerámicos tipo gres. INGENIERÍA Y COMPETITIVIDAD, 19(2), 89–101. https://doi.org/10.25100/iyc.v19i2.5296
dc.relation.referencesJ.M. Rocha de Figueirêdo. J.R. Sousa Silva. G. De Araújo Neves. H.C. Ferreira. L. Navarro de Lima. Influence of Processing Variables on Clay-Based Ceramic Formulations. Mat. Res. 22 (03) • 2019 • https://doi.org/10.1590/1980-5373-MR-2018-0548
dc.relation.referencesM.P. Moreno Quintero, Y.A. Pabón Acevedo, L. Cely Illera. J. Cely Niño. Influencia de la molienda húmeda en el comportamiento estructural y mecánico de productos cerámicos conformados por extrusión de una arcilla del Zulia (Norte de Santander, Colombia), Boletín de la Sociedad Española de Cerámica y Vidrio, Volume 58, Issue 5, 2019, Pages 190-198, ISSN 0366-3175, https://doi.org/10.1016/j.bsecv.2019.01.001.
dc.relation.referencesS. Elvira. B.D. Karlovic. Z. Dalmacija. S. Tamas. D.J. Miljana. Prica & Jonjaua G. Ranogajec. Preliminary evaluation of galvanic sludge immobilization in claybased matrix as an environmentally safe process, Journal of Environmental Science and Health, Part A, 43:5, 528-537, 2008. DOI: 10.1080/10934520701796531
dc.relation.referencesJ.M. Magalhães. J.E. Silva. F. P. Castro. J.A. Labrincha. Kinetic study of the immobilization of galvanic sludge in clay-based matrix, Journal of Hazardous Materials, Volume 121, Issues 1–3, 2005, Pages 69-78, ISSN 0304-3894, https://doi.org/10.1016/j.jhazmat.2005.01.022.
dc.relation.referencesZ. Lianyang. Production of bricks from waste materials – A review, Construction and Building Materials, Volume 47, 2013, Pages 643-655, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2013.05.043.
dc.relation.referencesI.A Levitskii. Y.G. Pavlyukevich. E.O. Bogdan. Production of Keramzit Gravel Using Galvanic Sludge. Glass Ceram 70, 255–259 (2013). https://doi.org/10.1007/s10717-013-9555-0
dc.relation.referencesJ.M. Magalhães. J.E. Silva. F.P. Castro. J.A. Labrincha. Role of the mixing conditions and composition of galvanic sludges on the inertization process in clay-based ceramics. J Hazard Mater. 2004 Jan 30;106(2-3):169-76. doi: 10.1016/j.jhazmat.2003.11.011. PMID: 15177107.
dc.relation.referencesA. Yaras, M. Sutcu, E. Erdogmus, O. Gencel. Recycling and immobilization of zinc extraction residue in clay-based brick manufacturing, Journal of Building Engineering, Volume 41, 2021, 102421, ISSN 2352-7102, https://doi.org/10.1016/j.jobe.2021.102421.
dc.relation.referencesD. Simón, C. Perez-Battistessa, D. Cazzaniga-Arduzzo, S. Gass, A. Cristóbal. Valorization of sludge from the effluent treatment of the dairy industry as clay substitutes in building bricks, Construction and Building Materials, Volume 307, 2021, 124955, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2021.124955.
dc.relation.referencesV. Mymrine, M.J.J.S. Ponte, H.A. Ponte, N.M.S. Kaminari, U. Pawlowsky, G.J.P. olyon, Oily diatomite and galvanic wastes as raw materials for red ceramics fabrication, Construction and Building Materials, Volume 41, 2013, Pages 360-364, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2012.11.041.
dc.relation.referencesL. Heidari, M. Jalili-Ghazizade. Recycling of spent industrial soil in manufacturing process of clay brick, Process Safety and Environmental Protection, Volume 145, 2021, Pages 133-140, ISSN 0957-5820, https://doi.org/10.1016/j.psep.2020.08.004.
dc.relation.referencesJ. J. Castañeda, E. Espejo. (2015). “Evaluación de los métodos de hidrometalurgia, pirometalurgia y estabilización solidificación en el tratamiento de lodos procedentes de plantas de aguas residuales de procesos de cromado”. Trabajo de investigación presentado como requisito parcial para optar al título de: Magister en Ingeniería - Materiales y procesos. Universidad Nacional de Colombia. Repositorio de la universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/56789
dc.relation.referencesISO 13006. Standard, “Ceramic tiles - Definitions, classification, characteristics and marketing,” Int. Stand., vol. 1998, no. 1, 1998.
dc.relation.referencesG. Buxbaum. Introduction to Inorganic High-Performance Pigments. ISSN 9783527302048. Pag 1-6. 2001. DOI https://doi.org/10.1002/3527600493.ch1
dc.relation.referencesL. C. Klein, Sol-gel technology for thin films, fibers, preforms, electronics, and specialty shapes. Piscataway, New Jersey, 1988.
dc.relation.referencesZ.M Dai, D.S Li, & H. Xie. The Analysis for Evaluation of Ceramic Tile’s Color Difference Based on CIELAB Color Space. In Advanced Materials Research (Vols. 490–495, pp. 3726–3732). 2012. Trans Tech Publications, Ltd. https://doi.org/10.4028/www.scientific.net/amr.490-495.3726
dc.relation.referencesPrecise Color Communication: Color Control from Perception to Instrumentation. (2007) Konica Minolta Sensing, Inc.
dc.relation.referencesM. Doynov, T. Dimitrov, S. Kozhukharov. Alternative technological approach for synthesis of ceramic pigments by waste materials recycling, Boletín de la Sociedad Española de Cerámica y Vidrio, Volume 55, Issue 2, 2016, Pages 63-70, ISSN 366-3175, https://doi.org/10.1016/j.bsecv.2016.01.002.
dc.relation.referencesG. Costa, M.J. Ribeiro, J.A. Labrincha, M. Dondi, F. Matteucci, G. Cruciani, Malayaite ceramic pigments prepared with galvanic sludge, Dyes and Pigments, Volume 78, Issue 2, 2008, Pages 157-164, ISSN 0143-7208, https://doi.org/10.1016/j.dyepig.2007.11.004.
dc.relation.referencesX. Griselda. X. Gayo, E. Araceli. Lavat, Green ceramic pigment based on chromium recovered from a plating waste, Ceramics International, Volume 44, Issue 18, 2018, Pages 22181-22188, ISSN 0272-8842, https://doi.org/10.1016/j.ceramint.2018.08.336.
dc.relation.referencesG. Costa, V.P. Della, M.J. Ribeiro, A.P.N. Oliveira, G. Monrós, J.A. Labrincha, Synthesis of black ceramic pigments from secondary raw materials, Dyes and Pigments, Volume 77, issue 1, 2008, Pages 137-144, ISSN 0143-7208, https://doi.org/10.1016/j.dyepig.2007.04.006.
dc.relation.referencesD. Esteves, W. Hajjaji, M.P. Seabra, J.A. Labrincha, Use of industrial wastes in the formulation of olivine green pigments, Journal of the European Ceramic Society, Volume 30, Issue 15, 2010, Pages 3079-3085, ISSN 0955-2219, https://doi.org/10.1016/j.jeurceramsoc.2010.07.006.
dc.relation.referencesJ. Carneiro, D.M. Tobaldi, M.N. Capela, R.M. Novais, M.P. Seabra, J.A. Labrincha, Synthesis of ceramic pigments from industrial wastes: Red mud and electroplating sludge, Waste Management, Volume 80, 2018, Pages 371-378, ISSN 0956-053X, https://doi.org/10.1016/j.wasman.2018.09.032.
dc.relation.referencesASTM, “Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water.” ASTM C20-15, 2015.
dc.relation.referencesASTM, “Drying and Firing Shrinkages of Ceramic Whiteware Clays.” ASTM C326-14, 2014.
dc.relation.referencesASTM, “Flexural Properties of Ceramic Whiteware Materials.” ASTM C674- 13, 2013.
dc.relation.referencesUSEPA., “Toxicity Characteristic Leaching Procedure,” Method 1311, 2011.
dc.relation.referencesG-B. Cai; S-F. Chen; L. Liu; J. Jiang; H-B. Yao; A-W. Xu; S-H. Yu. 1,3-Diamino-2-hydroxypropane-N,N,N′,N′-tetraacetic acid stabilized amorphous calcium carbonate: Nucleation, transformation and crystal growth. CrystEngComm 2010, 12, 234–241.
dc.relation.referencesJ.L. Amorós, A. Blasco, J.E. Enrique, F. Negre. Características de polvos cerámicos para prensado Bol. Soc. Esp. Ceram. Vidr., 26 (1987) 31-37.
dc.relation.referencesM. P. Moreno Quintero, Y. A. Pabón Acevedo, L. Cely Illera, J. Cely Niño, Influence of wet milling on the structural and mechanical behavior of ceramic products formed by extruding clay at Zulia (North de Santander, Colombia), Boletín de la Sociedad Española de Cerámica y Vidrio, 58, No 5, (2019) 190-198, doi.org/10.1016/j.bsecv.2019.01.001.
dc.relation.referencesI. Demir. Effect of organic residues addition on the technological properties of clay bricks, Waste Management, Volume 28, Issue 3, 2008, Pages 622-627, ISSN 0956-053X, https://doi.org/10.1016/j.wasman.2007.03.019.
dc.relation.referencesH. Alves de Oliveira & C. Pereira dos Santos. Limestone Clays for Ceramic Industry. Clay Science and Technology. 2021. doi: 10.5772/intechopen.92506.
dc.relation.referencesSACMI. Tecnología cerámica aplicada / SACMI; Asociación Española de Técnicos Cerámicos ; traducción del italiano por Arnold van Gelder. – Castellón de la Plana: Faenza Editrice Ibérica, 2004. 2 v.: il. ; 24 cm. ISBN 84-87683-29-0 (v.2).
dc.relation.referencesE. S. Karlovic, B. D. Dalmacija, Z. S. Tamas, M. D. Prica, and J. G. Ranogajec, Preliminary evaluation of galvanic sludge immobilization in clay-based matrix as an environmentally safe process., J. Environ. Sci. Health. A. Tox. Hazard. Subst. Environ. Eng., 43, No. 5 (2008) 528–37, doi.org/10.1080/10934520701796531
dc.relation.referencesISO13006. Standard, “Ceramic tiles - Definitions, classification, characteristics and marketing,” Int. Stand., vol. 1998, no. 1, 1998.
dc.relation.referencesV. Mymrin, K. Alekseev, A. Nagalli, R.E. Catai, R.L. Izzo, J.L. Rose, H.A. Ponte & C.A. Romano. Red ceramics enhancement by hazardous laundry water cleaning sludge. Journal of Cleaner Production, 120, 157-163. 2016. DOI:10.1016/J.JCLEPRO.2015.12.075
dc.relation.referencesC. Martínez-García, D. Eliche-Quesada, L. Pérez-Villarejo, F.J. Iglesias-Godino, F.A. Corpas-Iglesias, sludge valorization from wastewater treatment plant to its application on the ceramic industry, Journal of Environmental Management, Volume 95, Supplement, 2012, Pages S343-S348, ISSN 0301-4797, https://doi.org/10.1016/j.jenvman.2011.06.016.
dc.relation.referencesV. Mymrin, A.C. Ribeiro, A. Kirill, E. Zelinskaya, N. Tolmacheva, R. Catai, Environment friendly ceramics from hazardous industrial wastes, Ceramics International, Volume 40, Issue 7, Part A, 2014, Pages 9427-9437, ISSN 0272-8842, https://doi.org/10.1016/j.ceramint.2014.02.014.
dc.relation.referencesV. Mymrin, M. J. J. S. Ponte, H. A. Ponte, N. M. S. Kaminari, U. Pawlowsky, and G. J. P. Solyon, Oily diatomite and galvanic wastes as raw materials for red ceramics fabrication, Constr. Build. Mater. 41 (2013) 360–364, doi: 10.1016/j.conbuildmat.2012.11.041.
dc.relation.referencesB. Fraser, C. Murphy, F. Bunting. Real World Color Management (2nd edition). 2005. Berkeley: Peachpit Press.
dc.relation.referencesDCMA Classification and Chemical Description of the Mixed Metal Oxide Inorganic Colored Pigments, 2 ed., Washington DC, 1982.
dc.relation.referencesA.F. Costa, P.M. Pimentel, F.M. Aquino, D.M.A. Melo, M.A.F. Melo, I.M.G Santos, Gelatin synthesis of CuFe2O4 and CuFeCrO4 ceramic pigments, Materials Letters, Volume 112, 2013, Pages 58-61, ISSN 0167-577X, https://doi.org/10.1016/j.matlet.2013.08.044.
dc.relation.referencesJ. Marques Rocha, J.R. Sousa Silva, G. de Araújo Neves, H.C. Ferreira, L.N. de Lima Santana. Influence of Processing Variables on Clay-Based Ceramic Formulations. Materials Research. 2019, v. 22, n. 03, Epub 11 Mar 2019. ISSN 1980-5373. https://doi.org/10.1590/1980-5373-MR-2018-0548.
dc.relation.referencesTecnología cerámica aplicada / SACMI; Asociación Española de Técnicos Cerámicos; traducción del italiano por Arnold van Gelder. – Castellón de la Plana: Faenza Editrice Ibérica, 2004.
dc.relation.referencesHevia, Roberto. Materias Primas no convencionales en cerámica - 1a ed. - Córdoba: Fundación EMPREMIN (LDM Editorial}, 2006. ISBN 987-22937-1-6
dc.relation.referencesJM. Magalhães, JE. Silva, FP. Castro, JA. Labrincha. Physical and chemical characterisation of metal finishing industrial wastes. J Environ Manage. 2005 Apr;75(2):157-66. DOI: 10.1016/j.jenvman.2004.09.011
dc.relation.referencesJ. XUE, M. WU, Y. SONG, J. ZHAO, J. WU, Y. QUAN, J. REN, Study on performance of Ag-modified layered copper silicate catalyst for hydrogenation of dimethyl oxalate to methyl glycolate, Journal of Fuel Chemistry and Technology, Volume 50, Issue 8, 2022, Pages 1014-1022, ISSN 1872-5813, https://doi.org/10.1016/S1872-5813(21)60011-2.
dc.relation.referencesJ F. Moulder & J. Chastain. Handbook of x-ray photoelectron spectroscopy : a reference book of standard spectra for identification and interpretation of xps data. Physical Electronics Division Perkin-Elmer Corp. 1992.
dc.relation.referencesL. Zhao, X. Guo, Y. Liu, Y. Zhao, Z. Chen, Y. Zhang, L. Guo, X. Shu, J. Liu, Hydration kinetics, pore structure, 3D network calcium silicate hydrate, and mechanical behavior of graphene oxide reinforced cement composites, Construction and Building Materials, Volume 190, 2018, Pages 150-163, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2018.09.105.
dc.relation.referencesZ. Zhang, Y. Cao, Z. Ma, Y. Liao, Impact of calcium and gypsum on separation of scheelite from fluorite using sodium silicate as depressant, Separation and Purification Technology, Volume 215, 2019, Pages 249-258, ISSN 1383-5866, https://doi.org/10.1016/j.seppur.2019.01.021.
dc.relation.referencesG. Wang, X. Ning, X. Lu, X. Lai, H. Cai, Y. Liu, T. Zhang. Effect of sintering temperature on mineral composition and heavy metals mobility in tailings bricks, Waste Management 93 (2019) 112–121, doi.org/10.1016/j.wasman.2019.04.001.
dc.relation.referencesL. Liu a, H. Yu a, Y. Li a, Z. Zhang. Stabilization behavior and mechanism of heavy metals in eco-friendly glass-ceramics derived from wastes, Journal of Cleaner Production 269 (2020) 122417, doi.org/10.1016/j.jclepro.2020.122417.
dc.relation.referencesY. Xia, F. Meng, Zhong , J. Zhang, Y. Tang, K. Shih. Develop spinel structure and quantify phase transformation for nickel stabilization in electroplating sludge, Waste Management 131 (2021) 286–293, doi.org/10.1016/j.wasman.2021.06.019.
dc.relation.referencesE. S. Karlovic, B. D. Dalmacija, Z. S. Tamas, DJ, Miljana. Prica & Jonjaua G. Ranogajec. Preliminary evaluation of galvanic sludge immobilization in clay-based matrix as an environmentally safe process, Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 43:5, 528-537. 2008, doi.org/10.1080/10934520701796531.
dc.relation.referencesI.B. Singh, K. Chaturvedi, R.K. Morchhale, A.H. Yegneswaran. Thermal treatment of toxic metals of industrial hazardous wastes with fly ash and clay. Journal of Hazardous Materials 141, No 1 (2007) pp. 215–222, doi.org/10.1016/j.jhazmat.2006.06.112.
dc.relation.referencesLi Zhongfu Li, Yi Du, Zhongtao Chen, Dandan Sun, Chaofeng Zhu, Synthesis and characterization of cobalt doped green ceramic pigment from tannery sludge, Ceramics International, Volume 41, Issue 10, Part A, 2015, Pages 12693-12699, ISSN 0272-8842, https://doi.org/10.1016/j.ceramint.2015.06.101.
dc.relation.referencesF. Andreola, L. Barbieri, F. Bondioli, M. Cannio, A.M. Ferrari, I. Lancellotti, Synthesis of chromium containing pigments from chromium galvanic sludges, Journal of Hazardous Materials, Volume 156, Issues 1–3, 2008, Pages 466-471, ISSN 0304-3894, https://doi.org/10.1016/j.jhazmat.2007.12.075.
dc.relation.referencesJ. Carneiro, DM. Tobaldi, MN. Capela MP. Seabra, JA. Labrincha. Waste-Based Pigments for Application in Ceramic Glazes and Stoneware Bodies. Materials. 2019; 12(20):3396. https://doi.org/10.3390/ma12203396
dc.relation.referencesZhongtao Chen, Yi Du, Zhongfu Li, Dandan Sun, Chaofeng Zhu, Synthesis of lack pigments containing chromium from leather sludge, Ceramics International, Volume 41, Issue 8, 2015, Pages 9455-9460, ISSN 0272-8842, https://doi.org/10.1016/j.ceramint.2015.04.001.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembCerámica
dc.subject.lembPottery
dc.subject.lembCalidad ambiental
dc.subject.lembEnvironmental quality
dc.subject.proposalLodo galvánico
dc.subject.proposalArcilla
dc.subject.proposalCerámica
dc.subject.proposalPigmento
dc.subject.proposalProceso
dc.title.translatedUse of Galvanic Sludge as a Raw Material in the Ceramic Industry for Environmental Pollution Mitigation
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentDataPaper
dc.type.contentImage
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentAdministradores
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentGrupos comunitarios
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentMedios de comunicación
dcterms.audience.professionaldevelopmentPadres y familias
dcterms.audience.professionaldevelopmentPúblico general
dcterms.audience.professionaldevelopmentResponsables políticos
dc.contributor.orcidJ.J. Castañeda Bocanegra [0000-0002-6492-9076]
dc.contributor.scopusJ.J. Castañeda Bocanegra [57195214246]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito