Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorTorres Rojas, Esperanza
dc.contributor.advisorBarreto Hernández, Emiliano
dc.contributor.authorRios Guzmán, Wendy Lorena
dc.date.accessioned2023-07-18T20:57:02Z
dc.date.available2023-07-18T20:57:02Z
dc.date.issued2023-01
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84213
dc.descriptionilustraciones, mapas
dc.description.abstractEl cadmio (Cd) es un metal pesado altamente tóxico presente en el suelo que puede alterar la comunidad microbiana y las plantas que habitan en él. En América Latina, se han reportado altas concentraciones de este elemento en los suelos y granos de cacao, lo que representa una gran preocupación debido al impacto potencial en la salud humana, la seguridad alimentaria y la economía del cacao. Entre las estrategias para mitigar la absorción de Cd por parte de la planta se encuentra el uso de bacterias nativas tolerantes al Cd. Sin embargo, se desconoce el efecto que pueda causar el Cd en los microbiomas bacterianos. Con el objetivo de estudiar el efecto del Cd en la estructura y función de las comunidades bacterianas presentes en los suelos cacaoteros, se muestrearon tres fincas productoras de cacao en el municipio de Yacopí-Cundinamarca (F1, F2 y F3). En cada finca, se seleccionaron dos lotes de muestreo, uno con cultivo de cacao (SCC) y otro sin cultivo de cacao (SWC). En cada lote, se seleccionaron tres puntos de muestreo y para cada punto se recolectó suelo rizosférico (RZ, solo para SCC, y suelo a dos profundidades diferentes (D1: 0-30 cm; D2: 31-100 cm). En total se recolectaron 36 muestras de suelo, de las cuales 24 correspondieron a SCC y 12 a SWC. Todas las muestras se sometieron a análisis fisicoquímicos (textura, pH, Cd total, Cd disponible, Ca, Mg, K, CICE, P, Fe, Cu, Mn, Zn, CO). Las concentraciones de Cd total y disponible variaron entre lotes, fincas y nivel de profundidad. Se encontró una concentración significativamente más alta de Cd total en las muestras de suelo RZ, y los niveles promedio de Cd en las fincas fueron: F1 > F3 > F2. La extracción del ADN comunitario se realizó con el kit DNeasy® PowerSoil®; la amplificación y secuenciación de la hipervariable 4 del gen 16S RNAr se realizó mediante PCR de punto final y la plataforma Illumina MiSeq respectivamente. Las curvas de rarefacción indicaron que la mayoría de las muestras fueron secuenciadas con suficiente profundidad y los índices de diversidad alfa evaluados (Chao1, Shannon y Gini-Simpson) reflejaron comunidades altamente diversas con valores promedio de 973, 5.9 y 0.98 respectivamente. El Análisis de Componentes Principales (PCoA) basado en la métrica Unifrac ponderado reveló que las comunidades de F1 son significativamente diferentes a F2 y F3, y hay mayor similitud entre F2 y F3. A nivel taxonómico se identificaron 39 filos bacterianos, donde los más abundantes correspondieron a: Proteobacteria (36,5%), Acidobacteria (15,0%), Firmicutes (9,8%), Planctomycetes (8,6%), Verrucomicrobia (6,0), Chloroflexi (6,0%) y Nitrospirae (5,1%). A nivel de género se identificaron 122, entre los que se destacaron Bradyrhizobium (13,0%), Bacillus (8,8%), DA101 (4,5%), Nitrososphaera (1,8%) y Nitrospira (1,2%), algunos de los cuales se han relacionado con procesos de tolerancia a Cd. Por otra parte, las vías funcionales identificadas con mayor abundancia relativa estaban involucradas con la tolerancia al Cd. Esta investigación proporciona información valiosa sobre la comunidad bacteriana presente en el cultivo del cacao y su posible papel en la bioacumulación de Cd presente en el suelo. (Texto tomado de la fuente)
dc.description.abstractCadmium (Cd) is a highly toxic heavy metal present in soil that can alter the microbial community and the plants that inhabit it. In Latin America, high concentrations of this element have been reported in cacao soils and beans, which is of great concern due to the potential impact on human health, food safety and the cocoa economy. Strategies to mitigate Cd uptake by the plant include the use of native Cd-tolerant bacteria. However, the effect of Cd on bacterial microbiomes is unknown. In order to study the effect of Cd on the structure and function of bacterial communities present in cocoa soils, three cocoa farms in the municipality of Yacopí-Cundinamarca (F1, F2 and F3) were sampled. On each farm, two sampling plots were selected, one with cocoa cultivation (SCC) and one without cocoa cultivation (SWC). In each lot, three sampling points were selected and for each point rhizospheric soil (RZ, only for SCC, and soil at two different depths (D1: 0-30 cm; D2: 31-100 cm) were collected. A total of 36 soil samples were collected, of which 24 corresponded to SCC and 12 to SWC. All samples were subjected to physicochemical analysis (texture, pH, total Cd, available Cd, Ca, Mg, K, ECEC, P, Fe, Cu, Mn, Zn, CO). Total and available Cd concentrations varied among plots, farms and depth level. A significantly higher concentration of total Cd was found in the RZ soil samples, and the average Cd levels in the farms were: F1 > F3 > F2. Community DNA extraction was performed using the DNeasy® PowerSoil® kit; amplification and sequencing of the 16S rRNA gene hypervariable 4 was performed using endpoint PCR and the Illumina MiSeq platform respectively. Rarefaction curves indicated that most samples were sequenced with sufficient depth and the alpha diversity indices evaluated (Chao1, Shannon and Gini-Simpson) reflected highly diverse communities with mean values of 973, 5.9, and 0.98 respectively. Principal Component Analysis (PCoA) based on the weighted Unifrac metric revealed that F1 communities are significantly different from F2 and F3, and there is greater similarity between F2 and F3. At the taxonomic level, 39 bacterial phyla were identified, where the most abundant corresponded to: Proteobacteria (36.5%), Acidobacteria (15.0%), Firmicutes (9.8%), Planctomycetes (8.6%), Verrucomicrobia (6.0), Chloroflexi (6.0%) and Nitrospirae (5.1%). At the genus level, 122 were identified, among which Bradyrhizobium (13.0%), Bacillus (8.8%), DA101 (4.5%), Nitrososphaera (1.8%) and Nitrospira (1.2%), some of which have been related to Cd tolerance processes. On the other hand, the functional pathways identified with higher relative abundance were involved with Cd tolerance. This research provides valuable information on the bacterial community present in the cocoa crop and its possible role in the bioaccumulation of Cd present in the soil.
dc.format.extent104 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleCaracterización de microbiomas bacterianos presentes en suelos cacaoteros con alta y baja concentración de cadmio del municipio de Yacopí - Cundinamarca
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiología
dc.contributor.researchgroupAgrobiodiversidad y Biotecnología
dc.coverage.regionYacopí
dc.coverage.regionCundinamarca
dc.description.degreelevelMaestría
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá,Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesDe Souza, P. A., Moreira, L. F., Sarmento, D. H., & da Costa, F. B. (2018). Cacao—Theobroma cacao. Exotic fruits, 69-76.
dc.relation.referencesDeng, Y., Fu, S., Sarkodie, E. K., Zhang, S., Jiang, L., Liang, Y., Bai, L., Liu, X., Liu, H. & Jiang, H. (2022). Ecological responses of bacterial assembly and functions to steep Cd gradient in a typical Cd-contaminated farmland ecosystem. Ecotoxicology and Environmental Safety, 229, 113067.
dc.relation.referencesDoerge, T., Kitchen, N. R., & Lund, E. D. (2015). Mapeo de Conductividad Eléctrica del suelo. Traducido y adaptado para Colombia por Alberto Lobo-Guerrero Sanz, LOGEMIN SA Fecha de consulta, 16(04), 2015.
dc.relation.referencesDu, Y., Zhang, D., Zhou, D., Liu, L., Wu, J., Chen, H., Jin, D. & Yan, M. (2021). The growth of plants and indigenous bacterial community were significantly affected by cadmium contamination in soil–plant system. AMB Express, 11(1), 1-13.
dc.relation.referencesDucret, V., Gonzalez, M. R., Leoni, S., Valentini, M., & Perron, K. (2020). The CzcCBA efflux system requires the CadA P-type ATPase for timely expression upon zinc excess in Pseudomonas aeruginosa. Frontiers in microbiology, 11, 911.
dc.relation.referencesEdwards, C. D., Beatty, J. C., Loiselle, J. B., Vlassov, K. A., & Lefebvre, D. D. (2013). Aerobic transformation of cadmium through metal sulfide biosynthesis in photosynthetic microorganisms. BMC Microbiology, 13(1), 1–11.
dc.relation.referencesEl Baz, S., Baz, M., Barakate, M., Hassani, L., El Gharmali, A., & Imziln, B. (2015). Resistance to and accumulation of heavy metals by actinobacteria isolated from abandoned mining areas. The Scientific World Journal, 2015.
dc.relation.referencesEl Rasafi, T., Oukarroum, A., Haddioui, A., Song, H., Kwon, E. E., Bolan, N., Tack, F. M. G., Sebastian, A., Prasad, M. N. V. & Rinklebe, J. (2022). Cadmium stress in plants: A critical review of the effects, mechanisms, and tolerance strategies. Critical Reviews in Environmental Science and Technology, 52(5), 675-726.
dc.relation.referencesEpelde, L., Lanzen, A., Blanco, F., Urich, T., & Garbisu, C. (2015). Adaptation of soil microbial community structure and function to chronic metal contamination at an abandoned Pb-Zn mine. FEMS microbiology ecology, 91(1), 1-11.
dc.relation.referencesEwels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 32(19), 3047-3048.
dc.relation.referencesRodríguez S, Darghan A, Henao M. (2019). Spatial regression modeling of soils with high cadmium content in a cocoa producing area of Central Colombia. Geoderma Regional, 16, e00214.
dc.relation.referencesRodríguez, N., McLaughlin, M., & Pennock, D. (2019). La contaminación del suelo: una realidad oculta. Roma, FAO.
dc.relation.referencesRofner, N. F. (2021). Cadmium in soil and cacao beans of Peruvian and South American origin. Revista Facultad Nacional de Agronomía Medellín, 74(2).
dc.relation.referencesRojas, F., & Sacristán, E. J. (2013). Guía ambiental para el cultivo del cacao (No. PDF 1025).
dc.relation.referencesRosales-Huamani, J. A., Breña-ore, J. L., & Sespedes-varkarsel, S. (2020). Study to Determine Levels of Cadmium in Cocoa Crops Applied to Inland Areas of Peru : “ The Case of the Campo Verde-Honoria Tournavista Corridor .” Agronomy, 10(10), 1576.
dc.relation.referencesRubin, B. E. R., Gibbons, S. M., Kennedy, S., Hampton-Marcell, J., Owens, S., & Gilbert, J. A. (2013). Investigating the Impact of Storage Conditions on Microbial Community Composition in Soil Samples. PLoS ONE, 8(7), e70460.
dc.relation.referencesSalam, L. B., Obayori, O. S., Ilori, M. O., & Amund, O. O. (2020). Effects of cadmium perturbation on the microbial community structure and heavy metal resistome of a tropical agricultural soil. Bioresources and Bioprocessing, 7(1), 1–19.
dc.relation.referencesSalmonová, H., & Bunešová, V. (2017). Methods of Studying Diversity of Bacterial Comunities: A Review. Scientia Agriculturae Bohemica, 48(3), 154–165.
dc.relation.referencesSanchez, E. R. C., & Barbosa Domínguez, N. H. (2019). Determinación del valor comercial de cultivos de cacao. Caso de estudio Vereda Ceibal en el municipio de Yacopí, y vereda Peñalosa en el municipio de Caparrapí en el Departamento de Cundinamarca [Trabajo de grado]. Universidad Distrital Francisco José de Caldas.
dc.relation.referencesSánchez, M. Á., León, D. G., Arce, S. M., López, T. D., & Rodríguez, P. M. (2017). Manual Técnico del Cultivo de Cacao Prácticas Latinoamericanas. Instituto Interamericano de Cooperación para la Agricultura (IICA). http://www.iica.int.
dc.relation.referencesSánchez, V., Zambrano, J., & Iglesias, C. (2019). La cadena de valor del cacao en América Latina y el Caribe. Quito, Ecuador: INIAP, Estación Experimental Santa Catalina. https://repositorio.iniap.gob.ec/handle/41000/5382.
dc.relation.referencesSantoyo, G., Hernández-Pacheco, C., Hernández-Salmerón, J., and Hernández-León, R. (2017). The role of abiotic factors modulating the plant-microbe-soil interactions: toward sustainable agriculture – a review. Spanish Journal of Agricultural Research, 15(1), 13.
dc.relation.referencesSchoonover, J. E., & Crim, J. F. (2015). An Introduction to Soil Concepts and the Role of Soils in Watershed Management. Journal of Contemporary Water Research & Education, 154(1), 21–47.
dc.relation.referencesSeshadri, B., Bolan, N. S., & Naidu, R. (2015). Rhizosphere-induced heavy metal (loid) transformation in relation to bioavailability and remediation. Journal of soil science and plant nutrition, 15(2), 524-548.
dc.relation.referencesShahid, M., Dumat, C., Khalid, S., Niazi, N. K., & Antunes, P. M. C. (2016). Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system. In Reviews of Environmental Contamination and Toxicology Volume 241 (pp. 73–173). Springer, Cham.
dc.relation.referencesShentu, J. L., He, Z. L., Yang, X. E., & Li, T. Q. (2008). Microbial activity and community diversity in a variable charge soil as affected by cadmium exposure levels and time. Journal of Zhejiang University: Science B, 9(3), 250–260.
dc.relation.referencesSilva, E. B., Alves, I. S., Alleoni, L. R. F., Grazziotti, P. H., Farnezi, M. M. M., Santos, L. L., Prochnow, J. T. & Fontan, I. C. I. (2020). Availability and toxic level of cadmium, lead and nickel in contaminated soils. Communications in Soil Science and Plant Analysis, 51(10), 1341-1356.
dc.relation.referencesSingh, K., Senadheera, D. B., & Cvitkovitch, D. G. (2014). An intimate link: two-component signal transduction systems and metal transport systems in bacteria. Future microbiology, 9(11), 1283-1293.
dc.relation.referencesSochor, J., Zitka, O., Hynek, D., Jilkova, E., Krejcova, L., Trnkova, L., Adam, V., Hubalek, J., Kynicky, J., Vrba, R., & Kizek, R. (2011). Bio-sensing of cadmium(II) ions using Staphylococcus aureus. Sensors, 11(11), 10638–10663.
dc.relation.referencesSoil Survey Staff. (2014). Keys to soil taxonomy. United States Department of Agriculture, Natural Resources Conservation Service, USA. In Soil Conservation Service.
dc.relation.referencesSoler, F. (2017). Diagnóstico de los niveles de cadmio en el suelo y su distribución en hojas y frutos de cacao Cultivado en Nilo y Yacopí, Cundinamarca [Trabajo de Grado]. Universidad Nacional de Colombia.
dc.relation.referencesSong, L., Pan, Z., Dai, Y., Chen, L., Zhang, L., Liao, Q., Yu, X., Guo, H. & Zhou, G. (2020). Characterization and comparison of the bacterial communities of rhizosphere and bulk soils from cadmium-polluted wheat fields. PeerJ, 8, e10302.
dc.relation.referencesSowmya, M., & Mohamed Hatha, A. A. (2017). Cadmium and Lead Tolerance Mechanisms in Bacteria and the Role of Halotolerant and Moderately Halophilic Bacteria in Their Remediation. In Handbook of Metal-Microbe Interactions and Bioremediation (pp. 1–18). CRC Press.
dc.relation.referencesSrinivasarao, C., Rama Gayatri, S., Venkateswarlu, B., Jakkula, V. S., Wani, S. P., Kundu, S., Sahrawat, K. L., Rajasekhara, B. K., Marimuthu, S. & Gopala Krishna, G. (2014). Heavy metals concentration in soils under rainfed agro-ecosystems and their relationship with soil properties and management practices. International Journal of Environmental Science and Technology, 11(7), 1959-1972.
dc.relation.referencesStein, L. Y., & Klotz, M. G. (2016). The nitrogen cycle. Current Biology, 26(3), R94–R98.
dc.relation.referencesSukarjo, Zulaehah, I., & Purbalisa, W. (2019, July). The critical limit of cadmium in three types of soil texture with shallot as an indicator plant. In AIP Conference Proceedings (Vol. 2120, No. 1, p. 040012). AIP Publishing LLC.
dc.relation.referencesSun, H., Shao, C., Jin, Q., Li, M., Zhang, Z., Liang, H., Lei, H., Qian, J. & Zhang, Y. (2022). Effects of cadmium contamination on bacterial and fungal communities in Panax ginseng-growing soil. BMC microbiology, 22(1), 1-14.
dc.relation.referencesTale, K. S., & Ingole, S. (2015). A review on role of physico-chemical properties in soil quality. Chemical Science Review and Letters, 4(13), 57-66.
dc.relation.referencesTheodoulou, F. L., and Kerr, I. D. (2015). ABC transporter research: going strong 40 years on. Biochemical Society Transactions, 43(5), 1033-1040.
dc.relation.referencesThukral, A. K. (2017). A review on measurement of Alpha diversity in biology. Agricultural Research Journal, 54(1), 1–10.
dc.relation.referencesTipayno, S. C., Truu, J., Samaddar, S., Truu, M., Preem, J. K., Oopkaup, K., Espenberg, M., Chatterjee, P., Kang, Y., Kim, K. & Sa, T. (2018). The bacterial community structure and functional profile in the heavy metal contaminated paddy soils, surrounding a nonferrous smelter in South Korea. Ecology and Evolution, 8(12), 6157-6168.
dc.relation.referencesTiwari, S., & Lata, C. (2018). Heavy metal stress, signaling, and tolerance due to plant-associated microbes: an overview. Frontiers in plant science, 9, 452.
dc.relation.referencesUhlik, O., Strejcek, M., Hroudova, M., Demnerova, K., & Macek, T. (2013). Identification and characterization of bacteria with bioremediation potential: from cultivation to metagenomics. Chemické listy, 107(8), 614-622.
dc.relation.referencesUr Rahman, S., Xuebin, Q., Riaz, L., Yasin, G., Noor Shah, A., Shahzad, U., Jahan, M. S., Dita, A., Bashir, M. A., Rehim, A. & Du, Z. (2021). The interactive effect of pH variation and cadmium stress on wheat (Triticum aestivum L.) growth, physiological and biochemical parameters. Plos one, 16(7), e0253798.
dc.relation.referencesUSDA. (2014). Soil Physical and Chemical Properties. (21 de enero de 2022). https://www.nrcs.usda.gov/wps/portal/nrcs/detail/nj/home/?cid=nrcs141p2_018993#:~:text=Some%20plant%20nutrients%20and%20metals,cations%20in%20the%20soil%20environment.
dc.relation.referencesVan Vliet, J. A., & Giller, K. E. (2017). Mineral nutrition of cocoa: a review. Advances in agronomy, 141, 185-270.
dc.relation.referencesVilla, J. E. L., Peixoto, R. R. A., & Cadore, S. (2014). Cadmium and Lead in Chocolates Commercialized in Brazil. Journal of Agricultural and Food Chemistry, 62(34), 8759–8763.
dc.relation.referencesWang, X., Lu, X., Yi, X., Li, Z., Zhou, Y., Duan, G., & Lei, M. (2021). Changes in soil available cadmium and bacterial communities after fallowing depend on contamination levels. Journal of Soils and Sediments, 21(3), 1408-1419.
dc.relation.referencesWei, H., Peng, C., Yang, B., Song, H., Li, Q., Jiang, L., Wei, G., Wang, K., Wang, H., Liu, S., Liu, X., Chen, D., Li, Y., & Wang, M. (2018). Contrasting Soil Bacterial Community, Diversity, and Function in Two Forests in China. Frontiers in Microbiology, 9, 1693.
dc.relation.referencesWillis, C., Desai, D., & LaRoche, J. (2019). Influence of 16S rRNA variable region on perceived diversity of marine microbial communities of the Northern North Atlantic. FEMS microbiology letters, 366(13), fnz152.
dc.relation.referencesWu, Z., Zhao, X., Sun, X., Tan, Q., Tang, Y., Nie, Z., & Hu, C. (2015). Xylem transport and gene expression play decisive roles in cadmium accumulation in shoots of two oilseed rape cultivars (Brassica napus). Chemosphere, 119, 1217–1223.
dc.relation.referencesXia, P., Lian, S., Wu, Y., Yan, L., Quan, G., & Zhu, G. (2021). Zinc is an important inter-kingdom signal between the host and microbe. Veterinary Research, 52(1), 1-14.
dc.relation.referencesXie, Y., Bu, H., Feng, Q., Wassie, M., Amee, M., Jiang, Y., Bi, Y., Hu, L. & Chen, L. (2021). Identification of Cd-resistant microorganisms from heavy metal-contaminated soil and its potential in promoting the growth and Cd accumulation of bermudagrass. Environmental Research, 200, 111730.
dc.relation.referencesYang, G. L., Zheng, M. M., Tan, A. J., Liu, Y. T., Feng, D., & Lv, S. M. (2021). Research on the mechanisms of plant enrichment and detoxification of cadmium. Biology, 10(6), 544.
dc.relation.referencesYakoubi, L., Benmalek, Y., Benayad, T., & Fardeau, M. L. (2018). Characterization of cadmium-resistant bacteria isolated from polluted soils in Algeria, and evaluation of cadmium removal, using living free and immobilized cells. Revue d'Ecologie, Terre et Vie, 73(3), 255-268.
dc.relation.referencesYu, X., Zhao, J., Liu, X., Sun, L., Tian, J., & Wu, N. (2021). Cadmium pollution impact on the bacterial community structure of arable soil and the isolation of the cadmium resistant bacteria. Frontiers in microbiology, 12.
dc.relation.referencesZeng, X., Tang, J., Liu, X., & Jiang, P. (2012). Response of P. aeruginosa E1 gene expression to cadmium stress. Current Microbiology, 65(6), 799–804.
dc.relation.referencesZug, K. L. M., Huamaní Yupanqui, H. A., Meyberg, F., Cierjacks, J. S., & Cierjacks, A. (2019). Cadmium Accumulation in Peruvian Cacao (Theobroma cacao L.) and Opportunities for Mitigation. Water, Air, and Soil Pollution, 230(3), 72.
dc.relation.referencesZulfiqar, U., Ayub, A., Hussain, S., Waraich, E. A., El-Esawi, M. A., Ishfaq, M., Ahmad, M., Ali, N. & Maqsood, M. F. (2021). Cadmium toxicity in plants: Recent progress on morpho-physiological effects and remediation strategies. Journal of Soil Science and Plant Nutrition, 1-58.
dc.relation.referencesAbbas, S. Z., Rafatullah, M., Hossain, K., Ismail, N., Tajarudin, H. A., & Abdul Khalil, H. P. S. (2018). A review on mechanism and future perspectives of cadmium-resistant bacteria. International Journal of Environmental Science and Technology, 15(1), 243–262.
dc.relation.referencesAbbas, S. Z., Rafatullah, M., Ismail, N., & Lalung, J. (2014). Isolation, identification, characterization, and evaluation of cadmium removal capacity of Enterobacter species. Journal of basic microbiology, 54(12), 1279-1287.
dc.relation.referencesAbellan-Schneyder, I., Matchado, M. S., Reitmeier, S., Sommer, A., Sewald, Z., Baumbach, J., List, M. & Neuhaus, K. (2021). Primer, pipelines, parameters: issues in 16S rRNA gene sequencing. msphere, 6(1), e01202-20.
dc.relation.referencesAßhauer, K. P., Wemheuer, B., Daniel, R., & Meinicke, P. (2015). Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics, 31(17), 2882-2884.
dc.relation.referencesAgrawal, P. K., Agrawal, S., & Verma, S. K. (2011). Methods for studying microbial diversity from soyabean rhizosphere by phenotypic and molecular approach. Advances in Applied Science Research, 2(5), 538–545.
dc.relation.referencesAhemad, M. (2012). Implications of bacterial resistance against heavy metals in bioremediation: A review. IIOAB Journal, 3(3), 39–46.
dc.relation.referencesAislabie, J., Deslippe, J. R., & Dymond, J. R. (2013). Soil microbes and their contribution to soil services. Ecosystem Services in New Zealand - Conditions and Trends, Lincoln, New Zealand, 1(12), 143-161.
dc.relation.referencesAlexandrino, M., Costa, R., Canário, A. V., & Costa, M. C. (2014). Clostridia initiate heavy metal bioremoval in mixed sulfidogenic cultures. Environmental science & technology, 48(6), 3378-3385.
dc.relation.referencesAli, Q., Ayaz, M., Yu, C., Wang, Y., Gu, Q., Wu, H., & Gao, X. (2022). Cadmium tolerant microbial strains possess different mechanisms for cadmium biosorption and immobilization in rice seedlings. Chemosphere, 135206.
dc.relation.referencesAl-Dhabi, N. A., Esmail, G. A., Ghilan, A. K. M., & Arasu, M. V. (2019). Optimizing the management of cadmium bioremediation capacity of metal-resistant pseudomonas sp. Strain al-dhabi-126 isolated from the industrial city of Saudi Arabian environment. International Journal of Environmental Research and Public Health, 16(23), 4788.
dc.relation.referencesAltowayti, W. A. H., Almoalemi, H., Shahir, S., & Othman, N. (2020). Comparison of culture-independent and dependent approaches for identification of native arsenic-resistant bacteria and their potential use for arsenic bioremediation. Ecotoxicology and environmental safety, 205, 111267.
dc.relation.referencesArce-Inga, M., González-Pérez, A. R., Hernandez-Diaz, E., Chuquibala-Checan, B., Chavez-Jalk, A., Llanos-Gomez, K. J., Leiva-Espinoza, S. T., Oliva-Cruz, S. M. & Cumpa-Velasquez, L. M. (2022). Bioremediation Potential of Native Bacillus sp. Strains as a Sustainable Strategy for Cadmium Accumulation of Theobroma cacao in Amazonas Region. Microorganisms, 10(11), 2108.
dc.relation.referencesArévalo-Gardini, E., Obando-Cerpa, M. E., Zúñiga-Cernades, L. B., Arévalo-Hernández, C. O., Baligar, V., & He, Z. (2016). Metales pesados en suelos de plantaciones de cacao (Theobroma cacao L.) en tres regiones del Perú. Ecología aplicada, 15(2), 81-89.
dc.relation.referencesArévalo-Gardini, E., Arévalo-Hernández, C. O., Baligar, V. C., & He, Z. L. (2017). Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L.) in major cacao growing regions in Peru. Science of the Total Environment, 605, 792–800.
dc.relation.referencesArgüello, D., Chavez, E., Lauryssen, F., Vanderschueren, R., Smolders, E., & Montalvo, D. (2019). Soil properties and agronomic factors affecting cadmium concentrations in cacao beans: A nationwide survey in Ecuador. Science of the total environment, 649, 120-127.
dc.relation.referencesAzaroual, S. E., Kasmi, Y., Aasfar, A., El Arroussi, H., Zeroual, Y., El Kadiri, Y., Zrhidri, A., Elfahime, E., Sefiani, A. & Meftah Kadmiri, I. (2022). Investigation of bacterial diversity using 16S rRNA sequencing and prediction of its functionalities in Moroccan phosphate mine ecosystem. Scientific reports, 12(1), 1-16.
dc.relation.referencesAzeez, M. O., Adesanwo, O. O., & Adepetu, J. A. (2021). Effects of Copper Fungicides Spray on Nutrient Contents in Soils of Cocoa Growing Areas of Southwestern Nigeria. Tanzania Journal of Science, 47(5), 1546-1559.
dc.relation.referencesBagheri, R., Bashir, H., Ahmad, J., Baig, A., & Qureshi, M. I. (2014). Effects of Cadmium Stress on Plants. Environmental sustainability: concepts, principles, evidences and innovations, 271–277.
dc.relation.referencesBakker, P. A., Berendsen, R. L., Doornbos, R. F., Wintermans, P. C., & Pieterse, C. M. (2013). The rhizosphere revisited: root microbiomics. Frontiers in plant science, 4, 165.
dc.relation.referencesBeattie, R. E., Henke, W., Campa, M. F., Hazen, T. C., McAliley, L. R., & Campbell, J. H. (2018). Variation in microbial community structure correlates with heavy-metal contamination in soils decades after mining ceased. Soil Biology and Biochemistry, 126, 57-63.
dc.relation.referencesBeg, M. S., Ahmad, S., Jan, K., & Bashir, K. (2017). Status, supply chain and processing of cocoa - A review. Trends in Food Science and Technology, 66, 108–116.
dc.relation.referencesBigalke, M., Ulrich, A., Rehmus, A., & Keller, A. (2017). Accumulation of cadmium and uranium in arable soils in Switzerland. Environmental Pollution, 221, 85–93.
dc.relation.referencesBissett, A., Brown, M. V., Siciliano, S. D., & Thrall, P. H. (2013). Microbial community responses to anthropogenically induced environmental change: Towards a systems approach. Ecology Letters, 16, 128–139.
dc.relation.referencesBolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Harriet, A., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Asker Brejnrod ,Colin J. Brislawn ,C. Tito Brown ,Benjamín J. Callahan, Caraballo Rodríguez, A. M., Chase, J., Cope, E. K., Da Silva, R., Diener, C., Dorrestein, P. C., Douglas, G. M. & Caporaso, J. G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature biotechnology, 37(8), 852-857.
dc.relation.referencesBouzat, J. L., & Hoostal, M. J. (2013). Evolutionary analysis and lateral gene transfer of two-component regulatory systems associated with heavy-metal tolerance in bacteria. Journal of molecular evolution, 76(5), 267-279.
dc.relation.referencesBravo, D., & Braissant, O. (2022). Cadmium‐tolerant bacteria: current trends and applications in agriculture. Letters in applied microbiology, 74(3), 311-333.
dc.relation.referencesBravo, D., Leon-Moreno, C., Martínez, C. A., Varón-Ramírez, V. M., Araujo-Carrillo, G. A., Vargas, R., Quiroga-Mateus, R., Zamora, A. & Rodríguez, E. A. G. (2021a). The first national survey of cadmium in cacao farm soil in Colombia. Agronomy, 11(4), 761.
dc.relation.referencesBravo, D., Pardo‐Díaz, S., Benavides‐Erazo, J., Rengifo‐Estrada, G., Braissant, O., & Leon‐Moreno, C. (2018). Cadmium and cadmium‐tolerant soil bacteria in cacao crops from northeastern Colombia. Journal of applied microbiology, 124(5), 1175-1194.
dc.relation.referencesBravo, D., Santander, M., Rodríguez, J., & Escobar, S. (2021b). Cadmium in Cacao:‘From Soil to Bar’the Journey of Cadmium at a Farm Level. Research Square, 1-16.
dc.relation.referencesBreitwieser, F. P., Lu, J., & Salzberg, S. L. (2018). A review of methods and databases for metagenomic classification and assembly. Briefings in Bioinformatics, 20(4), 1125–1136.
dc.relation.referencesCáceres, J. (2017). Microorganismos cultivables asociados a cadmio (Cd) presentes en suelos cacaoteros de los municipios de Yacopí y Nilo, como estrategia de biorremediación [Trabajo de grado]. Universidad Nacional de Colombia.
dc.relation.referencesCáceres, P. F. F., Vélez, L. P., Junca, H., & Moreno-Herrera, C. X. (2021). Theobroma cacao L. agricultural soils with natural low and high cadmium (Cd) in Santander (Colombia), contain a persistent shared bacterial composition shaped by multiple soil variables and bacterial isolates highly resistant to Cd concentrations. Current research in microbial sciences, 2, 100086.
dc.relation.referencesCallaham Jr, M. A., & Stanturf, J. A. (2021). Soil ecology and restoration science. In Soils and Landscape Restoration (pp. 39-62). Academic Press.
dc.relation.referencesCaporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A., Turnbaugh, P. J., Fierer, N., & Knight, R. (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of the United States of America, 108(Supplement 1), 4516–4522.
dc.relation.referencesCharrupi Riascos, N., & Martínez Novoa, D. C. (2017). Estudio ambiental del cadmio y su relación con suelos destinados al cultivo de cacao en los departamentos de Arauca y Nariño [Trabajo de grado]. Universidad de La Salle.
dc.relation.referencesChavez, E., He, Z. L., Stoffella, P. J., Mylavarapu, R. S., Li, Y. C., Moyano, B., & Baligar, V. C. (2015). Concentration of cadmium in cacao beans and its relationship with soil cadmium in southern Ecuador. Science of the Total Environment, 533, 205–214.
dc.relation.referencesChellaiah, E. R. (2018). Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: a minireview. Applied Water Science, 8(6), 154.
dc.relation.referencesChen, Y. P., Liu, Q., Liu, Y. J., Jia, F. A., & He, X. H. (2014). Responses of soil microbial activity to cadmium pollution and elevated CO 2. Scientific Reports, 4, 4287.
dc.relation.referencesChu, D. (2018). Effects of heavy metals on soil microbial community. IOP Conference Series: Earth and Environmental Science (Vol. 113, p. 012009).
dc.relation.referencesCordoba-Novoa, H. A., Cáceres-Zambrano, J., & Torres-Rojas, E. (2021). Assessment of native cadmium-resistant bacteria in cacao (Theobroma cacao L.)-cultivated soils. BioRxiv.
dc.relation.referencesCota-Ruiz, K., López de los Santos, Y., Hernández-Viezcas, J. A., Delgado-Rios, M., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2019). A comparative metagenomic and spectroscopic analysis of soils from an international point of entry between the US and Mexico. Environment International, 123, 558–566.
dc.relation.referencesDeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., Huber, T., Dalevi., D., Hu, P. & Andersen, G. L. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and environmental microbiology, 72(7), 5069-5072.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembMicroorganismos
dc.subject.lembMicro-organisms
dc.subject.lembBacterias
dc.subject.lembBacteria
dc.subject.proposalMetal pesado
dc.subject.proposalCacao
dc.subject.proposalDiversidad
dc.subject.proposalComunidad bacteriana
dc.subject.proposalMetagenómica
dc.subject.proposalHeavy metal
dc.subject.proposalCacao
dc.subject.proposalDiversity
dc.subject.proposalBacterial community
dc.subject.proposalMetagenomics
dc.title.translatedCharacterization of bacterial microbiomes present in cacao soils with high and low cadmium concentration in the municipality of Yacopí – Cundinamarca
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameDivisión de Investigación de la Universidad Nacional de Colombia (Proyecto Hermes: 42156)
dcterms.audience.professionaldevelopmentPúblico general


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito