Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorRodríguez Martínez, Jairo Arbey
dc.contributor.advisorDeluque Toro, Críspulo Enrique
dc.contributor.authorMuñoz Pulido, Karen Alexandra
dc.date.accessioned2023-07-19T14:50:22Z
dc.date.available2023-07-19T14:50:22Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84219
dc.descriptionilustraciones, fotografías
dc.description.abstractEn este trabajo se reporta la síntesis del material denominado ferrocobaltita lantánida La2FeCoO6 mediante el método modificado de Pechini. Se realizó el estudio experimental de las propiedades estructurales, morfológicas y magnéticas y se implementó la teoría funcional de la densidad mediante el código VASP para analizar las bandas de energı́a, densidad de estados y las propiedades termofísicas que caracterizan a este material. El refinamiento de Rietveld de los patrones experimentales de difracción de rayos X reveló la cristalización de este material en una estructura monoclínica similar a la perovskita, grupo espacial P21 /n (#14). Por otra parte, las imágenes de microscopía electrónica de barrido y microscopía de fuerza atómica revelaron que la morfología de la superficie es esencialmente policristalina, con tamaños de grano medios entre 177 y 188 nm. Se aplicó la espectroscopia dispersiva de rayos X mostrando en el material La, Fe, Co y O en las proporciones estequiométricas esperadas. Las curvas de histéresis magnética revelan el carácter ferromagnético de este material para diferentes temperaturas evaluadas. Además, las curvas de respuesta I-V muestran un comportamiento similar al de un semiconductor con una figura de exponente de mérito de 1.53 del tipo varistor. El comportamiento de semiconductor ferromagnético sugiere que la ferrocobaltita lantánida La2FeCoO6 tiene una potencial aplicación en dispositivos espintrónicos. Se efectuaron cálculos ab inicio de las propiedades electrónicas y termodinámicas para la ferrocobaltita lantánida La2FeCoO6 . Para efectuar los cálculos se usó GGA+U para incluir la energía de intercambio y correlación con la corrección del potencial de Hubbard indicado para los átomos de Fe y Co. Por medio de estos cálculos se estableció que la La2FeCoO6 se comporta como un semiconductor, con un gap de energı́a de E g = 2,35 eV . Se observaron fuertes hibridaciones entre los orbitales de O-2p en la banda de valencia con los estados Fe 2+ -3d y Co 4+ -3d permiten explicar la naturaleza ferromagnética del material a través del mecanismo de superintercambio entre estados de alto espı́n de Fe 2+ con estados de bajo espı́n de Co 4+ mediado por los orbitales O 2− . La dependencia del calor especı́fico con respecto a la temperatura y la presión, el coeficiente de expansión térmica, la temperatura de Debye y el parámetro de Grüneisen, se calcularon a partir de la ecuación de estado utilizando el modelo de cuasi-armónico de Debye. Se observa que los resultados obtenidos para este material a nivel teórico son compatibles con los resultados experimentales reportados. (Texto tomado de la fuente)
dc.description.abstractIn this research is reported the synthesis for the lanthanide ferrocobaltite La2FeCoO6 using the modified Pechini route. The experimental study was carried out of structural, morphological and magnetic properties and density functional theory was used for studying energy bands, the density of states and termophysical properties of this perovskite. The Rietveld refinement of the experimental patterns of X-ray diffraction reveald the crystallization of this material in a monoclinic structure belonging to the space group P21/n (#14). Besides, the images of scanning electron microscope (SEM) and atomic force microscope (AFM) reveled that the morphologic of the sample is esscentially polycrystaline distribution wich is formed by grains of random sizes and shapes between 177 and 188 nm. Dispersive X-ray spectroscopy was applied showing in the material La, Fe, Co and O in the expected stoichiometric proportions. The magnetic hysteresis curves reveal the ferromagnetic character of this material for different evaluated temperatures. In addition, the I-V response curves show behavior similar to a semiconductor with an exponent of merit figure of 1.53 of the varistor type. The ferromagnetic semiconductor behavior suggests that lanthanide ferrocobaltite La2FeCoO6 has a potential application in spintronic devices. Ab initio calculations of the electronic and thermodynamic properties for the ferrocobaltite of the perovskite-type La2FeCoO6 are reported. To carry out the calculations, GGA+U was used to include the energy of exchange and correlation with the correction of the Hubbard potential indicated for the Fe and Co atoms. Through these calculations it was established that La2FeCoO6 behaves like a semiconductor, with an energy gap of E g = 2,35 eV . Strong hybridizations were observed between the O-2p orbitals in the valence band with the Fe 2+ -3d and Co 4+ − 3d states, allowing to explain the ferromagnetic nature of the material through the super-exchange mechanism between high-spin states of F e 2+ with low-spin states of Co 4+ mediated by O 2− orbitals. The dependence of specific heat with respect to temperature and pressure, as well as the coefficient of thermal expansion, the Debye temperature, and the Grüneisen parameter were calculated from the equation of state, using the quasi-harmonic Debye model. Theoretical results obtained are comparable with the experimental values obtained in the literature.
dc.format.extentxvii, 93 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc530 - Física::537 - Electricidad y electrónica
dc.subject.ddc530 - Física::538 - Magnetismo
dc.titleAspectos teóricos y experimentales de la ferrocobaltita lantánida La2FeCoO6
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Física
dc.contributor.researchgroupGrupo de Física de Nuevos Materiales
dc.contributor.researchgroupGema ­ Grupo de Estudio de Materiales
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Física
dc.description.researchareaFísica de Nuevos Materiales.
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá,Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesSami Vasala and Maarit Karppinen. A2B'B''O6 perovskites: A review. Progress in Solid State Chemistry, 43(1):1–36, 2015.
dc.relation.referencesDiana Aljure. Análisis estructural y electrónico de la perovskita doble compleja de LaBiFe2O6 . Master’s thesis, Universidad Nacional de Colombia, 2016.
dc.relation.referencesWilliam Callister. Materials Science and Engineering, 7th ed. John Wiley Sons, Inc.,New York, 2007.
dc.relation.referencesBrian Mitchell. An introduction to materials engineering and science. John Wiley Sons, INC., New Jersey, 2004.
dc.relation.referencesM. Ermrich and D. Opper. XRD for the analyst Getting acquainted with the principles. PANalytical B.V., Almelo, The Netherlands, 2013.
dc.relation.referencesRandirley Beltrán Rodríguez. Síntesis y estudio del acoplamiento cristalográfico y estabilidad química en compósitos Sr2HoNbO6 / YBa2Cu3O7−δ . Master’s thesis, Universidad Nacional de Colombia, 2015.
dc.relation.referenceshttps://www.scimed.co.uk/education/sem-scanning-electron microscopy/. A brief introduction to sem (scanning electron microscopy), 2022 (accedido Febrero, 2022).
dc.relation.referencesWikipedia contributors. Scanning electron microscope — Wikipedia, the free encyclopedia, 2023. [Online; accessed 8-April-2023].
dc.relation.referencesJesús Pino. Estudio nanométrico de biocompatibilidad y adhesividad celular a biomateriales utilizados en cirugı́a ortopédica. 01- 2008.
dc.relation.referencesKaren Muñoz. Caracterización electrónica y estructural de heteroestructuras de Van der Waals compuestas por grafeno y MoS2. Master’s thesis, Universidad de Bogotá Jorge Tadeo Lozano, 2016.
dc.relation.referencesJavier Dofour. El salto cuántico a la fama de las perovskitas., 2015 (accedido Octubre, 2019).
dc.relation.referencesNevena Marinova, Silvia Valero, and Juan Delgado. Organic and Perovskite Solar Cells: Working Principles, Materials and Interfaces. Journal of Colloid and Interface Science, 488, 11-2016.
dc.relation.referencesMaggio P. Pechini. Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor, July 1967.
dc.relation.referencesAngela Raba, Diego Suarez-Ballesteros, José Martı́nez-Zambrano, Hugo Rojas, and Miryam Rincón-Joya. Pechini method used in the obtention of semiconductor nanoparticles based niobium. DYNA, 82:52–58, 02-2015.
dc.relation.referencesJ. A. Cuervo Farfán, J. P. Benavides Lara, C. A. Parra Vargas, D. A. Landı́nez Téllez, and J. Roa-Rojas. Structural Characteristics and Electric and Magnetic Features of the Nd2,68Sr1,32Mn1,2Ti1,32Fe1,48O12 Ferromagnetic Semiconductor. Journal of Low Temperature Physics, sep 2020.
dc.relation.referencesCrispulo Deluque, Karen Muñoz, Jairo Rodrı́guez, David Landı́nez, and Jairo Roa. Superexchange Ferromagnetic Couplingand Thermodynamic Features of the La2FeCoO6 Semiconductor. Journal of Low Temperature Physics, 206:269–280, 2022.
dc.relation.referencesJ. Roa-Rojas, C. E. Deluque Toro, A. V. Gil Rebaza, X. A. Velásquez Moya, and D. A. Landı́nez Téllez. Spintronic Properties in Complex Perovskites: A Concordance Between Experiments and Ab-Initio Calculations, pages 183–207. Springer International Publishing, Cham, 2022.
dc.relation.referencesL. C Garrido, C. E Deluque Toro, I.Dı́az, D. A Landı́nez Téllez, and J Roa-Rojas. First principles calculations to investigate elastic, electronic and thermophysical properties of the Dy2Bi2Fe4O12 ferromagnetic semiconductor. Semiconductor Science and Technology, 36(9):095015, Aug 2021.
dc.relation.referencesP. Hohenberg and W. Kohn. Phys. Rev., 136:B864–B871, 1964.
dc.relation.referencesW. Kohn and L. J. Sham. Phys. Rev., 140:A1133–A1138, 1965.
dc.relation.referencesCamilo Espejo. Funcionales de Van der Waals en ABINIT: Implementación y aplicaciones. PhD thesis, Centro de investigación y de estudios avanzados del Instituto Politécnico Nacional, 2012.
dc.relation.referencesW. Kohn. Nobel lecture: Electronic structure of matter ̄wave functions and density functionals. Rev. Mod. Phys., 71:1253–1266, Oct 1999.
dc.relation.referencesJörg Neugebauer and Tilmann Hickel. Density functional theory in materials science. Wiley Interdisciplinary Reviews: Computational Molecular Science, 3(5):438–448, sep 2013.
dc.relation.referencesMartin Richard M. Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press, apr 2004.
dc.relation.referencesD. R. Hamann. H 2 O hydrogen bonding in density-functional theory. Phys. Rev. B, 55:R10157–R10160, Apr 1997.
dc.relation.referencesLucangelo Dimesso. Pechini Processes: An Alternate Approach of the Sol–Gel Method, Preparation, Properties, and Applications, pages 1–22. Springer International Publishing, Cham, 2016.
dc.relation.referencesM. A. Vargas and Y. Franco. TiO2 sintetizado por el método de precursor polimerico (Pechini): estructura de la resina intermedia.
dc.relation.referencesDr. Vadivel Murugan Arumugam, S. Navale, and Vadlakonda Ravi. Preparation of nanocrystalline ferroelectric BaBi4Ti4O15 by Pechini method. Materials Letters - MATER LETT, 60:1023–1025, 04 2006.
dc.relation.referencesAbdul Majid, Jim Tunney, Steve Argue, Dashan Wang, Mike Post, and Jim Margeson. Preparation of SrFeO2,85 perovskite using a citric acid assisted Pechini-type method. Journal of Alloys and Compounds, 398(1-2):48–54, 2005.
dc.relation.referencesC. Kittel. Introducción a la física del estado sólido. Reverté, 1995.
dc.relation.referencesB.D. Cullity. Elements of X ray diffraction. Addison-Wesley Publishing Company,Inc, 1956.
dc.relation.referencesSusana Petrick Casagrane and Ronald Castillo Blanco. Método de Rietveld para el estudio de estructuras cristalinas. Universidad Nacional de Ingeniería, 2005.
dc.relation.referencesGonzalo Martı́nez Lozano. Análisis de parámetros microestructurales: tamaño de cristalita y microdeformación de compuestos tipo hidrotalcita de cobalto. Master’s thesis, Instituto Politécnico Nacional-México, 2007.
dc.relation.referencesMarı́a Luisa Ramón Gracı́a. Introducción al método Rietveld. Universidad Nacional Autónoma de México, 2007.
dc.relation.referencesBrian H. Toby and Robert B. Von Dreele. Gsas-II: the genesis of a modern opensource all purpose crystallography software package. Journal of Applied Crystallography, 46(2):544–549, 2013.
dc.relation.referencesK. M. Ginell, C. Horn, R. B. Von Dreele, and B. H. Toby. Materials for learning use of gsas-II. Powder Diffraction, 34(2):184–188, 2019.
dc.relation.referencesM. Abd Mutalib, M.A. Rahman, M.H.D. Othman, A.F. Ismail, and J. Jaafar. Chapter 9 - scanning electron microscopy (sem) and energy-dispersive x-ray (edx) spectroscopy. In Nidal Hilal, Ahmad Fauzi Ismail, Takeshi Matsuura, and Darren Oatley-Radcliffe, editors, Membrane Characterization, pages 161–179. Elsevier, 2017.
dc.relation.referencesBraga P.C Ricci D. How the atomic force microscope works. Atomic Force Microscopy. Methods in Molecular Biology, 242:3–12, 01- 2004.
dc.relation.referenceshttps://parksystems.com/products/small-sample-afm/park nx10/overview. Park system Nx10 atomic force microscope (AFM), 2020 (accedido Junio, 2020).
dc.relation.referencesSimon Foner. Versatile and sensitive vibrating-sample magnetometer. Review of Scientific Instruments, 30(7):548–557, 1959.
dc.relation.referencesFreddy P. Guachún and Victor J. Raposo. Diseño y calibración de un magnetómetro de muestra vibrante: Caracterización de materiales magnéticos. Momento, pages 45 – 62, 06-2018.
dc.relation.referencesJ. A. Jaramillo Palacio, K. A. Muñoz Pulido, J. Arbey Rodrı́guez, D. A. Landı́nez Téllez, and J. Roa-Rojas. Electric, magnetic and microstructural features of the La2CoFeO6 lanthanide ferrocobaltite obtained by the modified Pechini route. Journal of Advanced Dielectrics, 11(03):2140003, 2021.
dc.relation.referencesMuhammad Rizwan Saleem, Liang Fang, Haibo Ruan, F. Wu, Q. L. Huang, C. L. Xu, and Chunyang Kong. Effect of zinc acetate concentration on the structural and optical properties of ZnO thin films deposited by Sol-Gel method. International Journal of Physical Sciences, 7:2971–2979, 2012.
dc.relation.referencesB. Rajesh Kumar and B. Hymavathi. X-ray peak profile analysis of solid-state sintered alumina doped zinc oxide ceramics by williamson–hall and size-strain plot methods. Journal of Asian Ceramic Societies, 5(2):94–103, 2017.
dc.relation.referencesHuei-Ru Fuh, Ke-Chuan Weng, Ching-Ray Chang, and Yin-Kuo Wang. Electronic structure of ferromagnetic semiconductor material on the monoclinic and rhombohedral ordered double perovskites La2FeCoO6 . Journal of Applied Physics, 117(17):17B902, 2015.
dc.relation.referencesWondratschek. W. Special topics on space groups, International Tables for Crystallography, volume A. International Union of Crystallography, 2006.
dc.relation.referencesCaroline A Schneider, Wayne S Rasband, and Kevin W Eliceiri. NIH Image to ImageJ: 25 years of image analysis. Nature methods, 9(7):671–675, 2012.
dc.relation.referencesE.C. Aguiar, M.A. Ramirez, J.A. Cortes, L.S. Rocha, E. Borsari, and A.Z. Simões. Magnetoelectric coupling of LaFeO3 /BiFeO3 heterostructures. Ceramics International, 41(10, Part A):13126–13134, 2015.
dc.relation.referencesQingrong Yao, Chuang Tian, Zhao Lu, Jiang Wang, Huai ying Zhou, and Guang Hui Rao. Antiferromagnetic-ferromagnetic transition in Bi-doped LaFeO3 nanocrystalline ceramics. Ceramics International, 46:20472–20476, 2020.
dc.relation.referencesJorlandio F Felix, EF da Silva, Elder A de Vasconcelos, and Walter M de Azevedo. Tailoring the electrical properties of ZnO/polyaniline heterostructures for device applications. Journal of the Korean Physical Society, 58(5):1256–1260, 2011.
dc.relation.referencesJavier A Cuervo Farfán, Crı́spulo E Deluque Toro, Carlos A Parra Vargas, David A Landı́nez Téllez, and Jairo Roa-Rojas. Experimental and theoretical determination of physical properties of Sm 2 Bi 2 Fe 4 O 12 ferromagnetic semiconductors. Journal of Materials Chemistry C, 8(42):14925–14938, 2020.
dc.relation.referencesAgnes Vojta, Qingzhe Wen, and David R Clarke. Influence of microstructural disorder on the current transport behavior of varistor ceramics. Computational materials science, 6(1):51–62, 1996.
dc.relation.referenceshttps://www.vasp.at/. The Vienna Ab initio Simulation Package: atomic scale materials modelling from first principles., 2022 (accedido noviembre, 2022).
dc.relation.referencesWikipedia contributors. Vienna ab initio simulation package — Wikipedia, the free encyclopedia, 2022. [Online; accessed 25-october-2022].
dc.relation.referencesJ. P. Perdew, E. R. McMullen, and Alex Zunger. Density-functional theory of the correlation energy in atoms and ions: A simple analytic model and a challenge. Phys. Rev. A, 23:2785–2789, Jun 1981.
dc.relation.referencesG. Kresse and J. Furthmüller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1):15–50, 1996.
dc.relation.referencesPaul Guss, Michael E Foster, Bryan M Wong, F Patrick Doty, Kanai Shah, Michael R Squillante, Urmila Shirwadkar, Rastgo Hawrami, Joshua Tower, and Ding Yuan. Results for aliovalent doping of CeBr3 with Ca2+ . Journal of Applied Physics, 115(3):034908, 2014.
dc.relation.referencesAI Liechtenstein, Vladimir I Anisimov, and Jan Zaanen. Density-functional theory and strong interactions: Orbital ordering in mott-hubbard insulators. Physical Review B, 52(8):R5467, 1995.
dc.relation.referencesM. Methfessel and A. T. Paxton. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B, 40:3616–3621, Aug 1989.
dc.relation.referencesCrı́spulo Enrique Deluque-Toro, David A. Landı́nez-Téllez, and Jairo Roa-Rojas. Análisis ab-initio de las propiedades magnéticas, estructurales, electrónicas y termodinámicas de la manganita Ba2TiMnO6. DYNA, 85(205):27–36, abr. 2018.
dc.relation.referencesPatrick M. Lufaso, Michael W.and Woodward. Using Bond Valences to Model the Structures of Ternary and Quaternary Oxides, pages 59–90. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.
dc.relation.referencesF. D. Murnaghan. The compressibility of media under extreme pressures. Proceedings of the National Academy of Sciences, 30(9):244–247, 1944.
dc.relation.referencesEstrada Contreras V.R, Alarcón Suesca C.E, Deluque Toro C.E, Landı́nez Téllez D.A, and Roa Rojas J. Crystalline, ferromagnetic-semiconductor and electronic features of the terbium-based cobalt-ferrite Tb2FeCoO6 . Ceramics International, 47(10):14408–14417, 2021.
dc.relation.referencesYuji Naruse and Atsushi Takamori. Orbital phase perspective of Goodenough-Kanamori-Anderson rules (gka rules) in superexchange interaction. ChemRxiv, 2020.
dc.relation.referencesC.E. Alarcón-Suesca, C.E. Deluque Toro, A.V. Gil Rebaza, D.A. Landı́nez Téllez, and J. Roa-Rojas. Ab-initio studies of electronic, structural and thermophysical properties of the Sr 2 TiMoO6 double perovskite. Journal of Alloys and Compounds, 771:1080–1089, 2019.
dc.relation.referencesDeluque Toro C.E, A.S Mosquera Polo, A.V Gil Rebaza, Landı́nez Téllez D.A, and Roa Rojas J. Ab Initio Study of the Electronic Structure, Elastic Properties, Magnetic Feature and Thermodynamic Properties of the Ba2NiMoO6 Material. J Low Temp Phys, 192:265–285, 2018.
dc.relation.referencesE. I Andritsos, E. Zarkadoula, A E Phillips, M T Dove, C J Walker, V V Brazhkin, and K Trachenko. The heat capacity of matter beyond the dulong–petit value. Journal of Physics: Condensed Matter, 25(23):235401, may 2013.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembMinerales
dc.subject.lembOres
dc.subject.lembMinerales de sulfuro
dc.subject.lembSulphide minerals
dc.subject.lembQuímica fisiológica
dc.subject.lembPhysiological chemistry
dc.subject.proposalPerovskita doble
dc.subject.proposalMétodo modificado de Pechini
dc.subject.proposalRespuesta ferromagnética
dc.subject.proposalEstructura electrónica
dc.subject.proposalDependencia de los parámetros termodinámicos con la temperatura
dc.subject.proposalDouble perovskite
dc.subject.proposalPechini method
dc.subject.proposalFerromagnetic response
dc.subject.proposalElectronic struture
dc.subject.proposalTemperature thermodynamical parameters dependence
dc.title.translatedTheoretical and experimental aspects of lanthanide ferrocobaltite La2FeCoO6
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentDataPaper
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentPúblico general


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito