Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorLorke, Andreas
dc.contributor.advisorGómez Giraldo, Andrés
dc.contributor.advisorLeón Hernández, Juan Gabriel
dc.contributor.authorBohórquez Bedoya, Eliana
dc.date.accessioned2023-07-21T15:23:16Z
dc.date.available2023-07-21T15:23:16Z
dc.date.issued2023-07-13
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84240
dc.descriptionilustraciones, diagramas, mapas
dc.description.abstractTropical reservoirs are recognized as globally important sources of greenhouse gases (GHG). Tropical mountainous areas of high hydroelectric development have been poorly studied. The objective of this study is to understand GHG dynamics in tropical mountain reservoirs. Data on seasonal and diurnal GHG dynamics were collected during six field campaigns in the Porce III reservoir in the Colombian Andes, where the importance of oxic CH4 production in the variability of dissolved gas at the surface, as well as the variation of water levels as an incident factor in GHG fluxes on a seasonal scale, was evidenced. CO2 flux at the reservoir water-atmosphere interface were monitored with a high-resolution technique over periods of several weeks, where the importance of primary productivity in the diurnal cycling of CO2 flux was inferred, showing alternation as sink-source, and pulses of synoptic-scale CO2 flux were observed as a consequence of the simultaneous occurrence of increases in surface concentrations and high wind speed. In laboratory experiments, a relationship was found between rain rate, turbulent kinetic energy dissipation rate and gas transfer rate, contributing to the modeling of this phenomenon with applicability in inland waters. In general, the results obtained contribute to the understanding of GHG dynamics in eutrophic tropical reservoirs.
dc.description.abstractLos embalses tropicales están reconocidos como fuentes de gases de efecto invernadero (GEI) de importancia mundial. Zonas tropicales montañosas de gran desarrollo hidroeléctrico han sido escasamente estudiadas. El objetivo de este estudio es comprender la dinámica de los GEI en embalses tropicales de montaña. Se recolectaron datos de la dinámica estacional y diurna de GEI durante seis campañas de campo en el embalse Porce III, en los Andes colombianos, donde se evidenció la importancia de la producción óxica de CH4 en la en la variabilidad del gas disuelto en superficie, así como la variación de los niveles de agua como factor incidente en los flujos de GEI a escala estacional. Se monitoreó el flujo de CO2 en la interfaz agua-atmósfera del embalse con una técnica de alta resolución durante periodos de varias semanas, donde se infirió la importancia de la productividad primaria en el ciclo diurno de los flujos de CO2, mostrando alternancia como sumidero-fuente, y se observaron pulsos de flujos de CO2 a escala sinóptica como consecuencia de la ocurrencia simultánea de incrementos en las concentraciones superficiales y alta velocidad del viento. En experimentos de laboratorio, se encontró una relación entre la tasa de lluvia, la tasa de disipación de la energía cinética turbulenta y la velocidad de transferencia de gases, contribuyendo a la modelación de este fenómeno con aplicabilidad en aguas continentales. En general, los resultados obtenidos contribuyen al entendimiento de la dinámica de GEI en embalses tropicales eutrofizados. (Texto tomado de la fuente)
dc.description.sponsorshipScholarship Program No. 757 - National Doctorates of the Ministry of Science, Technology and Innovation of Colombia
dc.description.sponsorshipResearch Grants - Short-Term Grants, 2019 (57440917) of the German Academic Exchange Service (DAAD)
dc.description.sponsorshipthe German Research Foundation (DFG).
dc.description.sponsorshipMinisterio de Ciencia Tecnología e Innovación de Colombia - MinCiencias
dc.format.extent156 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.publisherTechnische Universität Kaiserslautern-Landau
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
dc.titlePhysical processes influence on the dynamics of the main greenhouse gases in mountain tropical reservoirs
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Recursos Hidráulicos
dc.description.notesRecibió simultáneamente el grado de Doctor en Ciencias Naturales por la Technische Universität Kaiserslautern-Landau de Alemania
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ingeniería
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.repoRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedRedCol
dc.relation.indexedLaReferencia
dc.relation.referencesAbe, D. S., Adams, D. D., Sidagis Galli, C. V., Sikar, E., & Tundisi, J. G. (2005). Sediment greenhouse gases (methane and carbon dioxide) in the Lobo-Broa Reservoir, São Paulo State, Brazil: Concentrations and diffuse emission fluxes for carbon budget considerations. Lakes and Reservoirs: Research and Management, 10(4), 201–209. https://doi.org/10.1111/j.1440-1770.2005.00277.
dc.relation.referencesAbril, G., Bouillon, S., Darchambeau, F., Teodoru, C. R., Marwick, T. R., Tamooh, F., Ochieng Omengo, F., Geeraert, N., Deirmendjian, L., Polsenaere, P., & Borges, A. V. (2015). Technical note: Large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters. Biogeosciences, 12(1), 67–78. https://doi.org/10.5194/bg-12-67-2015
dc.relation.referencesAbril, G., Bouillon, S., Darchambeau, F., Teodoru, C. R., Marwick, T. R., Tamooh, F., Ochieng Omengo, F., Geeraert, N., Deirmendjian, L., Polsenaere, P., & Borges, A. V. (2015). Technical note: Large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters. Biogeosciences, 12(1), 67–78. https://doi.org/10.5194/bg-12-67-2015
dc.relation.referencesAnthony, K. W., & MacIntyre, S. (2016). Nocturnal escape route for marsh gas. Nature, 535(7612), 363–365. https://doi.org/10.1038/535363a
dc.relation.referencesBaker, M. A., & Gibson, C. H. (1987). Sampling turbulence in the stratified ocean: statistical consequences of strong intermittency. In J. Phys. Oceanogr. (Vol. 17, Issues 10, Oct. 1987, pp. 1817–1836). https://doi.org/10.1175/1520-0485(1987)017<1817:stitso>2.0.co;2
dc.relation.referencesBanks, R. B., Wickramanayake, B., & Lohani, B. N. (1984). Effect of Wind and Rain on Surface Reaeration. Journal of the Environmental Engineering, 110, 1–14. https://doi.org/10.1061/(ASCE)0733-9372(1984)110:1(1)
dc.relation.referencesBarbosa, P. M., Melack, J. M., Amaral, J. H. F., MacIntyre, S., Kasper, D., Cortés, A., Farjalla, V. F., & Forsberg, B. R. (2020). Dissolved methane concentrations and fluxes to the atmosphere from a tropical floodplain lake. Biogeochemistry, 148(2), 129–151. https://doi.org/10.1007/s10533-020-00650-1
dc.relation.referencesBarbosa, P. M., Melack, J. M., Amaral, J. H. F., MacIntyre, S., Kasper, D., Cortés, A., Farjalla, V. F., & Forsberg, B. R. (2020). Dissolved methane concentrations and fluxes to the atmosphere from a tropical floodplain lake. Biogeochemistry, 148(2), 129–151. https://doi.org/10.1007/s10533-020-00650-1
dc.relation.referencesBarros, N., Cole, J. J., Tranvik, L. J., Prairie, Y. T., Bastviken, D., Huszar, V. L. M., del Giorgio, P., & Roland, F. (2011). Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nature Geoscience, 4(9), 593–596. https://doi.org/10.1038/ngeo1211
dc.relation.referencesBarros, N., Cole, J. J., Tranvik, L. J., Prairie, Y. T., Bastviken, D., Huszar, V. L. M., del Giorgio, P., & Roland, F. (2011). Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nature Geoscience, 4(9), 593–596. https://doi.org/10.1038/ngeo1211
dc.relation.referencesBastviken, D., Cole, J. J., Pace, M. L., & Van de-Bogert, M. C. (2008). Fates of methane from different lake habitats: Connecting whole-lake budgets and CH4emissions. Journal of Geophysical Research: Biogeosciences, 113(2). https://doi.org/10.1029/2007JG000608
dc.relation.referencesBastviken, D., Cole, J., Pace, M., & Tranvik, L. (2004a). Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochemical Cycles, 18(4), 1–12. https://doi.org/10.1029/2004GB002238
dc.relation.referencesBastviken, D., Cole, J., Pace, M., & Tranvik, L. (2004a). Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochemical Cycles, 18(4), 1–12. https://doi.org/10.1029/2004GB002238
dc.relation.referencesBastviken, D., Sundgren, I., Natchimuthu, S., Reyier, H., & Gålfalk, M. (2015). Technical Note: Cost-efficient approaches to measure carbon dioxide fluxes and concentrations in terrestrial and aquatic environments using mini loggers. Biogeosciences, 12(12), 3849–3859. https://doi.org/10.5194/bg-12-3849-2015
dc.relation.referencesBastviken, D., Tranvik, L. J., Downing, J., Crill, J. a, M, P., & Enrich-prast, A. (2011). Freshwater Methane Emissions Offset the Continental Carbon Sink. Science, 331, 50. https://doi.org/10.1126/science.1196808
dc.relation.referencesBastviken, D., Tranvik, L. J., Downing, J., Crill, J. a, M, P., & Enrich-prast, A. (2011). Freshwater Methane Emissions Offset the Continental Carbon Sink. Science, 331, 50. https://doi.org/10.1126/science.1196808
dc.relation.referencesBeyá, J., Peirson, W., & Banner, M. (2011). Rainfall-generated, near-surface turbulence. In S. Komori, W. McGillis, & R. Kurose (Eds.), Gas transfer at water surfaces 2010 (pp. 90–103). Kyoto University Press 2011.
dc.relation.referencesBižić, M., Klintzsch, T., Ionescu, D., Hindiyeh, M. Y., Günthel, M., Muro-Pastor, A. M., Eckert, W., Urich, T., Keppler, F., & Grossart, H. P. (2020). Aquatic and terrestrial cyanobacteria produce methane. Science Advances, 6(3). https://doi.org/10.1126/sciadv.aax5343
dc.relation.referencesBlees, J., Niemann, H., Erne, M., Zopfi, J., Schubert, C. J., & Lehmann, M. F. (2015). Spatial variations in surface water methane super-saturation and emission in Lake Lugano, southern Switzerland. Aquatic Sciences, 77(4), 535–545. https://doi.org/10.1007/s00027-015-0401-z
dc.relation.referencesBluteau, C. E., Jones, N. L., & Ivey, G. N. (2011). Estimating turbulent kinetic energy dissipation using the inertial subrange method in environmental flows. Limnology and Oceanography: Methods, 9(JULY), 302–321. https://doi.org/10.4319/lom.2011.9.302
dc.relation.referencesBoehrer, B., & Schultze, M. (2009). Stratification of lakes. Reviews of Geophysics, 46(2), 583–593. https://doi.org/10.1029/2006RG000210
dc.relation.referencesBogard, M. J., del Giorgio, P. A., Boutet, L., Chaves, M. C. G., Prairie, Y. T., Merante, A., & Derry, A. M. (2014). Oxic water column methanogenesis as a major component of aquatic CH4 fluxes. Nature Communications, 5. https://doi.org/10.1038/ncomms6350
dc.relation.referencesBorges, A. V., Darchambeau, F., Teodoru, C. R., Marwick, T. R., Tamooh, F., Geeraert, N., Omengo, F. O., Guérin, F., Lambert, T., Morana, C., Okuku, E., & Bouillon, S. (2015). Globally significant greenhouse-gas emissions from African inland waters. Nature Geoscience, 8(8), 637–642. https://doi.org/10.1038/ngeo2486
dc.relation.referencesBouffard, D., & Boegman, L. (2013). Dynamics of Atmospheres and Oceans A diapycnal diffusivity model for stratified environmental flows. Dynamics of Atmospheres and Oceans, 61–62, 14–34. https://doi.org/10.1016/j.dynatmoce.2013.02.002
dc.relation.referencesBridgham, S. D., Cadillo-Quiroz, H., Keller, J. K., & Zhuang, Q. (2013). Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales. Global Change Biology, 19(5), 1325–1346. https://doi.org/10.1111/gcb.12131
dc.relation.referencesCamargo, J. A., & Alonso, A. (2007). Contaminación por nitrógeno inorgánico en los ecosistemas acuáticos : problemas medioambientales, criterios de calidad del agua e implicaciones del cambio climático. Ecosistemas, 16(2), 98–110.
dc.relation.referencesCastro - González, M., & Torres-Valdés, V. (2015). Gases invernadero en aguas con bajo oxígeno en el reservorio eutrófico de Prado (Colombia). Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 39(152), 399. https://doi.org/10.18257/raccefyn.228
dc.relation.referencesChapra, S. C. (1997). Surface Water-Quality Modeling (B. J. Clark, D. A. Damstra, & J. W. Bradley, Eds.). McGraw Hill.
dc.relation.referencesCiais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Quéré, C. Le, Myneni, R. B., Piao, S., & Thornton, P. (2013). The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Change, IPCC Climate, 465–570. https://doi.org/10.1017/CBO9781107415324.015
dc.relation.referencesCiarlini, P., Catombé, C., Lucia, R., Nobre, G., Kosten, S., Martins, E., Carvalho, F. De, Sarmento, H., Angelini, R., Terra, I., Gaudêncio, A., Haig, N., Becker, V., Rodrigues, C., Quesado, L., Silva, L., Caliman, A., & Megali, A. (2019). Effects of seasonality, trophic state and landscape properties on CO2 saturation in low-latitude lakes and reservoirs. Science of the Total Environment, 664, 283–295. https://doi.org/10.1016/j.scitotenv.2019.01.273
dc.relation.referencesCole, J., & Caraco, N. F. (1998a). Atmospheric Exchange of Carbon Dioxide in a Low-Wind Oligotrophic Lake Measured by the Addition of SF6. Limnology and Oceanography, 43(4), 647–656. https://doi.org/10.4319/lo.1998.43.4.0647
dc.relation.referencesCole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg, J. J., & Melack, J. (2007). Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget. Ecosystems, 10, 171–184. https://doi.org/10.1007/s 10021-006-9013-8
dc.relation.referencesCzikowsky, M. J., MacIntyre, S., Tedford, E. W., Vidal, J., & Miller, S. D. (2018). Effects of Wind and Buoyancy on Carbon Dioxide Distribution and Air‐Water Flux of a Stratified Temperate Lake. Journal of Geophysical Research: Biogeosciences, 123(8), 2305–2322. https://doi.org/10.1029/2017JG004209
dc.relation.referencesDeemer, B. R., Harrison, J. A., Li, S., Beaulieu, J. J., Delsontro, T., Barros, N., Bezerra-Neto, J. F., Powers, S. M., Santos, M. A. D. O. S., Vonk, J. A., Dos Santos, M. A., & Vonk, J. A. (2016). Greenhouse gas emissions from reservoir water surfaces: A new global synthesis. BioScience, 66(11), 949–964. https://doi.org/10.1093/biosci/biw117
dc.relation.referencesDelmas, R., & Galy-lacaux, C. (2001). Emissions of greenhouse gases from the tropical hydroelectric reservoir of Petit Saut ( French Guiana ) compared with emissions of thermal alternatives. Global Biogeochemical Cycles, 15(4), 993–1003.
dc.relation.referencesDelsontro, T., Beaulieu, J. J., & Downing, J. A. (2018). Greenhouse gas emissions from lakes and impoundments: Upscaling in the face of global change. Limnology and Oceanography Letters, March, 64–75. https://doi.org/10.1002/lol2.10073
dc.relation.referencesDemarty, M., & Bastien, J. (2011). GHG emissions from hydroelectric reservoirs in tropical and equatorial regions: Review of 20 years of CH4 emission measurements. Energy Policy, 39(7), 4197–4206. https://doi.org/10.1016/j.enpol.2011.04.033
dc.relation.referencesD’Errico. (2012). inpaint_nans. MATLAB Central File Exchange. https://www.mathworks.com/matlabcentral/fileexchange/4551-inpaint_nans
dc.relation.referencesDeshmukh, C., Guérin, F., Labat, D., Pighini, S., Vongkhamsao, A., Guédant, P., Rode, W., Godon, A., Chanudet, V., Descloux, S., & Serça, D. (2016). Low methane (CH4) emissions downstream of a monomictic subtropical hydroelectric reservoir (Nam Theun 2, Lao PDR). Biogeosciences, 13(6). https://doi.org/10.5194/bg-13-1919-2016
dc.relation.referencesDonis, D., Flury, S., & Spangenberg, J. E. (2017). Full-scale evaluation of methane production under oxic conditions in a mesotrophic lake. Nature Communications, 8(1661), 1–11. https://doi.org/10.1038/s41467-017-01648-4
dc.relation.referencesDoron, P., Bertuccioli, L., Katz, J., & Osborn, T. R. (2001). Turbulence characteristics and dissipation estimates in the coastal ocean bottom boundary layer from PIV data. Journal of Physical Oceanography, 31(8 PART 1), 2108–2134. https://doi.org/10.1175/1520-0485(2001)031<2108:tcadei>2.0.co;2
dc.relation.referencesdos Santos, M. A., Rosa, L. P., Sikar, B., Sikar, E., & dos Santos, E. O. (2006). Gross greenhouse gas fluxes from hydro-power reservoir compared to thermo-power plants. Energy Policy, 34(4), 481–488. https://doi.org/10.1016/j.enpol.2004.06.015
dc.relation.referencesErkkilä, K. M., Ojala, A., Bastviken, D., Biermann, T., Heiskanen, J., Lindroth, A., Peltola, O., Rantakari, M., Vesala, T., & Mammarella, I. (2018). Methane and carbon dioxide fluxes over a lake: Comparison between eddy covariance, floating chambers and boundary layer method. Biogeosciences, 15(2), 429–445. https://doi.org/10.5194/bg-15-429-2018
dc.relation.referencesEsters, L., Landwehr, S., Sutherland, G., Bell, T. G., Christensen, K. H., Saltzman, E. S., Miller, S. D., & Ward, B. (2017). Parameterizing air-sea gas transfer velocity with dissipation. Journal of Geophysical Research: Oceans, 122(4), 3041–3056. https://doi.org/10.1002/2016JC012088
dc.relation.referencesEugster, W. (2003). CO 2 exchange between air and water in an Arctic Alaskan and midlatitude Swiss lake: Importance of convective mixing. Journal of Geophysical Research, 108(D12), 4362. https://doi.org/10.1029/2002JD002653
dc.relation.referencesEugster, W., Kling, G., Jonas, T., McFadden, J. P., Wüest, A., MacIntyre, S., & Stuart, F. C. I. (2003). CO2 exchange between air and water in an Arctic Alaskan and midlatitude Swiss lake: Importance of convective mixing. Journal of Geophysical Research, 108(D12), 4362. https://doi.org/10.1029/2002JD002653
dc.relation.referencesFearnside, P. M. (2015). Emissions from tropical hydropower and the IPCC. Environmental Science and Policy, 50, 225–239. https://doi.org/10.1016/j.envsci.2015.03.002
dc.relation.referencesFearnside, P. M. (2015). Emissions from tropical hydropower and the IPCC. Environmental Science and Policy, 50, 225–239. https://doi.org/10.1016/j.envsci.2015.03.002
dc.relation.referencesGaly-lacaux, C., Delmas, R., Labroue, L., & Gosse, P. (1997). Gaseous emissions and oxygen consumption in hydroelectric dams: A case study in French Guyana. Global Biogeochem. Cycles, 11(4), 471–483.
dc.relation.referencesGoring, D. G., & Nikora, V. I. (2002). Despiking acoustic doppler velocimeter data. Journal of Hydraulic Engineering, 128(1), 117–126. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:1(117)
dc.relation.referencesGuérin, F., & Abril, G. (2007). Significance of pelagic aerobic methane oxidation in the methane and carbon budget of a tropical reservoir. Journal of Geophysical Research: Biogeosciences, 112(3), 1–14. https://doi.org/10.1029/2006JG000393
dc.relation.referencesGuérin, F., & Abril, G. (2007). Significance of pelagic aerobic methane oxidation in the methane and carbon budget of a tropical reservoir. Journal of Geophysical Research: Biogeosciences, 112(3), 1–14. https://doi.org/10.1029/2006JG000393
dc.relation.referencesGuérin, F., Abril, G., Richard, S., Burban, B., Reynouard, C., Seyler, P., & Delmas, R. (2006). Methane and carbon dioxide emissions from tropical reservoirs: Significance of downstream rivers. Geophysical Research Letters, 33(21), 1–6. https://doi.org/10.1029/2006GL027929
dc.relation.referencesGuérin, F., Abril, G., Serça, D., Delon, C., Richard, S., Delmas, R., Tremblay, A., & Varfalvy, L. (2007a). Gas transfer velocities of CO2 and CH4 in a tropical reservoir and its river downstream. Journal of Marine Systems, 66(1–4), 161–172. https://doi.org/10.1016/j.jmarsys.2006.03.019
dc.relation.referencesGuérin, F., Abril, G., Serça, D., Delon, C., Richard, S., Delmas, R., Tremblay, A., & Varfalvy, L. (2007a). Gas transfer velocities of CO2 and CH4 in a tropical reservoir and its river downstream. Journal of Marine Systems, 66(1–4), 161–172. https://doi.org/10.1016/j.jmarsys.2006.03.019
dc.relation.referencesGuérin, F., Abril, G., Serça, D., Delon, C., Richard, S., Delmas, R., Tremblay, A., & Varfalvy, L. (2007b). Gas transfer velocities of CO2 and CH4 in a tropical reservoir and its river downstream. Journal of Marine Systems, 66(1–4), 161–172. https://doi.org/10.1016/j.jmarsys.2006.03.019
dc.relation.referencesGuseva, S., Aurela, M., Cortés, A., Kivi, R., Lotsari, E., MacIntyre, S., Mammarella, I., Ojala, A., Stepanenko, V., Uotila7, P., Vähä7, A., Vesala, T., Wallin, M. B., & A. Lorke. (2021). Variable Physical Drivers of Near-Surface Turbulence in a Regulated River Water Resources Research. Water Resources Research, 57, 1–27. https://doi.org/10.1029/2020WR027939
dc.relation.referencesHarrison, E. L., & Veron, F. (2017). Near-surface turbulence and buoyancy induced by heavy rainfall. Journal of Fluid Mechanics, 830, 602–630. https://doi.org/10.1017/jfm.2017.602
dc.relation.referencesHarrison, E. L., & Veron, F. (2017). Near-surface turbulence and buoyancy induced by heavy rainfall. Journal of Fluid Mechanics, 830, 602–630. https://doi.org/10.1017/jfm.2017.602
dc.relation.referencesHarrison, E. L., Veron, F., Ho, D. T., Reid, M. C., Orton, P., & McGillis, W. R. (2012). Nonlinear interaction between rain- and wind-induced air-water gas exchange. Journal of Geophysical Research: Oceans, 117(3), 1–16. https://doi.org/10.1029/2011JC007693
dc.relation.referencesHersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., … Thépaut, J. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803
dc.relation.referencesHo, D. T., Asher, W. E., Bliven, L. F., Schlosser, P., & Gordan, E. L. (2000). On mechanisms of rain-induced air-water gas exchange. Journal of Geophysical Research: Oceans, 105(C10), 24045–24057. https://doi.org/10.1029/1999jc000280
dc.relation.referencesHo, D. T., Engel, V. C., Ferrón, S., Hickman, B., Choi, J., & Harvey, J. W. (2018). On Factors Influencing Air-Water Gas Exchange in Emergent Wetlands. Journal of Geophysical Research: Biogeosciences, 123(1), 178–192. https://doi.org/10.1002/2017JG004299
dc.relation.referencesHo, D. T., Veron, F., Harrison, E., Bliven, L. F., Scott, N., & McGillis, W. R. (2007). The combined effect of rain and wind on air-water gas exchange: A feasibility study. Journal of Marine Systems, 66(1–4), 150–160. https://doi.org/10.1016/j.jmarsys.2006.02.012
dc.relation.referencesHo, D. T., Veron, F., Harrison, E., Bliven, L. F., Scott, N., & McGillis, W. R. (2007). The combined effect of rain and wind on air-water gas exchange: A feasibility study. Journal of Marine Systems, 66(1–4), 150–160. https://doi.org/10.1016/j.jmarsys.2006.02.012
dc.relation.referencesHope, D., Dawson, J. J. C., Cresser, M. S., & Billett, M. F. (1995). A method for measuring free CO2 in upland streamwater using headspace analysis. Journal of Hydrology, 166, 1–14.
dc.relation.referencesHope, D., Dawson, J. J. C., Cresser, M. S., & Billett, M. F. (1995). A method for measuring free CO2 in upland streamwater using headspace analysis. Journal of Hydrology, 166, 1–14.
dc.relation.referencesInc, E. (n.d.). User Manual eosFDCO 2 eosFD Forced Diffusion Chamber and Software, version 2.4 (p. 28).
dc.relation.referencesIPCC. (1990). Resumen General del IPCC. 57–70.
dc.relation.referencesIPCC. (2019). Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (E. Calvo Buendia, K. Tanabe, A. Kranjc, B. Jamsranjav, M. Fukuda, S. Ngarize, A. Osako, Y. Pyrozhenko, P. Shermanau, & S. Federici, Eds.). IPCC. https://doi.org/10.21513/0207-2564-2019-2-05-13
dc.relation.referencesJähne, B., Münnich, K. O., Bösinger, R., Dutzi, A., Huber, W., & Libner, P. (1987). On the parameters influencing air-water gas exchange. Journal of Geophysical Research, 92(C2), 1937–1949. https://doi.org/10.1029/JC092iC02p01937
dc.relation.referencesJones, B. K., Saylor, J. R., & Testik, F. Y. (2010). Raindrop Morphodynamics.
dc.relation.referencesJorgensen, S. E., Loffler, H., RAst, W., & Straskraba, M. (2005). Lake and Reservoir Management (1st Editio). Elsevier Science.
dc.relation.referencesKatul, G., & Liu, H. (2017). Multiple mechanisms generate a universal scaling with dissipation for the air-water gas transfer velocity. Geophysical Research Letters, 44, 1–7. https://doi.org/10.1002/2016GL072256
dc.relation.referencesKäufer, T., König, J., & Cierpka, C. (2021). Stereoscopic PIV measurements using low-cost action cameras. Experiments in Fluids, 62(3), 1–16. https://doi.org/10.1007/s00348-020-03110-6
dc.relation.referencesKemenes, A., Agricultural, B., & Barbara, S. (2016). Downstream emissions of CH4 and CO2 from hydroelectric reservoirs ( Tucuruí , Samuel , and Curuá-Una ) in the ... Inland Waters, 1(1), 1–10. https://doi.org/10.5268/IW-6.3.980
dc.relation.referencesKemenes, A., Agricultural, B., & Barbara, S. (2016). Downstream emissions of CH4 and CO2 from hydroelectric reservoirs ( Tucuruí , Samuel , and Curuá-Una ) in the ... Inland Waters, 1(1), 1–10. https://doi.org/10.5268/IW-6.3.980
dc.relation.referencesKocsis, O., Prandke, H., Stips, A., Simon, A., & Wüest, A. (1999). Comparison of dissipation of turbulent kinetic energy determined from shear and temperature microstructure. Journal of Marine Systems, 21(1–4), 67–84. https://doi.org/10.1016/S0924-7963(99)00006-8
dc.relation.referencesKoschorreck, M., Prairie, Y. T., Kim, J., & Marcé, R. (2021). Technical note : CO2 is not like CH4 – limits of and corrections to the headspace method to analyse pCO 2 in fresh water. Biogeosciences, 18, 1619–1627. https://doi.org/10.5194/bg-18-1619-2021
dc.relation.referencesKoschorreck, M., Prairie, Y. T., Kim, J., & Marcé, R. (2021). Technical note : CO2 is not like CH4 – limits of and corrections to the headspace method to analyse pCO 2 in fresh water. Biogeosciences, 18, 1619–1627. https://doi.org/10.5194/bg-18-1619-2021
dc.relation.referencesLe Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Pongratz, J., Manning, A. C., Korsbakken, J. I., Peters, G. P., Canadell, J. G., Jackson, R. B., Boden, T. A., Tans, P. P., Andrews, O. D., Arora, V. K., Bakker, D. C. E., Van Der Laan-Luijkx, I. T., Van Der Werf, G. R., Van Heuven, S., Viovy, N., … Zhu, D. (2018). 1. Carbon cycle-Global Carbon Budget 2017. Earth Syst. Sci. Data Etsushi Kato Markus Kautz Ralph F. Keeling Kees Klein Goldewijk Nathalie Lefèvre Andrew Lenton Danica Lombardozzi Nicolas Metzl Yukihiro Nojiri Antonio Padin Janet Reimer, 1010333739(10), 405–448. https://doi.org/10.5194/essd-10-405-2018
dc.relation.referencesLin, L., Lu, X., Liu, S., Liong, S., & Fu, K. (2019). Physically controlled CO2 effluxes from a reservoir surface in the upper Mekong River Basin: a case study in the Gongguoqiao Reservoir. Biogeosciences, 16, 2205–2219. https://doi.org/10.5194/bg-16-2205-2019
dc.relation.referencesLiu, H., Zhang, Q., Katul, G. G., Cole, J. J., Chapin III, F. S., & MacIntyre, S. (2016). Large CO2 effluxes at night and during synoptic weather events significantly contribute to CO2 emissions from a reservoir. Environmental Research Letters, 11(6), 1–8. https://doi.org/10.1088/1748-9326/11/6/064001
dc.relation.referencesLorke, A., & Peeters, F. (2006). Toward a Unified Scaling Relation for Interfacial Fluxes. Journal of Physical Oceanography, 36(5), 955–961. https://doi.org/10.1175/JPO2903.1
dc.relation.referencesLueck, R. (2016). RSI Technical Note 028. Calculating the Rate of Dissipation of Turbulent Kinetic Energy. Rockland Scientific Inc.
dc.relation.referencesLueck, R., Scientific, R., Wolk, F., Scientific, R., & Black, K. (2013). Measuring Tidal Channel Turbulence with a Vertical Microstructure Profiler ( VMP ). Rockland Scientific Inc.
dc.relation.referencesMa, X., & Green, S. A. (2004). Photochemical Transformation of Dissolved Organic Carbon in Lake Superior—An In-situ Experiment. Journal of Great Lakes Research, 30, 97–112. https://doi.org/10.1016/S0380-1330(04)70380-9
dc.relation.referencesMacIntyre, S., Jonsson, A., Jansson, M., Aberg, J., Turney, D. E., & Miller, S. D. (2010). Buoyancy flux, turbulence, and the gas transfer coefficient in a stratified lake. Geophysical Research Letters, 37(24), 2–6. https://doi.org/10.1029/2010GL044164
dc.relation.referencesMacIntyre, S., Romero, J., & Kling, G. W. (2002). Spatial-temporal variability in surface layer deepening and lateral advection in an embayment of Lake Victoria, East Africa. Limnology and Oceanography, 47(3), 656–671. https://doi.org/10.4319/lo.2002.47.3.0656
dc.relation.referencesMelack, J. M., Basso, L. S., Fleischmann, A. S., Botía, S., Guo, M., Zhou, W., Barbosa, P. M., Amaral, J. H. F., & MacIntyre, S. (2022). Challenges Regionalizing Methane Emissions Using Aquatic Environments in the Amazon Basin as Examples. Frontiers in Environmental Science, 10(May), 1–26. https://doi.org/10.3389/fenvs.2022.866082
dc.relation.referencesMelack, J. M., Hess, L. L., Gastil, M., Forsberg, B. R., Hamilton, S. K., Lima, I. B. T., & Novo, E. M. L. M. (2004). Regionalization of methane emissions in the Amazon Basin with microwave remote sensing. Global Change Biology, 10(5), 530–544. https://doi.org/10.1111/j.1365-2486.2004.00763.x
dc.relation.referencesMelack, J. M., Hess, L. L., Gastil, M., Forsberg, B. R., Hamilton, S. K., Lima, I. B. T., & Novo, E. M. L. M. (2004). Regionalization of methane emissions in the Amazon Basin with microwave remote sensing. Global Change Biology, 10(5), 530–544. https://doi.org/10.1111/j.1365-2486.2004.00763.x
dc.relation.referencesOakey, N. S. (1982). Determination of the Rate of Dissipation of Turbulent Energy from Simultaneous Temperature and Velocity Shear Microstructure Measurements. Journal of Physical Oceanography, 12, 256–271.
dc.relation.referencesObernosterer, I., & Benner, R. (2004). Competition between biological and photochemical processes in the mineralization of dissolved organic carbon. Limnology and Oceanography, 49(1), 117–124. https://doi.org/10.4319/lo.2004.49.1.0117
dc.relation.referencesObernosterer, I., & Benner, R. (2004). Competition between biological and photochemical processes in the mineralization of dissolved organic carbon. Limnology and Oceanography, 49(1), 117–124. https://doi.org/10.4319/lo.2004.49.1.0117
dc.relation.referencesOpperman, J., Hartmann, J., & Justus, R. (2017). The Power of Rivers A Business Case.
dc.relation.referencesOsborn, T. R. (1980). Estimates of the Local Rate of Vertical Diffusion from Dissipation Measurements. Journal of Physical Oceanography, 10(1), 83–89. https://doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2
dc.relation.referencesPacheco, F. S., Roland, F., & Downing, J. A. (2013). Eutrophication reverses whole-lake carbon budgets. Inland Waters, 4(1), 41–48. https://doi.org/10.5268/IW-4.1.614
dc.relation.referencesPacheco, F. S., Soares, M. C. S., Assireu, A. T., Curtarelli, M. P., Abril, G., Stech, J. L., Alvalá, P. C., & Ometto, J. P. (2015). The effects of river inflow and retention time on the spatial heterogeneity of chlorophyll and water-air CO2 fluxes in a tropical hydropower reservoir. Biogeosciences, 12(1), 147–162. https://doi.org/10.5194/bg-12-147-2015
dc.relation.referencesPanneer Selvam, B., Natchimuthu, S., Arunachalam, L., & Bastviken, D. (2014). Methane and carbon dioxide emissions from inland waters in India - implications for large scale greenhouse gas balances. Global Change Biology, 20(11), 3397–3407. https://doi.org/10.1111/gcb.12575
dc.relation.referencesParanaíba, J. R., Barros, N., Mendonça, R., Linkhorst, A., Isidorova, A., Roland, F., Almeida, R. M., & Sobek, S. (2018a). Spatially Resolved Measurements of CO2 and CH4 Concentration and Gas-Exchange Velocity Highly Influence Carbon-Emission Estimates of Reservoirs. Environmental Science and Technology, 52(2), 607–615. https://doi.org/10.1021/acs.est.7b05138
dc.relation.referencesParanaíba, J. R., Barros, N., Mendonça, R., Linkhorst, A., Isidorova, A., Roland, F., Almeida, R. M., & Sobek, S. (2018b). Spatially Resolved Measurements of CO2and CH4Concentration and Gas-Exchange Velocity Highly Influence Carbon-Emission Estimates of Reservoirs. Environmental Science and Technology, 52(2), 607–615. https://doi.org/10.1021/acs.est.7b05138
dc.relation.referencesPeeters, F., & Kipfer, R. (2009). Currents in stratified water bodies 1: Density-driven flows. In Encyclopedia of Inland Waters (pp. 530–538). https://doi.org/DOI: 10.1016/B978-012370626-3.00080-6
dc.relation.referencesPeirson, W. L., Beyá, J. F., Banner, M. L., Peral, J. S., & Azarmsa, S. A. (2013). Rain-induced attenuation of deep-water waves. Journal of Fluid Mechanics, 724, 5–35. https://doi.org/10.1017/jfm.2013.87
dc.relation.referencesPoindexter, C. M., Baldocchi, D. D., Matthes, J. H., Knox, S. H., & Variano, E. A. (2016). The contribution of an overlooked transport process to a wetland’s methane emissions. Geophysical Research Letters, 43(12), 6276–6284. https://doi.org/10.1002/2016GL068782
dc.relation.referencesRantakari, M., Heiskanen, J., Mammarella, I., Tulonen, T., Linnaluoma, J., Kankaala, P., & Ojala, A. (2015). Different Apparent Gas Exchange Coefficients for CO2 and CH4: Comparing a Brown-Water and a Clear-Water Lake in the Boreal Zone during the Whole Growing Season. Environmental Science and Technology, 49(19), 11388–11394. https://doi.org/10.1021/acs.est.5b01261
dc.relation.referencesRaymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., Butman, D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen, P., Dürr, H., Meybeck, M., Ciais, P., & Guth, P. (2013). Global carbon dioxide emissions from inland waters. Nature, 503, 355–359. https://doi.org/10.1038/nature12760
dc.relation.referencesRaymond, P. A., Zappa, C. J., Butman, D., Bott, T. L., Potter, J., Mulholland, P., Laursen, A. E., Mcdowell, W. H., & Newbold, D. (2012). Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnology and Oceanography, 2, 41–53. https://doi.org/10.1215/21573689-1597669
dc.relation.referencesRead, J. S., Hamilton, D. P., Desai, A. R., Rose, K. C., Macintyre, S., Lenters, J. D., Smyth, R. L., Hanson, P. C., Cole, J. J., Staehr, P. A., Rusak, J. A., Pierson, D. C., Brookes, J. D., Laas, A., & Wu, C. H. (2012). Lake-size dependency of wind shear and convection as controls on gas exchange. Geophysical Research Letters, 39, 1–5. https://doi.org/10.1029/2012GL051886
dc.relation.referencesRisk, D., Nickerson, N., Creelman, C., McArthur, G., & Owens, J. (2011). Forced Diffusion soil flux: A new technique for continuous monitoring of soil gas efflux. Agricultural and Forest Meteorology, 151(12), 1622–1631. https://doi.org/10.1016/j.agrformet.2011.06.020
dc.relation.referencesRocha Lessa, A. C., dos Santos, M. A., Lewis Maddock, J. E., & dos Santos Bezerra, C. (2015). Emissions of greenhouse gases in terrestrial areas pre-existing to hydroelectric plant reservoirs in the Amazon: The case of Belo Monte hydroelectric plant. Renewable and Sustainable Energy Reviews, 51, 1728–1736. https://doi.org/http://dx.doi.org/10.1016/j.rser.2015.07.067
dc.relation.referencesRodriguez, M., & Casper, P. (2018). Greenhouse gas emissions from a semi-arid tropical reservoir in northeastern Brazil. Regional Environmental Change, 18(7), 1901–1912. https://doi.org/10.1007/s10113-018-1289-7
dc.relation.referencesRodriguez, M., & Casper, P. (2018). Greenhouse gas emissions from a semi-arid tropical reservoir in northeastern Brazil. Regional Environmental Change, 18(7), 1901–1912. https://doi.org/10.1007/s10113-018-1289-7
dc.relation.referencesRooney, G. G., van Lipzig, N., & Thiery, W. (2018). Estimating the effect of rainfall on the surface temperature of a tropical lake. Hydrology and Earth System Sciences, 22(12), 6357–6369. https://doi.org/10.5194/hess-22-6357-2018
dc.relation.referencesRosentreter, J. A., Borges, A. V., Deemer, B. R., Holgerson, M. A., Liu, S., Song, C., Melack, J., Raymond, P. A., Duarte, C. M., Allen, G. H., Olefeldt, D., Poulter, B., Battin, T. I., & Eyre, B. D. (2021). Half of global methane emissions come from highly variable aquatic ecosystem sources. Nature Geoscience, 14(4), 225–230. https://doi.org/10.1038/s41561-021-00715-2
dc.relation.referencesRudd, J. W. M. (1993). Are hydroelectric reservoirs significant sources of greenhouse gases. Ambio, 22(4), 246–248.
dc.relation.referencesRudd, J. W. M., Furunati, A., Flett, R. J., & Hamilton, R. D. (1976). Factors controlling methane oxidation in shield lakes : The role of nitrogen fixation and oxygen concentration1. Limnology and Oceanography, 21(3), 357–364.
dc.relation.referencesSantoso, A. B., Hamilton, D. P., Schipper, L. A., Ostrovsky, I. S., & Hendy, C. H. (2020). High contribution of methane in greenhouse gas emissions from a eutrophic lake : a mass balance synthesis. New Zealand Journal of Marine and Freshwater Research, 1–20. https://doi.org/10.1080/00288330.2020.1798476
dc.relation.referencesSchlesinger, W. H., & Bernhardt, E. S. (2013). Biogeochemistry: An Analysis of Global Change. Academic Press.
dc.relation.referencesSerio, M. A., Carollo, F. G., & Ferro, V. (2019). Raindrop size distribution and terminal velocity for rainfall erosivity studies . A review. Journal of Hydrology, 576(February), 210–228. https://doi.org/10.1016/j.jhydrol.2019.06.040
dc.relation.referencesShao, C., Chen, J., Stepien, C. A., Chu, H., Ouyang, Z., Bridgeman, T. B., Czajkowski, K. P., Becker, R. H., & John, R. (2015). Diurnal to annual changes in latent, sensible heat, and CO2 fluxes over a Laurentian Great Lake: A case study in Western Lake Erie. Journal of Geophysical Research: Biogeosciences, 120, 1587–1604. https://doi.org/10.1002/2015JG003025.Received
dc.relation.referencesSiddiqui, M. H. K., & Loewen, M. R. (2007). Characteristics of the wind drift layer and microscale breaking waves. J. Fluid Mech., 573, 417–456. https://doi.org/10.1017/S0022112006003892
dc.relation.referencesSoued, C., & Prairie, Y. T. (2021). Changing sources and processes sustaining surface CO2 and CH4 fluxes along a tropical river to reservoir system. Biogeosciences, 18(4), 1333–1350. https://doi.org/10.5194/bg-18-1333-2021
dc.relation.referencesSoumis, N., Lucotte, M., Caneul, R., Weissenberger, S., Houel, S., Larose, C., & Duchemin, E. (2005). Hydroelectric Reservoirs as Anthropogenic sources of greenhouse gases. In Water Encyclopedia: Surface and Agricultural Water (pp. 203–210). https://doi.org/10.1002/047147844X.sw791
dc.relation.referencesSpafford, L., & Risk, D. (2018). Spatiotemporal Variability in Lake-Atmosphere Net CO2 Exchange in the Littoral Zone of an Oligotrophic Lake. Journal of Geophysical Research: Biogeosciences, 123(4), 1260–1276. https://doi.org/10.1002/2017JG004115
dc.relation.referencesSt. Louis, V. L., Kelly, C. A., Duchemin, É., Rudd, J. W. M., & Rosenberg, D. M. (2000). Reservoir Surfaces as Sources of Greenhouse Gases to the Atmosphere: A Global Estimate. BioScience, 50(9), 766. https://doi.org/10.1641/0006-3568(2000)050[0766:RSASOG]2.0.CO;2
dc.relation.referencesStumm, W., & Morgan, J. J. (1996). Chemical Equilibria and Rates in Natural Waters. In Aquatic chemistry.
dc.relation.referencesTakagaki, N., & Komori, S. (2007). Effects of rainfall on mass transfer across the air-water interface. Journal of Geophysical Research: Oceans, 112(6), 1–11. https://doi.org/10.1029/2006JC003752
dc.relation.referencesTakagaki, N., & Komori, S. (2014). Air – water mass transfer mechanism due to the impingement of a single liquid drop on the air – water interface. INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 60, 30–39. https://doi.org/10.1016/j.ijmultiphaseflow.2013.11.006
dc.relation.referencesTakagaki, N., & Komori, S. (2014). Air – water mass transfer mechanism due to the impingement of a single liquid drop on the air – water interface. INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 60, 30–39. https://doi.org/10.1016/j.ijmultiphaseflow.2013.11.006
dc.relation.referencesTang, K. W., McGinnis, D. F., Frindte, K., Brüchert, V., & Grossart, H. P. (2014). Paradox reconsidered: Methane oversaturation in well-oxygenated lake waters. Limnology and Oceanography, 59(1), 275–284. https://doi.org/10.4319/lo.2014.59.1.0275
dc.relation.referencesTang, K. W., McGinnis, D. F., Ionescu, D., & Grossart, H. P. (2016). Methane production in oxic lake waters potentially increases aquatic methane flux to air. Environmental Science and Technology Letters, 3(6), 227–233. https://doi.org/10.1021/acs.estlett.6b00150
dc.relation.referencesTennekes, H., & Lumley, J. L. (1972). A FIRST COURSE IN TURBULENCE. The Massachusetts Institute of Technology.
dc.relation.referencesThielicke, W. (2014). The Flapping Flight of Birds: Analysis and application. https://doi.org/10.1017/s036839310013768x
dc.relation.referencesThielicke, W., & Sonntag, R. (2021). Particle Image Velocimetry for MATLAB: Accuracy and enhanced algorithms in PIVlab. Journal of Open Research Software, 9(June), 1–14. https://doi.org/10.5334/JORS.334
dc.relation.referencesThielicke, W., & Stamhuis, E. J. (2014). PIVlab – Towards User-friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB. Journal of Open Research Software, 2, 1–10. https://doi.org/10.5334/jors.bl
dc.relation.referencesToledo, A., Talarico, M., Chinez, S., & Agudo, E. (1983). The application of simplified models for eutrophication process evaluation in tropical lakes and reservoirs (pp. 1–34). ABES (Brazilian Association of Sanitary Engineering).
dc.relation.referencesTreut, L., Somerville, R., Cubasch, U., Ding, Y., Mauritzen, C., Mokssit, a, Peterson, T., Prather, M., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., & Tignor, M. (2007). Historical Overview of Climate Change Science. Earth, Chapter 1(October), 93–127. https://doi.org/10.1016/j.soilbio.2010.04.001
dc.relation.referencesTurk, D., Zappa, C. J., Meinen, C. S., Christian, J. R., Ho, D. T., Dickson, A. G., & McGillis, W. R. (2010). Rain impacts on CO2 exchange in the western equatorial Pacific Ocean. Geophysical Research Letters, 37(23), 1–6. https://doi.org/10.1029/2010GL045520
dc.relation.referencesUPME. (2016a). Boletín Estadístico: Minas y energía 2012 – 2016. Ministerio de Minas y Energía, 200.
dc.relation.referencesUPME. (2016a). Boletín Estadístico: Minas y energía 2012 – 2016. Ministerio de Minas y Energía, 200.
dc.relation.referencesVachon, D., Prairie, Y. T., & Cole, J. J. (2010). The relationship between near-surface turbulence and gas transfer velocity in freshwater systems and its implications for floating chamber measurements of gas exchange. Limnology and Oceanography, 55(4), 1723–1732. https://doi.org/10.4319/lo.2010.55.4.1723
dc.relation.referencesvan Boxel, J. (1998). Numerical model for the fall speed of raindrops in a rainfall simulator. I.C.E. Special Report, 1998/1, 77–85.
dc.relation.referencesVerburg, P., & Antenucci, J. P. (2010). Persistent unstable atmospheric boundary layer enhances sensible and latent heat loss in a tropical great lake: Lake Tanganyika. Journal of Geophysical Research, 115(D11109), 1–13. https://doi.org/10.1029/2009JD012839
dc.relation.referencesWallin, M. B., Chmiel, H. E., Kokic, J., Denfeld, B. A., Sobek, S., Koehler, B., Isidorova, A., Bastviken, D., Eve, M.-, Einarsdóttir, K., Wallin, M. B., Koehler, B., Isidorova, A., Bastviken, D., Ferland, M. È., & Sobek, S. (2016). The role of sediments in the carbon budget of a small boreal lake. Limnology and Oceanography, 61(5), 1814–1825. https://doi.org/10.1002/lno.10336
dc.relation.referencesWanninkhof, R. (1992). Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research, 97(C5), 7373–7382. https://doi.org/10.1029/92JC00188
dc.relation.referencesWanninkhof, R. (2014). Relationship between wind speed and gas exchange over the ocean revisited. Limnology and Oceanography: Methods, 12, 351–362. https://doi.org/10.4319/lom.2014.12.351
dc.relation.referencesWest, W. E., Coloso, J. J., & Jones, S. E. (2012). Effects of algal and terrestrial carbon on methane production rates and methanogen community structure in a temperate lake sediment. Freshwater Biology, 57(5), 949–955. https://doi.org/10.1111/j.1365-2427.2012.02755.x
dc.relation.referencesWest, W. E., Creamer, K. P., & Jones, S. E. (2016). Productivity and depth regulate lake contributions to atmospheric methane. Limnology and Oceanography, 61, S51–S61. https://doi.org/10.1002/lno.10247
dc.relation.referencesWinter, T. C. (2004). The Hydrology of Lakes. In P. E. O’Sullivan & C. S. Reynolds (Eds.), The Lakes Handbook (pp. 61–78).
dc.relation.referencesWüest, A., & Lorke, A. (2003). Small-Scale Hydrodynamics in Lakes. Annual Reviews of Fluid Mechanics, 35(Section 3), 373–412. https://doi.org/10.1146/annurev.fluid.35.101101.161220
dc.relation.referencesXu, Y. J., Xu, Z., & Yang, R. (2019). Rapid daily change in surface water pCO2 and CO2 evasion: A case study in a subtropical eutrophic lake in Southern USA. Journal of Hydrology, 570, 486–494. https://doi.org/10.1016/j.jhydrol.2019.01.016
dc.relation.referencesYang, L., Lu, F., Zhou, X., Wang, X., Duan, X., & Sun, B. (2014). Progress in the studies on the greenhouse gas emissions from reservoirs. Acta Ecologica Sinica, 34(4), 204–212. https://doi.org/10.1016/j.chnaes.2013.05.011
dc.relation.referencesYang, R., Chen, Y., Du, J., Pei, X., Li, J., Zou, Z., & Song, H. (2022). Daily Variations in pCO2 and fCO2 in a Subtropical Urbanizing Lake. Frontiers in Earth Science, 9(January), 1–16. https://doi.org/10.3389/feart.2021.805276
dc.relation.referencesYang, Y., Chen, J., Tong, T., Li, B., He, T., Liu, Y., & Xie, S. (2019). Eutrophication influences methanotrophic activity, abundance and community structure in freshwater lakes. Science of the Total Environment, 662, 863–872. https://doi.org/10.1016/j.scitotenv.2019.01.307
dc.relation.referencesZappa, C. J., Ho, D. T., McGillis, W. R., Banner, M. L., Dacey, J. W. H., Bliven, L. F., Ma, B., & Nystuen, J. (2009). Rain-induced turbulence and air-sea gas transfer. Journal of Geophysical Research: Oceans, 114(7), 1–17. https://doi.org/10.1029/2008JC005008
dc.relation.referencesZappa, C. J., Mcgillis, W. R., Raymond, P. A., Edson, J. B., Hintsa, E. J., Zemmelink, H. J., Dacey, J. W. H., & Ho, D. T. (2007). Environmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems. Geophysical Research Letters, 34, 1–6. https://doi.org/10.1029/2006GL028790
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembGases de invernadero
dc.subject.lembGreenhouse gases
dc.subject.lembCanales (Ingeniería hidráulica)
dc.subject.lembChannels (hydraulic engineering)
dc.subject.proposalTropical mountain reservoirs
dc.subject.proposalGreenhouse gases
dc.subject.proposalGas transfer at the water-atmosphere interface
dc.subject.proposalSeasonal variability
dc.subject.proposalDiurnal cycle
dc.subject.proposalRainfall rate
dc.subject.proposalEmbalses tropicales de montaña
dc.subject.proposalGases efecto invernadero
dc.subject.proposalTransferencia de gases en la interfaz agua-atmósfera
dc.subject.proposalVariabilidad estacional
dc.subject.proposalCiclo diurno
dc.subject.proposalTasa de lluvia
dc.title.translatedInfluencia de los procesos físicos en la dinámica de los principales gases de efecto invernadero en embalses tropicales de montaña
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaÁrea Curricular de Medio Ambiente
dc.contributor.orcidBohórquez Bedoya, Eliana [0000000153189570]
dc.contributor.orcidLorke, Andreas [0000-0001-5533-1817]
dc.contributor.orcidGómez Giraldo, Andrés [0000-0001-7103-9429]
dc.contributor.cvlacBOHÓRQUEZ BEDOYA, ELIANA
dc.contributor.scopusBohórquez, Eliana [56957160300]
dc.contributor.researchgatehttps://www.researchgate.net/profile/Eliana-Bohorquez
dc.contributor.researchgateBohórquez, Eliana [https://www.researchgate.net/profile/Eliana-Bohorquez]
dc.contributor.googlescholarBohórquez, Eliana [Eliana Bohórquez]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito