Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorChegwin Angarita, Carolina
dc.contributor.advisorMorales Rodríguez, Anuar
dc.contributor.authorBustos Cortés, Jenifer Jhoana
dc.date.accessioned2023-07-21T19:41:20Z
dc.date.available2023-07-21T19:41:20Z
dc.date.issued2023-07-07
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84245
dc.descriptionilustraciones, fotografías, diagramas
dc.description.abstractUno de los principales insectos-plaga que afecta actualmente al sector palmicultor de Colombia es Opsiphanes cassina Felder, 1862 (Lepidoptera: Nymphalidae). El alto consumo foliar del estadio larval de este lepidóptero lo convierte en una especie agresiva de difícil manejo, causante de pérdidas económicas significativas. Las características bioecológicas de O. cassina en el cultivo de palma de aceite indican que uno de los puntos clave para su manejo integrado es el monitoreo y control de las poblaciones de adultos. En este sentido, la modificación del comportamiento en respuesta al uso de estímulos de naturaleza química como las feromonas, resulta un escenario promisorio. El objetivo de este trabajo fue establecer las condiciones de extracción, análisis químico y evaluación de los semioquímicos que modulan la conducta sexual de O. cassina. Para ello, la investigación se desarrolló en tres etapas: en la primera se estudió el comportamiento de la especie bajo condiciones de laboratorio; en la segunda, se extrajeron e identificaron los VOCs liberados por los adultos y finalmente, en la tercera, se evaluó la respuesta electrofisiológica y comportamental de los insectos frente a los compuestos identificados. La separación de los individuos adultos, de acuerdo con las características de dimorfismo sexual de la especie, permitió establecer la presencia de estructuras glandulares en el abdomen y alas de los machos, las cuales se han asociado con la producción de la feromona sexual de insectos de la misma familia y género. Por su parte, las observaciones del comportamiento bajo condiciones de laboratorio sugirieron que el llamado de los machos hacia las hembras ocurre entre las 18:00 y las 20:00 h, horario en el cual el macho llena sus estructuras glandulares, tiembla, realiza movimientos de abdomen y expone los penachos de las alas posteriores, mientras libera la feromona sexual. El análisis por CG-EM de las muestras de extracción directa con solvente, head-space dinámico HSD y head-space estático con micro-extracción en fase sólida HS-MEFS, permitió identificar tres VOCs específicos de los machos como (E)-nerolidol, vainillina y (Z)-7-heptadeceno. La evaluación por electroantenografía EAG, mostró que las hembras son estimuladas por los compuestos, lo que sugiere su posible participación en la interacción intraespecífica de la especie; sin embargo, bajo las condiciones empleadas en la evaluación comportamental no fue posible confirmar su acción atrayente. Pese a ello, los semioquímicos identificados pueden constituir una alternativa para ser incorporados en el MIP de esta plaga en cultivos de palma de aceite, por lo que se recomienda su evaluación en campo. (Texto tomado de la fuente)
dc.description.abstractOne of the leading pest insects affecting the Colombian palm sector is Opsiphanes cassina Felder, 1862 (Lepidoptera: Nymphalidae). The high foliar consumption of the larval stage of this lepidopteran makes it an aggressive species that is difficult to manage, causing significant economic losses. The bioecological characteristics of O. cassina in oil palm cultivation indicate that one of the critical points for its integrated management is the monitoring and controlling of adult populations. In this sense, the modification of behavior in response to the use of stimuli of a chemical nature, such as pheromones, is a promising scenario. The objective of this work was to establish the extraction conditions, chemical analysis, and evaluation of the semiochemicals that modulate the sexual behavior of O. cassina. For this, the research involved three stages: in the first, the behavior of the specie was studied under laboratory conditions; in the second, the VOCs released by the adults were extracted and identified and finally, in the third, the electrophysiological and behavioral response of the insects against the identified compounds was evaluated. The separation of the adult individuals, according to the characteristics of sexual dimorphism of the species, allowed us to establish the presence of glandular structures in the abdomen and wings of the males, which are associated with the production of the sex pheromone of insects of the same family and genus. On the other hand, the observations of behavior under laboratory conditions suggested that the call of the males towards the females occurs between 18:00 and 20:00 h, a time in which the male fills his glandular structures, trembles, makes movements in the abdomen and exposes the tufts of the hind wings, while releasing the sex pheromone. The analysis by GC-MS of the samples of direct extraction with solvent, DHS, and HS-SPME, allowed to identify of three specific VOCs of the males as (E)-nerolidol, vanillin, and (Z)-7-heptadecene. The evaluation by EAG, showed the females are stimulated by the compounds, which suggests their possible participation in the intraspecific interaction of the species; however, under the conditions used in the behavioral evaluation, it was not possible to confirm its attracting action. Despite this, the identified semiochemicals may constitute an alternative to be incorporated into the IPM of this pest in oil palm crops, so their evaluation in the field is recommended.
dc.format.extentxxv, 111 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc540 - Química y ciencias afines::543 - Química analítica
dc.subject.ddc570 - Biología::577 - Ecología
dc.titleFeromona sexual como estrategia para el manejo integrado de Opsiphanes cassina Felder, 1862 en cultivos de palma de aceite
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Química
dc.contributor.educationalvalidatorRomero Frías, Alicia
dc.contributor.researchgroupQuímica de Hongos Macromicetos Colombianos
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Química
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.indexedAgrosavia
dc.relation.references(1) Sierra Márquez, J.; Sierra Márquez, L.; Olivero-Verbel, J. Potencial Económico de La Palma Aceitera (Elaeis Guineensis Jacq). Agron. Mesoam. 2017, 28 (2), 523. https://doi.org/10.15517/ma.v28i2.25927.
dc.relation.references(2) das Chagas, K. ESTUDO DO FEROMÔNIO DE OPSIPHANES INVIRAE (HUBNER, 1818) (LEPIDOPTERA: NYMPHALIDAE), Universidade Federal de Alagoas, Programa de Pós-Graduação da Rede Nordeste de Biotecnologia- Renorbio, 2018.
dc.relation.references(3) Mexzón, R. G.; Chinchilla, C. M. Opsiphanes Cassina Felder (Lepidoptera: Nymphalidae), Defoliator of the Oil Palm (Elaeis Guineensis Jacquin) in Central America. ASD Oil Palm Pap. 2011, 36, 14–33.
dc.relation.references(4) Matabanchoy, J. A.; Raigoza, D.; Bustillo, A. E. (PDF) Biología de Opsiphanes Cassina Defoliador Palma de Aceite En Colombia; 2018.
dc.relation.references(5) Eduardo Camperos Reyes, J.; Ignacio Barrera, E.; Hernandez, J. S.; Arias Gómez, H.; Mosquera Montoya, M. Propuesta Metodológica Para Estimar La Defoliación En La Palma de Aceite; 2020.
dc.relation.references(6) Aldana de La Torre, R. C.; Aldana de La Torre, J. A. Reconocimiento y Manejo de Insectos Defoliadores y Asociados a La Pestalotiopsis; Centro de Investigación en Palma de Aceite, C., Ed.; Centro de Investigación en Palma de Aceite, Cenipalma, 2011.
dc.relation.references(7) Rodríguez, G.; Silva, R.; Cásares, R.; Barrios, R.; Díaz, A.; Fariñas, J. Tecnología Agronómica de La Palma Aceitera (Elaeis Guineensis Jacq,) y Manejo Integrado de Su Defoliador Opsiphanes Cassina Felder (Lepidoptera: Brassolidae) En Plantaciones Comerciales Del Estado Monagas, Venezuela. Rev. Científica UDO Agrícola 2012, 3, 584–598.
dc.relation.references(8) Guo, J. M.; Liu, X. L.; Liu, S. R.; Wei, Z. Q.; Han, W. K.; Guo, Y.; Dong, S. L. Functional Characterization of Sex Pheromone Receptors in the Fall Armyworm (Spodoptera Frugiperda). Insects 2020, 11 (3). https://doi.org/10.3390/insects11030193.
dc.relation.references(9) Wyatt, T. D. Pheromones. Current Biology. Cell Press August 7, 2017, pp R739–R743. https://doi.org/10.1016/j.cub.2017.06.039.
dc.relation.references(10) Schulz, S. The Chemistry of Pheromones and Other Semiochemicals I; 2004; Vol. 239.
dc.relation.references(11) Salas, J. Captura de Tuta Absoluta (Lepidoptera: Gelechiidae) En Trampas Cebadas Con Su Feromona Sexual. Rev. Colomb. Entomol. 2004, 30 (1).
dc.relation.references(12) Dou, X.; Liu, S.; Soroker, V.; Harari, A.; Jurenka, R. Pheromone Gland Transcriptome of the Pink Bollworm Moth, Pectinophora Gossypiella: Comparison between a Laboratory and Field Population. PLoS One 2019, 14 (7), e0220187. https://doi.org/10.1371/journal.pone.0220187.
dc.relation.references(13) Felipe Bosa, O.; Pablo Osorio, M.; Alba Marina Cotes, P.; Bengtsson, M.; Witzgall, P.; Fukumoto, T. Control of Tecia Solanivora (Lepidoptera: Gelechiidae) through Its Pheromone for Mating Disruption. Rev. Colomb. Entomol. 2008, 34 (1), 68–75.
dc.relation.references(14) Cotes Prado, A. M.; Moreno-Velandia, C. A.; Zapata, Y.; Beltrán-Acosta, C.; Kobayashi, S.; Uribe Gutiérrez, L. A.; Elad, Y.; Bettiol, W.; Jijakli, H.; Wisniewski, M.; Caro-Quintero, A.; González Almario, C.; Balbín-Suárez, A.; Berg, G.; Smalla, K.; Grijalba, E.; Hurst, M.; Ibarra, J.; Jurat-Fuentes, J. L.; Jackson, T.; Espinel Correal, C.; Torres Torres, L. A.; Villamizar Rivero, L. F.; Bustillo Pardey, A. E.; Zuluaga Mogollón, M. V.; Cuartas, P.; Gómez Valderrama, J. A.; Barrera Cubillos, G. P.; López-Ferber, M.; Borrero-Echeverry, F.; Barreto-Triana, N.; Aragón-Rodríguez, S. M.; Rivera-Trujillo, H. F.; Oehlschlager, C.; Kondo, T.; Rincón, D. F.; Pérez Álvarez, R.; Vásquez Ordóñez, A. A.; González, G. Control Biológico de Fitopatógenos, Insectos y Ácaros: Agentes de Control Biológico (Volumen 1 y 2), 1st ed.; Corporación Colombiana de Investigación Agropecuaria (Agrosavia), 2018. https://doi.org/10.21930/agrosavia.investigation.7402537.
dc.relation.references(15) Pherobase :: Family Index - Nymphalidae https://www.pherobase.com/database/family/family-Nymphalidae.php (accessed Oct 25, 2021).
dc.relation.references(16) Hedenström, E.; Wallin, E. A.; Andersson, J.; Bång, J.; Wang, H.-L.; Löfstedt, C.; Brattström, O.; Baquet, P. Stereoisomeric Analysis of 6,10,14-Trimethylpentadecan-2-Ol and the Corresponding Ketone in Wing Extracts from African Bicyclus Butterfly Species. https://doi.org/10.1007/s10886-014-0539-5.
dc.relation.references(17) Wang, H.-L.; Brattström, O.; Brakefield, P. M.; Francke, W.; Löfstedt, C. Identification and Biosynthesis of Novel Male Specific Esters in the Wings of the Tropical Butterfly, Bicyclus Martius Sanaos. J. Chem. Ecol. 2014 406 2014, 40 (6), 549–559. https://doi.org/10.1007/S10886-014-0452-Y.
dc.relation.references(18) Liénard, M. A.; Wang, H. L.; Lassance, J. M.; Löfstedt, C. Sex Pheromone Biosynthetic Pathways Are Conserved between Moths and the Butterfly Bicyclus Anynana. Nat. Commun. 2014, 5. https://doi.org/10.1038/ncomms4957.
dc.relation.references(19) Schulz, S.; Steffensky, M.; Roisin, Y. Identification and Synthesis of Elymniafuran, a New Monoterpene from the Butterfly Elymnias Thryallis. Liebigs Ann. 1996, 94 (6), 941–946. https://doi.org/10.1002/jlac.199619960612.
dc.relation.references(20) Hayashi, N.; Kawaguchi, H.; Nishi, A.; Komae, H. γ-Decalactone, an Odoriferous Compound from the Male Butterfly, Lethe Marginalis Motschulsky. Zeitschrift für Naturforsch. C 1987, 42 (7–8), 1001–1002. https://doi.org/10.1515/ZNC-1987-7-846.
dc.relation.references(21) Stenberg, J. A. A Conceptual Framework for Integrated Pest Management. Trends Plant Sci. 2017, 22 (9), 759–769. https://doi.org/10.1016/j.tplants.2017.06.010.
dc.relation.references(22) Prokopy, R.; Kogan, M. Integrated Pest Management. In Encyclopedia of Insects; Academic Press, 2009; pp 523–528. https://doi.org/10.1016/B978-0-12-374144-8.00148-X.
dc.relation.references(23) Bergström, G. Chemical Ecology = Chemistry + Ecology! In Pure and Applied Chemistry; 2007; Vol. 79, pp 2305–2323. https://doi.org/10.1351/pac200779122305.
dc.relation.references(24) Smart, L. E.; Aradottir, G. I.; Bruce, T. J. A. Role of Semiochemicals in Integrated Pest Management. In Integrated Pest Management: Current Concepts and Ecological Perspective; Academic Press, 2014; pp 93–109. https://doi.org/10.1016/B978-0-12-398529-3.00007-5.
dc.relation.references(25) Brunetti, A. E.; Carnevale Neto, F.; Vera, M. C.; Taboada, C.; Pavarini, D. P.; Bauermeister, A.; Lopes, N. P. An Integrative Omics Perspective for the Analysis of Chemical Signals in Ecological Interactions. Chemical Society Reviews. Royal Society of Chemistry March 7, 2018, pp 1574–1591. https://doi.org/10.1039/c7cs00368d.
dc.relation.references(26) Dicke, M.; Sabelis, M. W. Infochemical Terminology: Based on Cost-Benefit Analysis Rather than Origin of Compounds? Funct. Ecol. 1988, 2 (2), 131. https://doi.org/10.2307/2389687.
dc.relation.references(27) Meiners, T. Chemical Ecology and Evolution of Plant-Insect Interactions: A Multitrophic Perspective. Current Opinion in Insect Science. Elsevier April 1, 2015, pp 22–28. https://doi.org/10.1016/j.cois.2015.02.003.
dc.relation.references(28) Liebig, J. Chemical Ecology: A New Royal Scent in a Small Insect Society. Curr. Biol. 2020, 30 (6), R280–R282. https://doi.org/10.1016/j.cub.2020.02.014.
dc.relation.references(29) DOUGHERTY, M. J.; GUERIN, P. M.; WARD, R. D. Identification of Oviposition Attractants for the Sandfly Lutzomyia Longipalpis (Diptera: Psychodidae) in Volatiles of Faeces from Vertebrates. Physiol. Entomol. 1995, 20 (1), 23–32. https://doi.org/10.1111/j.1365-3032.1995.tb00797.x.
dc.relation.references(30) Mostafa, S.; Wang, Y.; Zeng, W.; Jin, B. Plant Responses to Herbivory, Wounding, and Infection. International Journal of Molecular Sciences. Multidisciplinary Digital Publishing Institute June 24, 2022, p 7031. https://doi.org/10.3390/ijms23137031.
dc.relation.references(31) Khan, Z. R.; James, D. G.; Midega, C. A. O.; Pickett, J. A. Chemical Ecology and Conservation Biological Control. Biol. Control 2008, 45 (2), 210–224. https://doi.org/10.1016/J.BIOCONTROL.2007.11.009.
dc.relation.references(32) Bezerra, R. H. S.; Sousa-Souto, L.; Santana, A. E. G.; Ambrogi, B. G. Indirect Plant Defenses: Volatile Organic Compounds and Extrafloral Nectar. Arthropod-Plant Interactions. Springer May 17, 2021, pp 467–489. https://doi.org/10.1007/s11829-021-09837-1.
dc.relation.references(33) Zhou (周绍群), S.; Jander, G. Molecular Ecology of Plant Volatiles in Interactions with Insect Herbivores. J. Exp. Bot. 2022, 73 (2), 449–462. https://doi.org/10.1093/JXB/ERAB413.
dc.relation.references(34) Veyrat, N.; Robert, C. A. M.; Turlings, T. C. J.; Erb, M. Herbivore Intoxication as a Potential Primary Function of an Inducible Volatile Plant Signal. J. Ecol. 2016, 104 (2), 591–600. https://doi.org/10.1111/1365-2745.12526.
dc.relation.references(35) Bonaventure, G.; VanDoorn, A.; Baldwin, I. T. Herbivore-Associated Elicitors: FAC Signaling and Metabolism. Trends in Plant Science. 2011, pp 294–299. https://doi.org/10.1016/j.tplants.2011.01.006.
dc.relation.references(36) Ingber, D. A.; Christensen, S. A.; Alborn, H. T.; Hiltpold, I. Detecting the Conspecific: Herbivory-Induced Olfactory Cues in the Fall Armyworm (Lepidoptera: Noctuidae). Metab. 2021, Vol. 11, Page 583 2021, 11 (9), 583. https://doi.org/10.3390/METABO11090583.
dc.relation.references(37) M. A. Ramos-López. Activity of the Main Fatty Acid Components of the Hexane Leaf Extract of Ricinus Communis against Spodoptera Frugiperda. AFRICAN J. Biotechnol. 2012, 11 (18), 4274–4278. https://doi.org/10.5897/ajb11.3727.
dc.relation.references(38) YOUSEF, H.; EL-LAKWAH, S. F.; EL SAYED, Y. A. INSECTICIDAL ACTIVITY OF LINOLEIC ACID AGAINST SPODOPTERA LITTORALIS (BOISD.). Egypt. J. Agric. Res. 2013, 91 (2), 573–580. https://doi.org/10.21608/ejar.2013.163516.
dc.relation.references(39) Sousa, T. C. da S.; Leite, N. A.; Sant’Ana, J. Responses of Trichogramma Pretiosum (Hymenoptera: Trichogrammatidae) to Rice and Corn Plants, Fed and Oviposited by Spodoptera Frugiperda (Lepidoptera: Noctuidae). Neotrop. Entomol. 2021, 50 (5), 697–705. https://doi.org/10.1007/s13744-021-00876-0.
dc.relation.references(40) Krieger, J.; Breer, H. Olfactory Reception in Invertebrates. Science (80-. ). 1999, 286 (5440), 720–723. https://doi.org/10.1126/science.286.5440.720.
dc.relation.references(41) Wyatt, T. D. Pheromones and Animal Behaviour Communication by Smell and Taste. 2003.
dc.relation.references(42) Karlson, P.; Lüscher, M. ‘Pheromones’: A New Term for a Class of Biologically Active Substances. Nat. 1959 1834653 1959, 183 (4653), 55–56. https://doi.org/10.1038/183055a0.
dc.relation.references(43) Rizvi, S. A. H.; George, J.; Reddy, G. V. P.; Zeng, X.; Guerrero, A. Latest Developments in Insect Sex Pheromone Research and Its Application in Agricultural Pest Management. Insects. Multidisciplinary Digital Publishing Institute May 23, 2021, p 484. https://doi.org/10.3390/insects12060484.
dc.relation.references(44) Bergmann, J.; Fuentes-Contreras, E.; Zaviezo, T. Feromonas y Su Uso En El Manejo de Plagas. In Bases Ecológicas para el Manejo de Plagas; 2021; pp 53–79.
dc.relation.references(45) Witzgall, P.; Kirsch, P.; Cork, A. Sex Pheromones and Their Impact on Pest Management. J. Chem. Ecol. 2010, 36 (1), 80–100. https://doi.org/10.1007/s10886-009-9737-y.
dc.relation.references(46) Miller, J. R.; Gut, L. J. Mating Disruption for the 21st Century: Matching Technology with Mechanism. Environmental Entomology. Oxford Academic June 1, 2015, pp 427–453. https://doi.org/10.1093/ee/nvv052.
dc.relation.references(47) Hummel, H. E.; Langner, S. S.; Eisinger, M. T. Pheromone Dispensers, Including Organic Polymer Fibers, Described in the Crop Protection Literature: Comparison of Their Innovation Potential. Commun. Agric. Appl. Biol. Sci. 2013, 78 (2), 233–252.
dc.relation.references(48) Medina, V. V.; Solorzano, D. P.; Ávila, C. S.; Frías, A. R. Evaluation of a Synthetic Pheromone Dispensers to Control the Potato Moth, Tecia Solanivora (Lepidoptera: Gelechiidae). Int. J. Appl. Chem. 2019, 6 (1), 28–36. https://doi.org/10.14445/23939133/ijac-v6i1p105.
dc.relation.references(49) Caparros Megido, R.; Haubruge, E.; Verheggen, F. J. Pheromone-Based Management Strategies to Control the Tomato Leafminer, Tuta Absoluta (Lepidoptera: Gelechiidae). A Review. Biotechnol. Agron. Société Environ. = Biotechnol. Agron. Soc. Environ. [=BASE] 2013, 17 (3), 475–482.
dc.relation.references(50) International Pheromone Systems. Rubber Septum - International Pheromone Systems https://www.internationalpheromones.com/product/rubber-septum/ (accessed Dec 29, 2022).
dc.relation.references(51) Kovanci, O. B.; Schal, C.; Walgenbach, J. F.; Kennedy, G. G. Effects of Pheromone Loading, Dispenser Age, and Trap Height on Pheromone Trap Catches of the Oriental Fruit Moth in Apple Orchards. Phytoparasitica 2006, 34 (3), 252–260. https://doi.org/10.1007/BF02980952.
dc.relation.references(52) Zhang, A.; Leskey, T. C.; Bergh, J. C.; Walgenbach, J. F. Sex Pheromone Dispenser Type and Trap Design Affect Capture of Dogwood Borer. J. Chem. Ecol. 2013, 39 (3), 390–397. https://doi.org/10.1007/s10886-013-0251-x.
dc.relation.references(53) Zhang, J.; Huang, Y.; Pu, R.; Gonzalez-Moreno, P.; Yuan, L.; Wu, K.; Huang, W. Monitoring Plant Diseases and Pests through Remote Sensing Technology: A Review. Computers and Electronics in Agriculture. Elsevier October 1, 2019, p 104943. https://doi.org/10.1016/j.compag.2019.104943.
dc.relation.references(54) Reddy, G. V. P.; Guerrero, A. New Pheromones and Insect Control Strategies; Academic Press, 2010; Vol. 83. https://doi.org/10.1016/S0083-6729(10)83020-1.
dc.relation.references(55) Flores, M. F.; Bergmann, J.; Ballesteros, C.; Arraztio, D.; Curkovic, T. Development of Monitoring and Mating Disruption against the Chilean Leafroller Proeulia Auraria (Lepidoptera: Tortricidae) in Orchards. Insects 2021, 12 (7), 625. https://doi.org/10.3390/insects12070625.
dc.relation.references(56) Bento, J. M. S.; Vilela, E. F.; Parra, J. R. P.; Leal, W. S. Monitoring of Citrus Fruit Borer with Sexual Pheromone: Behavioural Basis for Use of This New Approach. Laranja 2001, 22 (2), 351–366.
dc.relation.references(57) Leal, W. S.; Bento, J. M. S.; Murata, Y.; Ono, M.; Parra, J. R. P.; Vilela, E. F. Identification, Synthesis, and Field Evaluation of the Sex Pheromone of the Citrus Fruit Borer: Ecdytolopha Aurantiana. J. Chem. Ecol. 2001, 27 (10), 2041–2051. https://doi.org/10.1023/A:1012242904220/METRICS.
dc.relation.references(58) Bento, J. M. S.; Parra, J. R. P.; de Miranda, S. H. G.; Adami, A. C. O.; Vilela, E. F.; Leal, W. S. How Much Is a Pheromone Worth? [Version 1; Referees: 2 Approved]. F1000Research 2016, 5. https://doi.org/10.12688/F1000RESEARCH.9195.1.
dc.relation.references(59) Witzgall, P.; Kirsch, P.; Cork, A. Sex Pheromones and Their Impact on Pest Management. J. Chem. Ecol. 2010, 36 (1), 80–100. https://doi.org/10.1007/s10886-009-9737-y.
dc.relation.references(60) Cardé, R. T.; Bau, J.; Elkinton, J. S. Comparison of Attraction and Trapping Capabilities of Bucket- and Delta-Style Traps with Different Pheromone Emission Rates for Gypsy Moths (Lepidoptera: Erebidae): Implications for Understanding Range of Attraction and Utility in Surveillance. Environ. Entomol. 2018, 47 (1), 107–113. https://doi.org/10.1093/ee/nvx185.
dc.relation.references(61) Williams, D. T.; Jonusas, G. The Influence of Tree Species and Edge Effects on Pheromone Trap Catches of Oak Processionary Moth Thaumetopoea Processionea (L.) in the U.K. Agric. For. Entomol. 2019, 21 (1), 28–37. https://doi.org/10.1111/afe.12300.
dc.relation.references(62) Cruz-Esteban, S.; Valencia-Botín, A. J.; Virgen, A.; Santiesteban, A.; Mérida-Torres, N. M.; Rojas, J. C. Performance and Efficiency of Trap Designs Baited with Sex Pheromone for Monitoring Spodoptera Frugiperda Males in Corn Crops. Int. J. Trop. Insect Sci. 2022, 42 (1), 715–722. https://doi.org/10.1007/s42690-021-00595-4.
dc.relation.references(63) Reddy, G. V. P.; Guerrero, A. New Pheromones and Insect Control Strategies; 2010; Vol. 83. https://doi.org/10.1016/S0083-6729(10)83020-1.
dc.relation.references(64) Jabamo, T.; Ayalew, G.; Goftishu, M.; Wakgari, M. Integrated Effect of Insecticide and Sex Pheromone on the Tomato Leafminer, Tuta Absoluta (Lepidoptera: Gelechiidae). SSRN Electron. J. 2022. https://doi.org/10.2139/ssrn.4225281.
dc.relation.references(65) Akutse, K. S.; Subramanian, S.; Khamis, F. M.; Ekesi, S.; Mohamed, S. A. Entomopathogenic Fungus Isolates for Adult Tuta Absoluta (Lepidoptera: Gelechiidae) Management and Their Compatibility with Tuta Pheromone. J. Appl. Entomol. 2020, 144 (9), 777–787. https://doi.org/10.1111/jen.12812.
dc.relation.references(66) Leal, W. S. Odorant Reception in Insects: Roles of Receptors, Binding Proteins, and Degrading Enzymes. Annu. Rev. Entomol. 2013, 58 (1), 373–391. https://doi.org/10.1146/annurev-ento-120811-153635.
dc.relation.references(67) Klassen, D.; Lennox, M. D.; Dumont, M. J.; Chouinard, G.; Tavares, J. R. Dispensers for Pheromonal Pest Control. Journal of Environmental Management. Academic Press January 1, 2023, p 116590. https://doi.org/10.1016/j.jenvman.2022.116590.
dc.relation.references(68) Haviland, D. R.; Rijal, J. P.; Rill, S. M.; Higbee, B. S.; Burks, C. S.; Gordon, C. A. Management of Navel Orangeworm (Lepidoptera: Pyralidae) Using Four Commercial Mating Disruption Systems in California Almonds. J. Econ. Entomol. 2021, 114 (1), 238–247. https://doi.org/10.1093/JEE/TOAA297.
dc.relation.references(69) Khan, Z.; Midega, C. A. O.; Hooper, A.; Pickett, J. Push-Pull: Chemical Ecology-Based Integrated Pest Management Technology. J. Chem. Ecol. 2016, 42 (7), 689–697. https://doi.org/10.1007/s10886-016-0730-y.
dc.relation.references(70) Cenipalma. Guía Para La Elaboración y Ubicación de Trampas Para La Captura de Rhynchophorus Palmarum L.; Cenipalma, 2017.
dc.relation.references(71) Medina, V. V. Señales Químicas Entre El Escarabajo-Plaga Strategus Aloeus (Coleoptera: Scarabaeidae: Dynastinae) y La Palma de Aceite (Elaeis Guineensis Jacq.), Universidad Nacional de Colombia, sede Bogotá. Tesis de Maestría en Ciencias-Química, 2021.
dc.relation.references(72) McNeil, J. N. Behavioral Ecology of Pheromone-Mediated Communication in Moths and Its Importance in the Use of Pheromone Traps. Annu. Rev. Entomol. 1991, 36 (1), 407–430. https://doi.org/10.1146/annurev.en.36.010191.002203.
dc.relation.references(73) Björn G. Johansson; Therésa M. Jones. The Role of Chemical Communication in Mate Choice. Biol. Rev. 2007, 82 (2), 265–289.
dc.relation.references(74) Romero Frías, A. Estudio de Los Semioquímicos Responsables de La Interacción Entre La Guayaba (Psidium Guajava L) y El Picudo de La Guayaba Conotrachelus Psidii Marshall, Universidad Nacional de Colombia, Tesis de Doctorado en Ciencias-Química, 2015.
dc.relation.references(75) Carey, A. F.; Carlson, J. R. Insect Olfaction from Model Systems to Disease Control. Proc. Natl. Acad. Sci. U. S. A. 2011, 108 (32), 12987–12995. https://doi.org/10.1073/pnas.1103472108.
dc.relation.references(76) Conchou, L.; Lucas, P.; Meslin, C.; Proffit, M.; Staudt, M.; Renou, M. Insect Odorscapes: From Plant Volatiles to Natural Olfactory Scenes. Front. Physiol. 2019, 10 (JUL), 972. https://doi.org/10.3389/fphys.2019.00972.
dc.relation.references(77) Haverkamp, A.; Hansson, B. S.; Knaden, M. Combinatorial Codes and Labeled Lines: How Insects Use Olfactory Cues to Find and Judge Food, Mates, and Oviposition Sites in Complex Environments. Front. Physiol. 2018, 9 (FEB). https://doi.org/10.3389/fphys.2018.00049.
dc.relation.references(78) Brito, N. F.; Moreira, M. F.; Melo, A. C. A. A Look inside Odorant-Binding Proteins in Insect Chemoreception. J. Insect Physiol. 2016, 95, 51–65. https://doi.org/10.1016/j.jinsphys.2016.09.008.
dc.relation.references(79) Syntech. Electroantennography: A Practical Introduction, 1st ed.; Ockenfels SYNTECH, Ed.; SYNTECH: Kirchzarten, 2004.
dc.relation.references(80) Park, K. C.; Ochieng, S. A.; Zhu, J.; Baker, T. C. Odor Discrimination Using Insect Electroantennogram Responses from an Insect Antennal Array. Chem. Senses 2002, 27 (4), 343–352. https://doi.org/10.1093/chemse/27.4.343.
dc.relation.references(81) Ando, T.; Yamakawa, R. Analyses of Lepidopteran Sex Pheromones by Mass Spectrometry. TrAC - Trends Anal. Chem. 2011, 30 (7), 990–1002. https://doi.org/10.1016/j.trac.2011.03.010.
dc.relation.references(82) Olsson, S. B.; Hansson, B. S. Electroantennogram and Single Sensillum Recording in Insect Antennae. Methods Mol. Biol. 2013, 1068, 157–177. https://doi.org/10.1007/978-1-62703-619-1_11.
dc.relation.references(83) Legros, S.; Mialet-Serra, I.; Caliman, J. P.; Siregar, F. A.; Clement-Vidal, A.; Fabre, D.; Dingkuhn, M. Phenology, Growth and Physiological Adjustments of Oil Palm (Elaeis Guineensis) to Sink Limitation Induced by Fruit Pruning. Ann. Bot. 2009, 104 (6), 1183–1194. https://doi.org/10.1093/aob/mcp216.
dc.relation.references(84) Combres, J. C.; Pallas, B.; Rouan, L.; Mialet-Serra, I.; Caliman, J. P.; Braconnier, S.; Soulié, J. C.; Dingkuhn, M. Simulation of Inflorescence Dynamics in Oil Palm and Estimation of Environment-Sensitive Phenological Phases: A Model Based Analysis. Funct. Plant Biol. 2013, 40 (3), 263–279. https://doi.org/10.1071/FP12133.
dc.relation.references(85) Legros, S.; Mialet-Serra, I.; Caliman, J. P.; Siregar, F. A.; Clément-Vidal, A.; Dingkuhn, M. Phenology and Growth Adjustments of Oil Palm (Elaeis Guineensis) to Photoperiod and Climate Variability. Ann. Bot. 2009, 104 (6), 1171–1182. https://doi.org/10.1093/aob/mcp214.
dc.relation.references(86) McMorrow, J. Linear Regression Modelling for the Estimation of Oil Palm Age from Landsat TM. Int. J. Remote Sens. 2001, 22 (12), 2243–2264. https://doi.org/10.1080/01431160117188.
dc.relation.references(87) Mauricio Romero, H.; Diana Carolina Forero, C.; Hormaza, P.; Rueda Williamson, C. Estadios Fenológicos de Crecimiento de Palma de Aceite Africana (Elaeis Guineensis). Palmas 2012, 33 (1), 23–35.
dc.relation.references(88) Hernawati, R.; Wikantika, K.; Darmawan, S. Modeling of Oil Palm Phenology Based on Remote Sensing Data: Opportunities and Challenges. J. Appl. Remote Sens. 2022, 16 (02), 021501. https://doi.org/10.1117/1.jrs.16.021501.
dc.relation.references(89) Forero Hernández, D. C.; Martínez Paola, A. H. Generalidades Sobre La Morfología y Fenología de La Palma de Aceite; 2012.
dc.relation.references(90) Penagos, U.; Blanca, Y.; Cortés, G.; Camilo, A.; Lizarazo, L.; Cortés Gómez, C. A.; Penagos Ulloa, B. Y.; Lizarazo Leguizamón, G.; Toca Garzón, J. R. Corte y Recolección de Racimos de Palma de Aceite; 2017.
dc.relation.references(91) Mendoza-García, M.; Oliveros-Contreras, D.; Guzmán-Duque, A. P. La Eficiencia de Las Empresas Del Sector Palmicultor En Colombia. Rev. Esc. Adm. Negocios 2020, 88 (88), 33–48. https://doi.org/10.21158/01208160.n88.2020.2695.
dc.relation.references(92) Absalome, M. A.; Massara, C. C.; Alexandre, A. A.; Gervais, K.; Chantal, G. G. A.; Ferdinand, D.; Rhedoor, A. J.; Coulibaly, I.; George, T. G.; Brigitte, T.; Marion, M.; Jean-Paul, C. Biochemical Properties, Nutritional Values, Health Benefits and Sustainability of Palm Oil. Biochimie 2020, 178, 81–95. https://doi.org/10.1016/j.biochi.2020.09.019.
dc.relation.references(93) Goh, K. J.; Wong, C. K.; Ng, P. H. C. Oil Palm, 2nd ed.; Elsevier Inc., 2016; Vol. 3. https://doi.org/10.1016/B978-0-12-394807-6.00176-3.
dc.relation.references(94) Producción Agrícola Mundial, Aceite de Palma - Producción por País http://www.produccionagricolamundial.com/cultivos/aceitedepalma.aspx (accessed Oct 13, 2022).
dc.relation.references(95) Pertuz Martínez, A. P.; Santamaría Escobar, Á. E. LA PALMICULTURA COLOMBIANA: SOSTENIBILIDAD ECONÓMICA, SOCIAL Y AMBIENTAL. Tendencias (Revista la Fac. Ciencias Económicas y Adm. Univ. Nariño) 2014, 15 (1), 173. https://doi.org/10.22267/rtend.141501.55.
dc.relation.references(96) Fedepalma. Balance Económico Del Sector Palmero Colombiano En El Primer Trimestre de 2022; 2022.
dc.relation.references(97) Fedepalma. La Palma de Aceite En Colombia | Fedepalma. Fedepalma 2016, 2018.
dc.relation.references(98) Mosquera, M.; Lopez, D.; Ruiz, E.; Castro, L. Mano de Obra En Cultivos de Palma Aceitera de Colombia: Participación En El Costo de Producción y Demanda. Rev. Palmas 2019, 40 (1), 46–53.
dc.relation.references(99) Woittiez, L. S.; van Wijk, M. T.; Slingerland, M.; van Noordwijk, M.; Giller, K. E. Brechas de Rendimiento En El Cultivo de Palma de Aceite: Una Revisión Cuantitativa de Factores Determinantes | Revista Palmas. Rev. Palmas 2018, 39 (1), 16–68.
dc.relation.references(100) Díshington, J. M. La Palmicultura Colombiana de Cara Al 2020. Rev. Palmas 2000, 21 (especial,), 9–17.
dc.relation.references(101) Rodríguez, G.; Silva, R.; Cásares, R.; Barrios, R.; Díaz, A.; Fariñas, J. Tecnología Agronómica de La Palma Aceitera (Elaeis Guineessis Jacq,) y Manejo Integrado de Su Defoliador Opsiphanes Cassina Felder (Lepidoptera:Brassolidae) En Plantaciones Comerciales Del Estado Monagas, Venezuela. Rev. Científica UDO Agrícola 2012, 12 (3), 584–598.
dc.relation.references(102) Darus, A.; Wahid, M. B. MIP Intensivo Para El Manejo de Plagas En Palma de Aceite*. Rev. palmas 2001, 22 (4), 19–35.
dc.relation.references(103) Ortiz, Y. La Palma de Aceite Como Ejemplo Para La Agroindustria En Colombia, FUNDACIÓN UNIVERSIDAD DE AMÉRICA, Tesis de pregrado en Economía, 2019.
dc.relation.references(104) Cardenas, P. S. Asistencia Tecnica Dirigida En Instalacion y Manejo Integrado de Plagas En Palma Aceitera; 2012.
dc.relation.references(105) Dishington, J. M.; Ignacio, J.; Scovino, S.; Becerra, J.; Coordinador, -Encinales; De Manejo, N.; Leidy, F.; Morales, C.; Analista De Manejo, I.; Colaboradores, F.; Bustillo, A. E.; Greicy, P.; Sarria Villa, A.; Aldana De La, R.; Carlos, T.; Uribe, M. A.; Moreno Muñoz, Y.; Fotografía, E. M.; Fredy, D.; Ballesteros, J. E. GUÍA DE BOLSILLO Para El Reconocimiento y Manejo de Las Principales Enfermedades e Insectos Plaga En El Cultivo de La Palma de Aceite, 1st ed.; Fedepalma: Bogotá, 2016.
dc.relation.references(106) Henson, I. E. La Poda En Palma de Aceite y Relación Entre El Área Foliar y El Rendimiento . Una Breve Revisión de Experimentos Previos *. PALMAS 2002, 23 (1), 9–14.
dc.relation.references(107) Rojas, B. A. PRINCIPALES INSECTOS ASOCIADOS AL CULTIVO DE PALMA DE ACEITE EN EL DEPARTAMENTO DEL META, Universidad Nacional Abierta y a Distancia UNAD, Tesis de pregrado en Agronomía, 2019.
dc.relation.references(108) Aldana Jorge; Aldana Rosa; Calvache Hugo; Franco Pedro. Manual de Plagas de La Palma de Aceite En Colombia; Centro de Investigación en Palma de Aceite, Cenipalma, 2010.
dc.relation.references(109) Ribeiro, R. C.; Pikart, T. G.; Fouad, H. A.; Parreira, M. C.; Zanuncio, J. C.; Soares, M. A.; Castro, V. R. Trichospilus Diatraeae (Hymenoptera: Eulophidae): Development and Reproduction in Lepidoptera Palm Oil Pests. Brazilian J. Biol. 2019, 79 (3), 377–382. https://doi.org/10.1590/1519-6984.173211.
dc.relation.references(110) Daza, C. CORRELACIÓN DE LARVAS DE Opsiphanes Cassina, EN HOJA 9 Y 17 DE PALMA DE ACEITE, Universidad Nacional de Colombia, Tesis de Especialización en Cultivos perennes industriales, 2010.
dc.relation.references(111) Suckling, D. M.; Conlong, D. E.; Carpenter, J. E.; Bloem, K. A.; Rendon, P.; Vreysen, M. J. B. Global Range Expansion of Pest Lepidoptera Requires Socially Acceptable Solutions. Biol. Invasions 2017, 19 (4), 1107–1119. https://doi.org/10.1007/s10530-016-1325-9.
dc.relation.references(112) Britton, D. What are the differences between butterflies and moths? - Australian Museum https://australian.museum/learn/animals/insects/what-are-the-differences-between-butterflies-and-moths/ (accessed Dec 30, 2022).
dc.relation.references(113) Rutowski, R. L. Mate Choice and Lepidopteran Mating Behavior. Florida Entomol. 1982, 65 (1), 72. https://doi.org/10.2307/3494146.
dc.relation.references(114) Vane-Wright, R. I.; Boppre, M. Visual and Chemical Signalling in Butterflies: Functional and Phylogenetic Perspectives. Philos. Trans. - R. Soc. London, B 1993, 340 (1292), 197–205. https://doi.org/10.1098/rstb.1993.0058.
dc.relation.references(115) Birch, M. C.; Poppy, G. M.; Baker, T. C. Scents and Eversible Scent Structures of Male Moths. Annu. Rev. Entomol. Vol. 35 1990, 25–58. https://doi.org/10.1146/annurev.en.35.010190.000325.
dc.relation.references(116) Greendfield, M. . Signalers and Receiver: Mechanisms and Evolution of Arthropod Communication; 2002; Vol. 419.
dc.relation.references(117) Cannon, R. J. C. Courtship and Mating in Butterflies; The University of Chicago Press, 2020.
dc.relation.references(118) Wickman, P. C. The Influence of Temperature on the Territorial and Mate Locating Behaviour of the Small Heath Butterfly, Coenonympha Pamphilus (L.) (Lepidoptera: Satyridae). Behav. Ecol. Sociobiol. 1985, 16 (3), 233–238. https://doi.org/10.1007/BF00310985.
dc.relation.references(119) Carol L. Boggs, Ward B. Watt, Paul R. Ehrlich, P. R. E. Butterflies: Ecology and Evolution Taking Flight; 2003; Vol. 41. https://doi.org/10.5860/choice.41-2175.
dc.relation.references(120) Sarto Monteys, V. I.; Quero, C.; Santa-Cruz, M. C.; Rosell, G.; Guerrero, A. Sexual Communication in Day-Flying Lepidoptera with Special Reference to Castniids or “Butterfly-Moths.” Bull. Entomol. Res. 2016, 106 (4), 421–431. https://doi.org/10.1017/S0007485316000158.
dc.relation.references(121) Kristensen, N. P. Lepidoptera, Moths and Butterflies: Volume 2: Morphology, Physiology, and Development; De Gruyter, 2012. https://doi.org/10.1515/9783110893724.
dc.relation.references(122) Foster, S. P.; Anderson, K. G. Differential Pheromone Sampling of the Gland of Female Heliothis Virescens Moths Reveals Glandular Differences in Composition and Quantity. J. Chem. Ecol. 2018, 44 (5), 452–462. https://doi.org/10.1007/s10886-018-0954-0.
dc.relation.references(123) Comprehensive Natural Products Chemistry. Choice Rev. Online 1999, 37 (02), 37-0939-37–0939. https://doi.org/10.5860/choice.37-0939.
dc.relation.references(124) Tillman, J. A.; Seybold, S. J.; Jurenka, R. A.; Blomquist, G. J. Insect Pheromones - An Overview of Biosynthesis and Endocrine Regulation. Insect Biochem. Mol. Biol. 1999, 29 (6), 481–514. https://doi.org/10.1016/S0965-1748(99)00016-8.
dc.relation.references(125) Pliske, T. E.; Eisner, T. Sex Pheromone of the Queen Butterfly: Biology. Science (80-. ). 1969, 164 (3884), 1170–1172. https://doi.org/10.1126/SCIENCE.164.3884.1170.
dc.relation.references(126) Nishida, R.; Schulz, S.; Kim, C. S.; Fukami, H.; Kuwahara, Y.; Honda, K.; Hayashi, N. Male Sex Pheromone of a Giant Danaine Butterfly,Idea Leuconoe. J. Chem. Ecol. 1996 225 1996, 22 (5), 949–972. https://doi.org/10.1007/BF02029947.
dc.relation.references(127) Andersson, J.; Borg-Karlson, A.-K.; Vongvanich, N.; Wiklund, C. Male Sex Pheromone Release and Female Mate Choice in a Butterfly. J. Exp. Biol. 2007, 210 (6), 964–970. https://doi.org/10.1242/JEB.02726.
dc.relation.references(128) Taylor, L. R.; Vane-Wright, R. I.; Ackery, P. R. The Biology of Butterflies. J. Anim. Ecol. 1986, 55 (2), 752. https://doi.org/10.2307/4754.
dc.relation.references(129) Burdfield-Steel, E.; Pakkanen, H.; Rojas, B.; Galarza, J. A.; Mappes, J. De Novo Synthesis of Chemical Defenses in an Aposematic Moth. J. Insect Sci. 2018, 18 (2). https://doi.org/10.1093/JISESA/IEY020.
dc.relation.references(130) Trigo, J. R. The Chemistry of Antipredator Defense by Secondary Compounds in Neotropical Lepidoptera: Facts, Perspectives and Caveats. J. Braz. Chem. Soc. 2000, 11 (6), 551–561. https://doi.org/10.1590/S0103-50532000000600002.
dc.relation.references(131) Trigo, J. R. The Chemistry of Antipredator Defense by Secondary Compounds in Neotropical Lepidoptera: Facts, Perspectives and Caveats. J. Braz. Chem. Soc. 2000, 11 (6), 551–561. https://doi.org/10.1590/S0103-50532000000600002.
dc.relation.references(132) Larsen, E.; Calabrese, J. M.; Rhainds, M.; Fagan, W. F. How Protandry and Protogyny Affect Female Mating Failure: A Spatial Population Model. Entomol. Exp. Appl. 2013, 146 (1), 130–140. https://doi.org/10.1111/eea.12003.
dc.relation.references(133) Allen, C. E.; Zwaan, B. J.; Brakefield, P. M. Evolution of Sexual Dimorphism in the Lepidoptera. Annu. Rev. Entomol. 2011, 56, 445–464. https://doi.org/10.1146/annurev-ento-120709-144828.
dc.relation.references(134) Bento, J. M. S.; Parra, J. R. P.; Vilela, E. F.; Walder, J. M.; Leal, W. S. Sexual Behavior and Diel Activity of Citrus Fruit Borer: Ecdytolopha Aurantiana. J. Chem. Ecol. 2001, 27 (10), 2053–2065. https://doi.org/10.1023/A:1012294921058.
dc.relation.references(135) Srygley, R. B. Shivering and Its Cost during Reproductive Behaviour in Neotropical Owl Butterflies, Caligo and Opsiphanes (Nymphalidae: Brassolinae). Anim. Behav. 1994, 47 (1), 23–32. https://doi.org/10.1006/anbe.1994.1004.
dc.relation.references(136) Srygley, R. B.; Penz, C. M. Lekking in Neotropical Owl Butterflies, Caligo Illioneus and C. Oileus (Lepidoptera: Brassolinae). J. Insect Behav. 1999 121 1999, 12 (1), 81–103. https://doi.org/10.1023/A:1020981215501.
dc.relation.references(137) Felton, A.; Alford, R. A.; Felton, A. M.; Schwarzkopf, L. Multiple Mate Choice Criteria and the Importance of Age for Male Mating Success in the Microhylid Frog, Cophixalus Ornatus. Behav. Ecol. Sociobiol. 2006, 59 (6), 786–795. https://doi.org/10.1007/s00265-005-0124-6.
dc.relation.references(138) Sandoval, Y. Comportamiento Sexual y Éxito Reproductivo Del Barrenador de La Caña Diatraea Saccharalis (Fabricius 1794) (Lepidoptera: Crambidae) En Laboratorio, 2020.
dc.relation.references(139) Vanjari, S.; Mann, F.; Merrill, R. M.; Schulz, S.; Jiggins, C. D. Male Sex Pheromone Components in the Butterfly Heliconius Melpomene. bioRxiv 2015, 033506. https://doi.org/10.1101/033506.
dc.relation.references(140) Fagerström, T.; Wiklund, C. Why Do Males Emerge before Females? Protandry as a Mating Strategy in Male and Female Butterflies. Oecologia 1982, 52 (2), 164–166. https://doi.org/10.1007/BF00363830.
dc.relation.references(141) ZONNEVELD, C. Polyandry and Protandry in Butterflies. Bull. Math. Biol. 1992, 54 (6), 957–976. https://doi.org/10.1016/s0092-8240(05)80090-4.
dc.relation.references(142) Penz, C. M.; Williams, S. F. Wing Morphology and Body Design in Opsiphanes and Caligo Butterflies Match the Demands of Male Mating Displays (Lepidoptera: Nymphalidae). Ann. Entomol. Soc. Am. 2020, 113 (3), 207–215. https://doi.org/10.1093/AESA/SAZ073.
dc.relation.references(143) Benson, W. W.; Marini-filho, O. J.; Carvalho, R. M. De. Territoriality by the Dawn’s Early Light: The Neotropical Owl Butter Y. October 1997, 1995 (June 1994), 14–20.
dc.relation.references(144) Crees, L. D.; Devries, P.; Penz, C. M. Do Hind Wing Eyespots of Caligo Butterflies Function in Both Mating Behavior and Antipredator Defense? (Lepidoptera, Nymphalidae). Ann. Entomol. Soc. Am. 2021, 114 (3), 329–337. https://doi.org/10.1093/aesa/saaa050.
dc.relation.references(145) Rhainds, M. Female Mating Failures in Insects. Entomologia Experimentalis et Applicata. 2010, pp 211–226. https://doi.org/10.1111/j.1570-7458.2010.01032.x.
dc.relation.references(146) Shapiro, A. M. The Role of Sexual Behavior in Density-Related Dispersal of Pierid Butterflies. Am. Nat. 1970, 104 (938), 367–372. https://doi.org/10.1086/282670.
dc.relation.references(147) Solensky, M. J. The Effect of Behavior and Ecology on Male Mating Success in Overwintering Monarch Butterflies (Danaus Plexippus). J. Insect Behav. 2004, 17 (6), 723–743. https://doi.org/10.1023/B:JOIR.0000048985.58159.0d.
dc.relation.references(148) Cameron, P. J.; Wallace, A. R.; Madhusudhan, V. V.; Wigley, P. J.; Qureshi, M. S.; Walker, G. P. Mating Frequency in Dispersing Potato Tuber Moth, Phthorimaea Operculella, and Its Influence on the Design of Refugia to Manage Resistance in Bt Transgenic Crops. Entomol. Exp. Appl. 2005, 115 (2), 323–332. https://doi.org/10.1111/j.1570-7458.2005.00256.x.
dc.relation.references(149) Kvedaras, O. L.; Gregg, P. C.; Del Socorro, A. P. Techniques Used to Determine the Mating Behaviour of Helicoverpa Armigera (Hubner) (Lepidoptera: Noctuidae) in Relation to Host Plants. Aust. J. Entomol. 2000, 39 (3), 188–194. https://doi.org/10.1046/j.1440-6055.2000.00156.x.
dc.relation.references(150) Zeng, B.; Zhu, W.; Fu, Y.; Zhou Id, S. Influence of High-Temperature Exposure on the Mating, Oviposition and Thermotaxis of Bactrocera Cucurbitae (Coquillet) (Diptera: Tephritidae). 2018. https://doi.org/10.1371/journal.pone.0204065.
dc.relation.references(151) Mbata, G. N. Combined Effect of Temperature and Relative Humidity on Mating Activities and Commencement of Oviposition in Plodia Interpunctella (Hubner) (Lepidoptera: Phycitidae). Int. J. Trop. Insect Sci. 1986, 7 (05), 623–628. https://doi.org/10.1017/S1742758400011553.
dc.relation.references(152) Wu, S.; Refinetti, R.; Kok, L. T.; Youngman, R. R.; Reddy, G. V. P.; Xue, F.-S. Photoperiod and Temperature Effects on the Adult Eclosion and Mating Rhythms in Pseudopidorus Fasciata (Lepidoptera: Zygaenidae). Environ. Entomol. 2014, 43 (6), 1650–1655. https://doi.org/10.1603/EN14164.
dc.relation.references(153) Royer, L.; McNeil, J. N. Effect of Relative Humidity Conditions on Responsiveness of European Corn Borer (Ostrinia Nubilalis) Males to Female Sex Pheromone in a Wind Tunnel. J. Chem. Ecol. 1993, 19 (1), 61–69. https://doi.org/10.1007/BF00987471.
dc.relation.references(154) WELLINGTON, W. G. The Effects of Variations in Atmospheric Pressure upon Insects. Can. J. Res. 1946, 24 (Sect D), 51–70. https://doi.org/10.1139/cjr46d-006.
dc.relation.references(155) Pellegrino, A. C.; Gomes, M. F.; Peñ Aflor, V.; Nardi, C.; Bezner-Kerr, W.; Guglielmo, C. G.; Simõ Es Bento, J. M.; Mcneil, J. N. Weather Forecasting by Insects: Modified Sexual Behaviour in Response to Atmospheric Pressure Changes. 2013. https://doi.org/10.1371/journal.pone.0075004.
dc.relation.references(156) Miao, J.; Guo, P.; Li, H.; Wei, C.; Liu, Q.; Gong, Z.; Duan, Y.; Li, T.; Jiang, Y.; Feng, H.; Wu, Y. Low Barometric Pressure Enhances Tethered-Flight Performance and Reproductive of the Oriental Armyworm, Mythimna Separata (Lepidoptera: Noctuidae). J. Econ. Entomol. 2021, 114 (2), 620–626. https://doi.org/10.1093/JEE/TOAA291.
dc.relation.references(157) Climate-Data.org. Clima Puerto Gaitán: Temperatura, Climograma y Tabla climática para Puerto Gaitán https://es.climate-data.org/america-del-sur/colombia/meta/puerto-gaitan-49962/ (accessed Aug 30, 2021).
dc.relation.references(158) Baker, R. R. Insect Territoriality. Annu. Rev. Entomol. Vol. 28 1983, 65–89. https://doi.org/10.1146/annurev.en.28.010183.000433.
dc.relation.references(159) Stepien, T. L.; Zmurchok, C.; Hengenius, J. B.; Rivera, R. M. C.; D’Orsogna, M. R.; Lindsay, A. E. Moth Mating: Modeling Female Pheromone Calling and Male Navigational Strategies to Optimize Reproductive Success. Appl. Sci. 2020, 10 (18), 6543. https://doi.org/10.3390/APP10186543.
dc.relation.references(160) Advances in Insect Chemical Ecology; Carde, R. T., Millar, J. G., Eds.; Cambridge University Press, 2004. https://doi.org/10.1017/cbo9780511542664.
dc.relation.references(161) Cardé, R. T.; Baker, T. C. Sexual Communication with Pheromones. In Chemical Ecology of Insects; Springer, Boston, MA, 1984; pp 355–383. https://doi.org/10.1007/978-1-4899-3368-3_13.
dc.relation.references(162) Saveer, A. M.; Becher, P. G.; Birgersson, G.; Hansson, B. S.; Witzgall, P.; Bengtsson, M. Mate Recognition and Reproductive Isolation in the Sibling Species Spodoptera Littoralis and Spodoptera Litura. Front. Ecol. Evol. 2014, 2 (MAY), 18. https://doi.org/10.3389/FEVO.2014.00018/BIBTEX.
dc.relation.references(163) Guo, J. M.; Liu, X. L.; Liu, S. R.; Wei, Z. Q.; Han, W. K.; Guo, Y.; Dong, S. L. Functional Characterization of Sex Pheromone Receptors in the Fall Armyworm (Spodoptera Frugiperda). Insects 2020, 11 (3). https://doi.org/10.3390/insects11030193.
dc.relation.references(164) Fitzpatrick, S. M.; McNeil, J. N. MALE SCENT IN LEPIDOPTERAN COMMUNICATION: THE ROLE OF MALE PHEROMONE IN MATING BEHAVIOUR OF PSEUDALETIA UNIPUNCTA (HAW.) (LEPIDOPTERA: NOCTUIDAE). Mem. Entomol. Soc. Canada 1988, 120 (S146), 131–151. https://doi.org/10.4039/ENTM120146131-1.
dc.relation.references(165) Lee, M. S.; Albajes, R.; Eizaguirre, M. Mating Behaviour of Female Tuta Absoluta (Lepidoptera: Gelechiidae): Polyandry Increases Reproductive Output. J. Pest Sci. 2014 873 2014, 87 (3), 429–439. https://doi.org/10.1007/S10340-014-0576-4.
dc.relation.references(166) McNeil, J. N. Behavioral Ecology of Pheromone-Mediated Communication in Moths and Its Importance in the Use of Pheromone Traps. https://doi.org/10.1146/annurev.en.36.010191.002203 2003, 36 (1), 407–430. https://doi.org/10.1146/ANNUREV.EN.36.010191.002203.
dc.relation.references(167) Dion, E.; Monteiro, A.; Nieberding, C. M. The Role of Learning on Insect and Spider Sexual Behaviors, Sexual Trait Evolution, and Speciation. Front. Ecol. Evol. 2019, 6 (JAN), 225. https://doi.org/10.3389/FEVO.2018.00225/BIBTEX.
dc.relation.references(168) Symonds, M. R. E.; Elgar, M. A. The Evolution of Pheromone Diversity. Trends in Ecology and Evolution. April 2008, pp 220–228. https://doi.org/10.1016/j.tree.2007.11.009.
dc.relation.references(169) Domínguez, A.; López, S.; Bernabé, A.; Guerrero, Á.; Quero, C. Influence of Age, Host Plant and Mating Status in Pheromone Production and New Insights on Perception Plasticity in Tuta Absoluta. Insects 2019, Vol. 10, Page 256 2019, 10 (8), 256. https://doi.org/10.3390/INSECTS10080256.
dc.relation.references(170) Nieberding, C. M.; de Vos, H.; Schneider, M. V.; Lassance, J. M.; Estramil, N.; Andersson, J.; Bång, J.; Hedenström, E.; Löfstedt, C.; Brakefield, P. M. The Male Sex Pheromone of the Butterfly Bicyclus Anynana: Towards an Evolutionary Analysis. PLoS One 2008, 3 (7), e2751. https://doi.org/10.1371/journal.pone.0002751.
dc.relation.references(171) Yan, Q.; Fujino, A.; Naka, H.; Dong, S. L.; Ando, T. Chemical Analysis of the Female Sex Pheromone in Palpita Nigropunctalis (Lepidoptera: Crambidae). J. Asia. Pac. Entomol. 2018, 21 (4), 1283–1288. https://doi.org/10.1016/j.aspen.2018.10.001.
dc.relation.references(172) Choi, K. S.; Lee, J. M.; Park, J. H.; Cho, J. R.; Song, J. H.; Kim, D. S.; Boo, K. S. Sex Pheromone Composition of the Cotton Caterpillar, Palpita Indica (Lepidoptera: Pyralidae), in Korea. J. Asia. Pac. Entomol. 2009, 12 (4), 269–275. https://doi.org/10.1016/j.aspen.2009.07.003.
dc.relation.references(173) van Den Dool, H.; Dec. Kratz, P. A Generalization of the Retention Index System Including Linear Temperature Programmed Gas-Liquid Partition Chromatography. J. Chromatogr. A 1963, 11 (C), 463–471. https://doi.org/10.1016/s0021-9673(01)80947-x.
dc.relation.references(174) Kartika, T.; Shimizu, N.; Himmi, S. K.; Guswenrivo, I.; Tarmadi, D.; Yusuf, S.; Yoshimura, T. Influence of Age and Mating Status on Pheromone Production in a Powderpost Beetle Lyctus Africanus (Coleoptera: Lyctinae). Insects 2021, Vol. 12, Page 8 2020, 12 (1), 8. https://doi.org/10.3390/INSECTS12010008.
dc.relation.references(175) TURGEON, J. J.; McNEIL, J. N.; ROELOFSt, W. L. Responsiveness of Pseudaletia Unipuncta Males to the Female Sex Pheromone. Physiol. Entomol. 1983, 8 (3), 339–344. https://doi.org/10.1111/J.1365-3032.1983.TB00366.X.
dc.relation.references(176) Rodriguez, S. A.; Paliza, M. L.; Nazareno, M. A. Influence of Adsorbent Nature on the Dynamic Headspace Study of Insect Semiochemicals. Aust. J. Chem. 2017, 70 (8), 902–907. https://doi.org/10.1071/CH17064.
dc.relation.references(177) Rebouças, L. M. C.; Caraciolo, M. do S. B.; Sant’Ana, A. E. G.; Pickett, J. A.; Wadhams, L. J.; Pow, E. M. Composição Química Da Glândula Abdominal Da Fêmea Da Mariposa Castnia Licus (Drury) (Lepidoptera:Castniidae): Possíveis Feromônios e Precursores. Quim. Nova 1999, 22 (5), 645–648. https://doi.org/10.1590/S0100-40421999000500003.
dc.relation.references(178) Phelan, P. L.; Roelofs, C. J.; Youngman, R. R.; Baker, T. C. Characterization of Chemicals Mediating Ovipositional Host-Plant Finding ByAmyelois Transitella Females. J. Chem. Ecol. 1991 173 1991, 17 (3), 599–613. https://doi.org/10.1007/BF00982129.
dc.relation.references(179) Pherobase. Semiochemicals of Genus Amauris https://www.pherobase.com/database/genus/genus-Amauris.php (accessed Apr 4, 2022).
dc.relation.references(180) Moritz, R. F. A.; Kirchner, W. H.; Crewe, R. M. Chemical Camouflage of the Death’s Head Hawkmoth (Acherontia Atropos L.) in Honeybee Colonies. Naturwissenschaften 1991 784 1991, 78 (4), 179–182. https://doi.org/10.1007/BF01136209.
dc.relation.references(181) Paré, P. W.; Tumlinson, J. H. Plant Volatiles as a Defense against Insect Herbivores. Plant Physiology. Oxford Academic October 1, 1999, pp 325–331. https://doi.org/10.1104/pp.121.2.325.
dc.relation.references(182) Andersson, S.; Nilsson, L. A. A.; Groth, I.; Bergström, G. Floral Scents in Butterfly-Pollinated Plants: Possible Convergence in Chemical Composition. Bot. J. Linn. Soc. 2002, 140 (2), 129–153. https://doi.org/10.1046/j.1095-8339.2002.00068.x.
dc.relation.references(183) Schulz, S.; Estrada, C.; Yildizhan, S.; Boppré, M.; Gilbert, L. E. An Antiaphrodisiac in Heliconius Melpomene Butterflies. J. Chem. Ecol. 2008, 34 (1), 82–93. https://doi.org/10.1007/s10886-007-9393-z.
dc.relation.references(184) Böröczky, K. Pheromone Communication in Moths: Evolution, Behavior, and Application. Am. Entomol. 2017, 63 (4), 260–261. https://doi.org/10.1093/ae/tmx069.
dc.relation.references(185) Chan, W. K.; Tan, L. T. H.; Chan, K. G.; Lee, L. H.; Goh, B. H. Nerolidol: A Sesquiterpene Alcohol with Multi-Faceted Pharmacological and Biological Activities. Molecules 2016, 21 (5), 529. https://doi.org/10.3390/molecules21050529.
dc.relation.references(186) Fraser, A. M.; Mechaber, W. L.; Hildebrand, J. G. Electroantennographic and Behavioral Responses of the Sphinx Moth Manduca Sexta to Host Plant Headspace Volatiles. J. Chem. Ecol. 2003 298 2003, 29 (8), 1813–1833. https://doi.org/10.1023/A:1024898127549.
dc.relation.references(187) Ramachandran, R.; Khan, Z. R.; Caballero, P.; Juliano, B. O. Olfactory Sensitivity of Two Sympatric Species of Rice Leaf Folders (Lepidoptera: Pyralidae) to Plant Volatiles. J. Chem. Ecol. 1990 169 1990, 16 (9), 2647–2666. https://doi.org/10.1007/BF00988076.
dc.relation.references(188) Tabacchi, R.; Saturnin, C.; Porret, C. L.; Biedermann, M.; Sponsler, S.; Bitzer, L. A Guide to the Analysis of Chiral Compounds by GC. Restek Cor 2010, 1–23.
dc.relation.references(189) Raoul, S.; Dall, X.; Nelson, X. J.; Wyatt, T. D.; Elgar, M. A.; Henneken, J.; Goodger, J. Q. D.; Jones, T. M. Diet-Mediated Pheromones and Signature Mixtures Can Enforce Signal Reliability. Front. Ecol. Evol. | www.frontiersin.org 2017, 1, 145. https://doi.org/10.3389/fevo.2016.00145.
dc.relation.references(190) South, S. H.; House, C. M.; Moore, A. J.; Simpson, S. J.; Hunt, J. Male Cockroaches Prefer a High Carbohydrate Diet That Makes Them More Attractive to Females: Implications for the Study of Condition Dependence. Evolution (N. Y). 2011, 65 (6), 1594–1606. https://doi.org/10.1111/j.1558-5646.2011.01233.x.
dc.relation.references(191) Kopena, R.; Martín, J.; López, P.; Herczeg, G. Vitamin E Supplementation Increases the Attractiveness of Males’ Scent for Female European Green Lizards. PLoS One 2011, 6 (4), e19410. https://doi.org/10.1371/journal.pone.0019410.
dc.relation.references(192) Liedo, P.; Orozco, D.; Cruz-López, L.; Quintero, J. L.; Becerra-Pérez, C.; del Refugio Hernández, M.; Oropeza, A.; Toledo, J. Effect of Post-Teneral Diets on the Performance of Sterile Anastrepha Ludens and Anastrepha Obliqua Fruit Flies. J. Appl. Entomol. 2013, 137 (SUPPL.1), 49–60. https://doi.org/10.1111/j.1439-0418.2010.01568.x.
dc.relation.references(193) Blaul, B.; Steinbauer, R.; Merkl, P.; Merkl, R.; Tschochner, H.; Ruther, J. Oleic Acid Is a Precursor of Linoleic Acid and the Male Sex Pheromone in Nasonia Vitripennis. Insect Biochem. Mol. Biol. 2014, 51 (1), 33–40. https://doi.org/10.1016/j.ibmb.2014.05.007.
dc.relation.references(194) Eisner, T.; Meinwald, J. Alkaloid-Derived Pheromones and Sexual Selection in Lepidoptera. In Insect Pheromone Biochemistry and Molecular Biology; Elsevier Inc., 2003; pp 341–368. https://doi.org/10.1016/B978-012107151-6/50014-1.
dc.relation.references(195) Buczkowski, G.; Kumar, R.; Suib, S. L.; Silverman, J. Diet-Related Modification of Cuticular Hydrocarbon Profiles of the Argentine Ant, Linepithema Humile, Diminishes Intercolony Aggression. J. Chem. Ecol. 2005, 31 (4), 829–843. https://doi.org/10.1007/s10886-005-3547-7.
dc.relation.references(196) Frérot, B.; Leppik, E.; Groot, A. T.; Unbehend, M.; Holopainen, J. K. Chemical Signatures in Plant–Insect Interactions. Adv. Bot. Res. 2017, 81, 139–177. https://doi.org/10.1016/bs.abr.2016.10.003.
dc.relation.references(197) Ono, T. Effect of Rearing Temperature on Pheromone Component Ratio in Potato Tuberworm Moth, Phthorimaea Operculella, (Lepidoptera: Gelechiidae). J. Chem. Ecol. 1993, 19 (1), 71–81. https://doi.org/10.1007/BF00987472.
dc.relation.references(198) Hock, V.; Chouinard, G.; Lucas, É.; Cormier, D.; Leskey, T.; Wright, S.; Zhang, A.; Pichette, A. Establishing Abiotic and Biotic Factors Necessary for Reliable Male Pheromone Production and Attraction to Pheromones by Female Plum Curculios Conotrachelus Nenuphar (Coleoptera: Curculionidae). Can. Entomol. 2014, 146 (5), 528–547. https://doi.org/10.4039/tce.2014.1.
dc.relation.references(199) Anderbrant, O.; Schlyter, F.; Birgersson, G.; Birgersson, G. Intraspecific Competition Affecting Parents and Offspring in the Bark Beetle Ips Typographus. Oikos 1985, 45 (1), 89. https://doi.org/10.2307/3565226.
dc.relation.references(200) MILLER, J. Y. THE TAXONOMY, PHYLOGENY, AND ZOOGEOGRAPHY OF THE NEOTROPICAL MOTH SUBFAMILY CASTNIINAE (LEPIDOPTERA: CASTNIOIDEA: CASTNIIDAE) (CLADISTICS); 1986.
dc.relation.references(201) i Monteys, V.; Acín, P.; Rosell, G.; Quero, C.; Jiménez, M. A.; Guerrero, A. Moths Behaving like Butterflies. Evolutionary Loss of Long Range Attractant Pheromones in Castniid Moths: A Paysandisia Archon Model. PLoS One 2012, 7 (1), e29282. https://doi.org/10.1371/journal.pone.0029282.
dc.relation.references(202) Agostini-Costa, T. da S. Bioactive Compounds and Health Benefits of Some Palm Species Traditionally Used in Africa and the Americas – A Review. J. Ethnopharmacol. 2018, 224, 202–229. https://doi.org/10.1016/J.JEP.2018.05.035.
dc.relation.references(203) Walton, N. J.; Mayer, M. J.; Narbad, A. Vanillin. Phytochemistry. Pergamon July 1, 2003, pp 505–515. https://doi.org/10.1016/S0031-9422(03)00149-3.
dc.relation.references(204) Sasaerila, Y.; Gries, R.; Gries, G.; Khaskin, G.; King, S.; Takács, S.; Hardi. Sex Pheromone Components of Male Tirathaba Mundella (Lepidoptera: Pyralidae). Chemoecology 2003, 13 (2), 89–93. https://doi.org/10.1007/s00049-003-0233-5.
dc.relation.references(205) Sugisawa, H.; Nakamura, K.; Tamura, H. The Aroma Profile of the Volatiles in Marine Green Algae (Ulva Pertusa). Food Rev. Int. 1990, 6 (4), 573–589. https://doi.org/10.1080/87559129009540893.
dc.relation.references(206) SAKATA, T.; TAGAMI, K.; KUWAHARA, Y. Chemical Ecology of Oribatid Mites. I. Oil Gland Components of Hydronothrus Crispus Aoki. J. Acarol. Soc. Japan 1995, 4 (2), 69–75. https://doi.org/10.2300/acari.4.69.
dc.relation.references(207) Eisner, T.; Pliske, T. E.; Ikeda, M.; Owen, D. F.; Vázquez, L.; Pérez, H.; Franclemont, J. G.; Meinwald, J. Defense Mechanisms of Arthropods. XXVII. Osmeterial Secretions of Papilionid Caterpillars (Baronia, Papilio, Eurytides)1. Ann. Entomol. Soc. Am. 1970, 63 (3), 914–915. https://doi.org/10.1093/aesa/63.3.914.
dc.relation.references(208) Schmera, D.; Guerin, P. M. Plant Volatile Compounds Shorten Reaction Time and Enhance Attraction of the Codling Moth (Cydia Pomonella) to Codlemone. Pest Manag. Sci. 2012, 68 (3), 454–461. https://doi.org/10.1002/ps.2292.
dc.relation.references(209) Ring T. Cardé, J. G. M. Advances in Insect Chemical Ecology; 2004. https://doi.org/10.1017/cbo9780511542664.
dc.relation.references(210) De Pasqual, C.; Groot, A. T.; Mappes, J.; Burdfield-Steel, E. Evolutionary Importance of Intraspecific Variation in Sex Pheromones. Trends in Ecology and Evolution. Elsevier Current Trends September 1, 2021, pp 848–859. https://doi.org/10.1016/j.tree.2021.05.005.
dc.relation.references(211) McElfresh, J. S.; Millar, J. G. Geographic Variation in the Pheromone System of the Saturniid Moth Hemileuca Eglanterina. Ecology 2001, 82 (12), 3505–3518. https://doi.org/10.2307/2680168.
dc.relation.references(212) Palacio Cortés, A. M.; Zarbin, P. H. G.; Takiya, D. M.; Bento, J. M. S.; Guidolin, A. S.; Consoli, F. L. Geographic Variation of Sex Pheromone and Mitochondrial DNA in Diatraea Saccharalis (Fab., 1794) (Lepidoptera: Crambidae). J. Insect Physiol. 2010, 56 (11), 1624–1630. https://doi.org/10.1016/j.jinsphys.2010.06.005.
dc.relation.references(213) Cruz-Esteban, S.; Rojas, J. C.; Sánchez-Guillén, D.; Cruz-López, L.; Malo, E. A. Geographic Variation in Pheromone Component Ratio and Antennal Responses, but Not in Attraction, to Sex Pheromones among Fall Armyworm Populations Infesting Corn in Mexico. J. Pest Sci. (2004). 2018, 91 (3), 973–983. https://doi.org/10.1007/S10340-018-0967-Z/FIGURES/2.
dc.relation.references(214) Noorbakhsh, S.; Saber, M.; Farazmand, H.; Heidary Alizadeh, B. Intraspecific Geographic Variation in Sex Pheromone of the Carob Moth, Ectomyelois Ceratoniae (Lepidoptera: Pyralidae). J. Crop Prot. 2021, 10 (4), 771–786.
dc.relation.references(215) Barah, P.; Bones, A. M. Multidimensional Approaches for Studying Plant Defence against Insects: From Ecology to Omics and Synthetic Biology. J. Exp. Bot. 2015, 66 (2), 479–493. https://doi.org/10.1093/JXB/ERU489.
dc.relation.references(216) Zvereva, E. L.; Kozlov, M. V. The Costs and Effectiveness of Chemical Defenses in Herbivorous Insects: A Meta-Analysis. Ecol. Monogr. 2016, 86 (1), 107–124. https://doi.org/10.1890/15-0911.1.
dc.relation.references(217) Beran, F.; Petschenka, G. Sequestration of Plant Defense Compounds by Insects: From Mechanisms to Insect-Plant Coevolution. Annual Review of Entomology. 2022, pp 163–180. https://doi.org/10.1146/annurev-ento-062821-062319.
dc.relation.references(218) Groot, A. T.; Inglis, O.; Bowdridge, S.; Santangelo, R. G.; Blanco, C.; López, J. D.; Vargas, A. T.; Gould, F.; Schal, C. Geographic and Temporal Variation in Moth Chemical Communication. Evolution (N. Y). 2009, 63 (8), 1987–2003. https://doi.org/10.1111/j.1558-5646.2009.00702.x.
dc.relation.references(219) Nojima, S.; Classen, A.; Groot, A. T.; Schal, C. Qualitative and Quantitative Analysis of Chemicals Emitted from the Pheromone Gland of Individual Heliothis Subflexa Females. PLoS One 2018, 13 (8). https://doi.org/10.1371/journal.pone.0202035.
dc.relation.references(220) Hansson, B.; Wicher, D. Chemical Ecology in Insects. In Chemosensory Transduction: The Detection of Odors, Tastes, and Other Chemostimuli; Academic Press, 2016; pp 29–45. https://doi.org/10.1016/B978-0-12-801694-7.00002-0.
dc.relation.references(221) Allison, J. D.; Cardé, R. T. Male Pheromone Blend Preference Function Measured in Choice and No-Choice Wind Tunnel Trials with Almond Moths, Cadra Cautella. Anim. Behav. 2008, 75 (1), 259–266. https://doi.org/10.1016/j.anbehav.2007.04.033.
dc.relation.references(222) Malo, E. A.; Renou, M.; Guerrero, A. Analytical Studies of Spodoptera Littoralis Sex Pheromone Components by Electroantennography and Coupled Gas Chromatography-Electroantennographic Detection. Talanta 2000, 52 (3), 525–532. https://doi.org/10.1016/S0039-9140(00)00401-X.
dc.relation.references(223) Malo, E. A.; Renou, M.; Guerrero, A. Analytical Studies of Spodoptera Littoralis Sex Pheromone Components by Electroantennography and Coupled Gas Chromatography-Electroantennographic Detection. Talanta 2000, 52 (3), 525–532. https://doi.org/10.1016/S0039-9140(00)00401-X.
dc.relation.references(224) Eiras, Á. E. Calling Behaviour and Evaluation of Sex Pheromone Glands Extract of Neoleucinodes Elegantalis Guenée (Lepidoptera: Crambidae) in Wind Tunnel. An. da Soc. Entomológica do Bras. 2000, 29 (3), 453–460. https://doi.org/10.1590/s0301-80592000000300007.
dc.relation.references(225) Fouad, H. A.; Faroni, L. R. D. A.; Vilela, E. F.; de Lima, E. R. Flight Responses of Sitotroga Cerealella (Lepidoptera: Gelechiidae) to Corn Kernel Volatiles in a Wind Tunnel. Arthropod. Plant. Interact. 2013, 7 (6), 651–658. https://doi.org/10.1007/S11829-013-9275-Y/TABLES/2.
dc.relation.references(226) Carlsson, M. A.; Schäpers, A.; Nässel, D. R.; Janz, N. Organization of the Olfactory System of Nymphalidae Butterflies. Chem. Senses 2013, 38 (4), 355–367. https://doi.org/10.1093/chemse/bjt008.
dc.relation.references(227) Roelofs, W. L. Electroantennogram Assays: Rapid and Convenient Screening Procedures for Pheromones; Springer, New York, NY, 1984; pp 131–159. https://doi.org/10.1007/978-1-4612-5220-7_5.
dc.relation.references(228) Cork, A.; Beevor, P. S.; Gough, A. J. E.; Hall, D. R. Gas Chromatography Linked to Electroantennography: A Versatile Technique for Identifying Insect Semiochemicals. In Chromatography and Isolation of Insect Hormones and Pheromones; Springer, New York, NY, 1990; pp 271–279. https://doi.org/10.1007/978-1-4684-8062-7_26.
dc.relation.references(229) Cardé, R. T. Navigation along Windborne Plumes of Pheromone and Resource-Linked Odors. Annual Review of Entomology. 2021, pp 317–336. https://doi.org/10.1146/annurev-ento-011019-024932.
dc.relation.references(230) Conchou, L.; Lucas, P.; Deisig, N.; Demondion, E.; Ren, M. Effects of Multi-Component Backgrounds of Volatile Plant Compounds on Moth Pheromone Perception. Insects 2021, 12 (5), 409. https://doi.org/10.3390/insects12050409.
dc.relation.references(231) Renou, M.; Anton, S. Insect Olfactory Communication in a Complex and Changing World. Current Opinion in Insect Science. Elsevier December 1, 2020, pp 1–7. https://doi.org/10.1016/j.cois.2020.04.004.
dc.relation.references(232) Kamimura, M.; Tatsuki, S. Effects of Photoperiodic Changes on Calling Behavior and Pheromone Production in the Oriental Tobacco Budworm Moth, Helicoverpa Assulta (Lepidoptera: Noctuidae). J. Insect Physiol. 1994, 40 (8), 731–734. https://doi.org/10.1016/0022-1910(94)90101-5.
dc.relation.references(233) Gemeno, C.; Haynes, K. F. Impact of Photoperiod on the Sexual Behavior of the Black Cutworm Moth (Lepidoptera: Noctuidae). Environ. Entomol. 2001, 30 (2), 189–195. https://doi.org/10.1603/0046-225X-30.2.189.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocLepidoptera
dc.subject.agrovocNymphalidae
dc.subject.agrovocFeromonas sexuales
dc.subject.agrovocSex pheromones
dc.subject.agrovocElaeis guineensis
dc.subject.proposalOpsiphanes cassina
dc.subject.proposalOpsiphanes cassina
dc.subject.proposalPalma de aceite
dc.subject.proposalOil palm
dc.subject.proposalFeromona
dc.subject.proposalPheromone
dc.subject.proposalManejo integrado de plagas
dc.subject.proposalIntegrated pest management
dc.subject.proposalControl etológico
dc.subject.proposalEthological control
dc.title.translatedSex pheromone as a strategy for the integrated management of Opsiphanes cassina Felder, 1862 in oil palm crops
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentImage
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameFederación Nacional de Cultivadores de Palma (Fedepalma). Fondo de Fomento Palmero.
oaire.fundernameCentro de Investigación en Palma de Aceite (Cenipalma). Programa de Plagas y Enfermedades.
oaire.fundernameGrupo de Investigación en Química de Hongos Macromicetos, Facultad de Ciencias, Universidad Nacional de Colombia, sede Bogotá.
oaire.fundernameGrupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño.
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dc.contributor.orcidJenifer Jhoana Bustos Cortes [0000000155457866]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito