Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorMolina Ochoa, Alejandro
dc.contributor.authorVélez Sánchez, Carlos Andrés
dc.date.accessioned2023-07-24T19:30:21Z
dc.date.available2023-07-24T19:30:21Z
dc.date.issued2023-07-24
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84252
dc.descriptionIlustraciones
dc.description.abstractThe design of fire protection systems in underground power plants goes beyond what is solely prescriptive. This is because, in addition to the risks of the operation of rotating and electrical equipment, there is difficulty in evaluating the time required for the evacuation of personnel due to the long distances between the access portal and the power plant. Therefore, it is necessary to carry out performance-based designs to reduce the level of uncertainty left by prescriptive designs and verify that personnel can evacuate properly. In this monograph, three different physical modeling tools (PMTs) were analyzed: Fire Dynamics simulator (FDS), Consolidated Model of Fire Growth and Smoke (CFAST) and ANSYS-FLUENT, in a case of application of fire in an oil-insulated transformer with an estimate heat release rate of 8746 kW, for which five different fire scenarios were analyzed. A prescription-based approach to the characterization of a fire protection system and a fire risk analysis in hydroelectric power plants was initially undertaken. This part was particularly devoted to a fire in an electric transformer and lead to the design of a fire protection system exclusively based on prescriptive recommendations. Five fire scenarios that considered either a confined system (the transformer cell) or an unconfined system (the transformer cell and the adjacent hallway) as well as the availability of smoke evacuation and water deluge protection were then modeled with all the three PMTs. The results from all the PMTs simulations were compared, particularly those related with smoke temperature and predicted Heat Release Rate (HRR). The available evacuation times (ASET) calculated by the PMTs and associated to risks related to changes in temperature, concentration of carbon monoxide, carbon dioxide and oxygen and thermal radiation were compared with the required evacuation time (RSET) calculated by the prescriptive method. It was identified that the time required for the evacuation of personnel is less than the time available. The results of the smoke layer temperatures reported by the PMTs were compared with those calculated by the prescriptive method for the definition of the smoke extraction system. Finally, the functionality of each PMT to model the proposed fire scenarios was evaluated. FDS could be used simulate the five proposed scenarios. CFAST demanded to artificially adjust the HRR to represent the deluge extinguishing system. Even though a more detailed representation of the geometry was possible with FLUENT, only the steady-state cases could be modeled in a similar computational time frame that of FDS and with a personal computer. Even though CFAST was deemed as the easiest to use PMT, FDS was confirmed as the standard to use when modeling fires as its mathematical complexity allows for a more reliable fire representation. Although FLUENT has potential for fire simulation, its application by fire safety engineering (FSE) practitioner would be limited to steady state simulations if the simulations are to be carried out in the time frame and with the typical computational facilities available in industry.
dc.description.abstractLos diseños de los sistemas de protección contra incendios en las centrales de generación subterráneas van más allá de lo netamente prescriptivo. Lo anterior se debe a que, adicional a los riesgos de la operación de los equipos rotativos y eléctricos, existe una dificultad para evaluar el tiempo necesario para la evacuación del personal debido a las largas distancias entre el portal de acceso y la casa de máquinas. Por lo tanto, se hace necesario realizar diseños basados en desempeño con el propósito de disminuir el nivel de incertidumbre que dejan los diseños prescriptivos y verificar que el personal pueda evacuar de manera adecuada. En este trabajo de grado se analizaron tres diferentes herramientas de modelación física: Fire Dynamics Simulator (FDS), Consolidated Model of Fire Growth and Smoke (CFAST) y ANSYS-FLUENT, en un caso de aplicación de un incendio de un transformador de potencia refrigerado por aceite con una tasa de liberación de calor estimada de 8746 kW, para el cual se analizaron cinco escenarios de incendios diferentes. Inicialmente se caracterizó con base en el método prescriptivo un sistema de protección y de riesgos contra incendios en centrales hidroeléctricas, específicamente en lo relacionado con el transformador eléctrico. Esta caracterización permitió el diseño de un sistema protector contra incendios a partir de recomendaciones prescriptivas. Se simularon cinco escenarios de incendios que consideraban sistemas confinados (la celda del transformador) o no confinados (la celda del transformador y el pasillo aledaño) así como la disponibilidad de extractores de humo y sistemas de diluvio. Los resultados de las simulaciones de todas las herramientas de modelación física se compararon, especialmente aquellos relacionados con la temperatura del humo y la velocidad de liberación de calor (HRR, Heat Release Rate). Inicialmente, los tiempos de evacuación disponibles (ASET) calculados por métodos computacionales para niveles de riesgo relacionados con los cambios en la temperatura, la concentración de monóxido de carbono, dióxido de carbono y oxígeno y la radiación térmica se compararon con el tiempo de evacuación requerido (RSET) calculado por método prescriptivo. Se identificó que el tiempo requerido para la evacuación del personal es menor al tiempo disponible, por lo cual, el personal puede evacuar a una zona segura. Posterior a esto, se compararon los resultados de las temperaturas de la capa de humo reportadas por las herramientas de simulación física con las calculadas por el método prescriptivo para la definición del sistema de extracción de humos. Finalmente, se evaluó la funcionalidad de cada una de las herramientas de modelación física para adaptarse a los escenarios propuestos. FDS permitió simular los cinco escenarios; con CFAST fue necesario de forma artificial ajustar la HRR para representar el sistema de extinción por diluvio. En el caso de FLUENT solo fue posible simular, dentro de un tiempo de cómputo similar al de FDS y en un computador personal, dos escenarios que se presentaban en estado estable. Si bien CFAST es la herramienta de modelación física más fácil de usar, FDS se ratificó como el estándar de uso en la simulación de incendios pues la complejidad de su desarrollo matemático le permite una mejor caracterización del incendio. Si bien FLUENT tiene potencial para simular un incendio, su aplicación por parte de profesionales especializados en el área de seguridad contra incendios se limita a simulaciones en estado estable dentro de la capacidad de cómputo normalmente disponible para este tipo de análisis en la industria. (Texto tomado de la fuente)
dc.format.extent166 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicada
dc.titleUse of physical modeling tools in the design of fire-protection systems for an electric transformer in an underground hydroelectric Power Plant
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería Mecánica
dc.contributor.researchgroupBioprocesos y flujos reactivos
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ingeniería Mecánica
dc.description.researchareaIncendios y explosiones
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.repoRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Minas
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedLaReferencia
dc.relation.references3dcadportal.com. (2014, April 8). STAR-CD . https://www.3dcadportal.com/star-cd.html
dc.relation.referencesANSYS. (2020a). ANSYS 2020 R1 Fluent User’s Guide. http://www.ansys.com
dc.relation.referencesANSYS. (2020b). ANSYS Fluid Dynamics Verification Manual. http://www.ansys.com
dc.relation.referencesArias, F. (2016, February 16). Doce horas duró incendio en la central hidroeléctrica de Guatapé. El Colombiano. https://www.elcolombiano.com/antioquia/emergencia-en-central-hidroelectrica-de-guatape-MM3608439
dc.relation.referencesAsociación Colombiana de Ingeniería Sísmica. (2010). NSR 10 - Reglamento colombiano de construcción sismoresistente.
dc.relation.referencesBabrauskas, V., & Grayson, S. J. (1990). Heat Release in Fires. Taylor & Francis.
dc.relation.referencesBerg, H.-P., & Fritze, N. (2012). Risk and consequences of transformer explosions and fires in nuclear power plants. Journal of KONBiN, 3(23), 2012. https://doi.org/10.2478/jok-2013-0034
dc.relation.referencesBetancur, J. (2021, August 10). Incendio afectó central térmica de EPM en Puerto Nare. El Colombiano. https://www.elcolombiano.com/antioquia/incendio-en-central-termica-de-empresas-publicas-de-medellin-en-puerto-nare-antioquia-GA15377634
dc.relation.referencesBinbin, W. (2011). Comparative Research on FLUENT and FDS’s Numerical Simulation of Smoke Spread in Subway Platform Fire . Procedia Engineering, 26, 1065–1075. https://doi.org/10.1016/j.proeng.2011.11.2275
dc.relation.referencesBishop, J., & Rodriguez, A. (2011). Electrical Transformer Fire and Explosion Protection. KA Factor Group.
dc.relation.referencesBlenderFDS. (2023, January 27). BlenderFDS. https://blenderfds.org/
dc.relation.referencesBRANZ. (2023, January 15). B-RISK: Design fire tool. https://www.branz.co.nz/fire-safety-design/b-risk/
dc.relation.referencesBRE-Group. (2019). Fire modelling with Computational Fluid Dynamics. BRE Group | Building a Better World Together. https://bregroup.com/a-z/fire-modelling/
dc.relation.referencesCadena, J., & Muñoz, F. (2014). Uncertainty analysis of fire simulations through FDS. http://hdl.handle.net/1992/11981
dc.relation.referencesCao, B., Dong, J. W., & Chi, M. H. (2021). Electrical breakdown mechanism of transformer oil with water impurity: Molecular dynamics simulations and first-principles calculations. Crystals, 11(2). https://doi.org/10.3390/cryst11020123
dc.relation.referencesCárdenas, S. (2017, June 23). Bomberos atendieron incendio en la Central Playas de EPM. El Colombiano. https://www.elcolombiano.com/antioquia/incendio-en-la-central-playas-de-epm-KG6778826
dc.relation.referencesCherbański, R., Rudniak, L., Machniewski, P., Molga, E., Tępiński, J., Klapsa, W., & Lesiak, P. (2022). Ethanol pool fire on a one-meter test tray - validation of CFD results. Chemical and Process Engineering - Inzynieria Chemiczna i Procesowa, 43(1), 23–44. https://doi.org/10.24425/cpe.2022.140809
dc.relation.referencesChi, J. H., Wu, S. H., & Shu, C. M. (2011). Using Fire Dynamics Simulator to Reconstruct a Hydroelectric Power Plant Fire Accident. Journal of Forensic Sciences, 56(6), 1639–1644. https://doi.org/10.1111/j.1556-4029.2011.01887.x
dc.relation.referencesDarnaculleta, B. (2019). Validation of CFD codes for risk analysis of accidental hydrocarbon fires [Ph. D. Thesis]. Univertitat Politécnica de Catalunya - Barcelonatech
dc.relation.referencesDrysdale, D. (2011). An Introduction to Fire Dynamics: Third Edition. An Introduction to Fire Dynamics: Third Edition, 1–551. https://doi.org/10.1002/9781119975465
dc.relation.referencesDuarte, D. (2004). A performance overview about fire risk management in the Brazilian hydroelectric generating plants and transmission network. Journal of Loss Prevention in the Process Industries, 17(1), 65–75. https://doi.org/10.1016/j.jlp.2003.09.007
dc.relation.referencesDuarte, D. (2012). Aspects of Transformer Fires in Brazil. Open Journal of Safety Science and Technology, 2, 63–74. https://doi.org/10.4236/ojsst.2012.23009
dc.relation.referencesEdin, E., & Ström, M. (2019). Comparing a full scale test with FDS, FireFOAM, McCaffrey & Eurocode. Luleå University of Technology
dc.relation.referencesEl-Harbawi, M., & Al-Mubaddel, F. (2020). Risk of Fire and Explosion in Electrical Substations Due to the Formation of Flammable Mixtures. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-63354-4
dc.relation.referencesFM Global. (2012). FM Global: Data Sheet 7-101 Fire Protection for Steam Turbines and Electric Generators
dc.relation.referencesFM Global. (2020). FM Global: Data Sheet 5-3 Hydroelectric Power Plants
dc.relation.referencesForney, G. P. (2022). Smokeview, A Tool for Visualizing Fire Dynamics Simulation Data Volume I: User’s Guide
dc.relation.referencesGAPS. (2015a). GAPS Guidelines GAP 5.9.4 Transformers surroundings
dc.relation.referencesGAPS. (2015b). GAPS Guidelines GAP 17.12.1 Fire protection for electric generating plants and high voltage direct current conventer stations
dc.relation.referencesGuo, X., Zhang, H., Pan, X., Zhang, L., Hua, M., Zhang, C., Zhou, J., Yan, C., & Jiang, J. (2022). Experimental and numerical simulation research on fire suppression efficiency of dry powder mediums containing molybdenum flame retardant additive. Process Safety and Environmental Protection, 159, 294–308. https://doi.org/10.1016/j.psep.2021.12.009
dc.relation.referencesHadjisophocleous, G. v., & Benichou, N. (1999). Performance criteria used in fire safety design. Automation in Construction, 8(4), 489–501. https://doi.org/10.1016/S0926-5805(98)00096-X
dc.relation.referencesHamins, A., & Mcgrattan, K. (2003). Reduced-Scale Experiments on the Water Suppression of a Rack-Storage Commodity Fire for Calibration of a CFD Fire Model. Fire Safety Science, 7, 457–468
dc.relation.referencesHietaniemi, J., & Mikkola, E. (2010). Design fires for safety engineering. VTT Working Papers, 139. URL: http://www.vtt.fi/publications/index.jsp
dc.relation.referencesHoole, P., Anak Rufus, S., Izzati bt Hashim, N., Hafiez Izzwan Saad, M., Satari Abdullah, A., Hj Othman, A.-K., Piralaharan, K., & Hoole, S. (2017). Power Transformer Fire and Explosion: Causes and Control. International Journal of Control Theory and Applications, 10. http://www.slideshare.net/marimuthusudalaimuth/mhi-transformer
dc.relation.referencesHuang, L., Ma, J., Li, A., & Wu, Y. (2019). Scale modeling experiments of fire-induced smoke and extraction via mechanical ventilation in an underground hydropower plant. Sustainable Cities and Society, 44, 536–549. https://doi.org/10.1016/j.scs.2018.09.021
dc.relation.referencesHui Zhong, C., & Tunku Abdul Rahman, U. (2013). Fire dynamics simulation (FDS) study of fire in structures with curved geometry [Bachelor of Engineering Mechanical Engineering]. Universiti Tunku Abdul Rahman
dc.relation.referencesHurley, M. J. (2015). SFPE Handbook of Fire Protection Engineering, 5th Edition
dc.relation.referencesHurley, M. J., & Rosenbaum, E. R. (2015). SFPE Performance-Based Fire Safety Design
dc.relation.referencesICONTEC. (1982). NORMA TÉCNICA COLOMBIANA NTC 1700: Higiene y seguridad. Medidas de seguridad en edificaciones. Medios de evacuación
dc.relation.referencesICONTEC. (2009a). NORMA TÉCNICA COLOMBIANA NTC 1669: Instalación de conexiones de mangueras contra incendio
dc.relation.referencesICONTEC. (2009b). NORMA TÉCNICA COLOMBIANA NTC 2885: Extintores portátiles contra incendios
dc.relation.referencesICONTEC. (2011). NORMA TÉCNICA COLOMBIANA NTC 2301: Norma para la instalación de sistemas de rociadores
dc.relation.referencesIEEE. (2005). IEEE Std 1147, IEEE Guide for the Rehabilitation of Hydroelectric Power Plants
dc.relation.referencesIEEE. (2012). IEEE Std 979, IEEE Guide for Substation Fire Protection Sponsored by the Substations
dc.relation.referencesJahn, W., Rein, G., & Torero, J. (2008). The effect of model parameters on the simulation of fire dynamics. Fire Safety Science, 9, 1341–1352
dc.relation.referencesJohansson, N. (2021). Evaluation of a zone model for fire safety engineering in large spaces. Fire Safety Journal, 120, 103122. https://doi.org/10.1016/j.firesaf.2020.103122
dc.relation.referencesKaplan, I. R., Rasco, J., & Lu, S.-T. (2010). Environmental Forensics Chemical Characterization of Transformer Mineral-Insulating Oils. Chemical Characterization of Transformer Mineral-Insulating Oils, Environmental Forensics, 11, 1–2. https://doi.org/10.1080/15275920903558760
dc.relation.referencesKhan, A. A., Usmani, A., & Torero, J. L. (2021). Evolution of fire models for estimating structural fire-resistance. Fire Safety Journal, 124. https://doi.org/10.1016/j.firesaf.2021.103367
dc.relation.referencesKhoat, H. T., Kim, J. T., Dang Quoc, T., Kwark, J. H., & Ryou, H. S. (2020). A Numerical Analysis of the Fire Characteristics after Sprinkler Activation in the Compartment Fire. Energies, 13(12). https://doi.org/10.3390/en13123099
dc.relation.referencesKlote, J., Milke, J., Turnbull, P., Kashef, A., & Ferreira, M. (2012). Handbook of Smoke Control Engineering
dc.relation.referencesLeonita, F., Sakti, H., & Nugroho, Y. S. (2017). Study of the Occupant Characteristics During Evacuation in Medium- and High-Rise Buildings in Indonesia. Fire Science and Technology 2015, 123–132. https://doi.org/10.1007/978-981-10-0376-9_12
dc.relation.referencesLiu, C., Tian, X., Zhong, M., Lin, P., Gong, Y., Yin, B., & Wang, H. (2020). Full-scale experimental study on fire-induced smoke propagation in large underground plant of hydropower station. Tunnelling and Underground Space Technology, 103. https://doi.org/10.1016/j.tust.2020.103447
dc.relation.referencesLucas, M. (2009). Simulación de incendios en centrales de generación eléctrica mediante código FDS [Proyecto final de carrera Ingeniería Industrial]. Universidad Carlos III de Madrid
dc.relation.referencesMaluk, C., Woodrow, M., & Torero, J. L. (2017). The potential of integrating fire safety in modern building design. Fire Safety Journal, 88, 104–112. https://doi.org/10.1016/j.firesaf.2016.12.006
dc.relation.referencesMariño, O. A., & Muñoz, F. (2016). Implementación de modelos de producción hollín para simulaciones de incendio en FDS [Tesis de Maestría]. In Chemical Engineering Department, UniAndes. UniAndes
dc.relation.referencesMcGrattan, K. B. (2006a). FDS Technical Reference Guide. https://doi.org/10.6028/NIST.SP.1018
dc.relation.referencesMcGrattan, K. B. (2006b). FDS Verification Guide. https://doi.org/10.6028/NIST.SP.1018
dc.relation.referencesMcGrattan, K. B. (2006c). Fire dynamics simulator (FDS) technical reference guide volume 3: Validation. https://doi.org/10.6028/NIST.SP.1018
dc.relation.referencesMcgrattan, K., & Hostikka, S. (2013). Verification and Validation Process of a Fire Model. National Institute of Standards and Technology
dc.relation.referencesMcGrattan, K., McDermott, R., Vanella, M., Hostikka, S., & Floyd, J. (2020). Fire dynamics simulator User´s Guide. https://doi.org/10.6028/NIST.SP.1019
dc.relation.referencesNational Fire Protection Association. (2019). NFPA 14: Standard for the installation of standpipe and hose systems
dc.relation.referencesNational Fire Protection Association. (2020). NFPA 850: Recommended Practice for Fire Protection for Electric Generating Plants and High Voltage Direct Current Converter Stations. www.nfpa.org
dc.relation.referencesNational Fire Protection Association. (2021a). NFPA 1: Fire Code
dc.relation.referencesNational Fire Protection Association. (2021b). NFPA 92: Standard for Smoke Control Systems. www.nfpa.org/docinfo
dc.relation.referencesNational Fire Protection Association. (2021c). NFPA 101: Life Safety Code ® Handbook 14th Edition (G. Harrington & K. Bigda, Eds.; 14th ed.). NFPA
dc.relation.referencesNational Fire Protection Association. (2021d). NFPA 204: Standard for Smoke and Heat Venting, 2007 Edition. www.nfpa.org
dc.relation.referencesNational Fire Protection Association. (2022a). NFPA 10: Standard for portable fire extinguishers. National Fire Protection Association
dc.relation.referencesNational Fire Protection Association. (2022b). NFPA 15: Standard for Water Spray Fixed Systems for Fire Protection. www.nfpa.org/freeaccess
dc.relation.referencesNational Fire Protection Association. (2022c). NFPA 72: National fire alarm and signaling code
dc.relation.referencesOlenick, S. M. (2023, January 26). International Survey of Computer Models for Fire and Smoke. https://www.firemodelsurvey.com/
dc.relation.referencesOlenick, S. M., & Carpenter, D. J. (2003). An Updated International Survey of Computer Models for Fire and Smoke. Journal of Fire Protection Engineering, 13(2), 87–110. https://doi.org/10.1177/104239103033367
dc.relation.referencesPeacock, R. D., Reneke, P. A., & Forney, G. P. (2015a). CFAST – Consolidated Model of Fire Growth and Smoke Transport (Version 7) Volume 2: User’s Guide. https://doi.org/10.6028/NIST.TN.1889v2
dc.relation.referencesPeacock, R. D., Reneke, P. A., & Forney, G. P. (2015b). CFAST – Consolidated Model of Fire Growth and Smoke Transport (Version 7) Volume 3: Software Development and Model Evaluation Guide. https://doi.org/10.6028/NIST.TN.1889v3
dc.relation.referencesPolužanski, V., Kartalović, N., & Nikolić, B. (2021). Impact of power transformer oil‐temperature on the measurement uncertainty of all‐acoustic non‐iterative partial discharge location. Materials, 14(6), 1–18. https://doi.org/10.3390/ma14061385
dc.relation.referencesRoberson, J., & Stambaugh, H. (2002). Fire at Watts Bar Hydroelectric Plant. U.S. Fire Administration / Technical Report Series, USFA-TR-147. www.usfa.dhs.gov/
dc.relation.referencesRonchi, E., Arias, S., Mendola, L., & Johansson, N. (2019). A fire safety assessment approach for evacuation analysis in underground physics research facilities. Fire Safety Journal. https://doi.org/10.1016/j.firesaf.2019.102839
dc.relation.referencesRoushan, A. (2020, August 11). Telangana: 9 dead in Srisailam power plant fire mishap. https://timesofindia.indiatimes.com/city/hyderabad/telangana-9-dead-in-srisailam-power-plant-fire-mishap/articleshow/77675557.cms
dc.relation.referencesSociety of Fire Protection Engineers. (2019). SFPE Guide to Human Behavior in Fire. Springer International Publishing. https://doi.org/10.1007/978-3-319-94697-9
dc.relation.referencesTavares, R. M. (2009). An analysis of the fire safety codes in Brazil: Is the performance-based approach the best practice? Fire Safety Journal, 44(5), 749–755. https://doi.org/10.1016/j.firesaf.2009.03.005
dc.relation.referencesTorero, J. L. (2011). Fire-induced structural failure: The World Trade Center, New York. Proceedings of the Institution of Civil Engineers: Forensic Engineering, 164(2), 69–77. https://doi.org/10.1680/feng.2011.164.2.69
dc.relation.referencesU.S. Nuclear Regulatory Commission, & Electric Power Research Institute (EPRI). (2019). NUREG-2232 and EPRI3002015997, Heat Release Rate and Fire Characteristics of Fuels Representative of Typical Transient Fire Events in Nuclear Power Plants. www.nrc.gov/reading-rm.html
dc.relation.referencesVallejo, L. (2023). Educational program for the prevention of fires and explosions through emerging technologies (A.Molina (Ed)). In Maestría en ingeniería - Ingeniería química. Universidad Nacional de Colombia - Sede Medellín
dc.relation.referencesWiKi. (2021, April). FireFoam - OpenFOAM Wiki. Transient Solver for Fires and Turbulent Diffusion Flames with Reacting Particle Clouds, Surface Film and Pyrolysis Modelling. https://openfoamwiki.net/index.php/FireFoam
dc.relation.referencesWorking Group A2.33. (2013). 537 Guide for Transformer Fire Safety Practices
dc.relation.referencesXM. (2022). Informe plantas de generación eléctrica en Colombia. XM Web Page. https://www.xm.com.co/generaci%C3%B3n/plantas
dc.relation.referencesYasuda, M., & Watanabe, S. (2017). How to avoid severe incidents at hydropower plants. International Journal of Fluid Machinery and Systems, 10(3), 296–306. https://doi.org/10.5293/IJFMS.2017.10.3.296
dc.relation.referencesYu, H.-Z., Lee, J. L., & Kung, H.-C. (1994). Suppression of Rack-Storage Fires by Water. Fire Safety Science, 4, 901–912
dc.relation.referencesZhang, B., Zhang, J., Huang, Y., Wang, Q., Yu, Z., & Fan, M. (2019). Burning process and fire characteristics of transformer oil A study focusing on the effects of oil type. Journal of Thermal Analysis and Calorimetry, 139, 1839–1848. https://doi.org/10.1007/s10973-019-08599-6
dc.relation.referencesZhu, P., Wang, X., Wang, Z., Cong, H., & Ni, X. (2017). Experimental Study on Transformer Oil Pool Fire Suppression by Water Mist. Fire Science and Technology 2015, 895–901. https://doi.org/10.1007/978-981-10-0376-9_92
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembTransformadores eléctricos
dc.subject.lembCentrales hidroeléctricas
dc.subject.proposalTasa de liberación de calor
dc.subject.proposalExtracción de humos
dc.subject.proposalDiseños basados en desempeño
dc.subject.proposalHeat release rate
dc.subject.proposalHydroelectric power plant
dc.subject.proposalSmoke extraction
dc.subject.proposalPerformance-based design
dc.subject.proposalCentrales de generación hidroeléctrica
dc.title.translatedUso de herramientas de simulación computacional de modelos físicos para el diseño de sistemas de protección contra incendios de un transformador de potencia en una central de generación hidroeléctrica subterránea
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaÁrea Curricular de Ingeniería Mecánica
dc.subject.wikidataExtinción de incendios
dc.subject.wikidataExtinción de incendios - Métodos de simulación
dc.subject.wikidataExplosión


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito