Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorCarriazo Baños, José Gregorio
dc.contributor.authorGarzon Cucaita, Angie Valentina
dc.date.accessioned2023-07-25T19:44:30Z
dc.date.available2023-07-25T19:44:30Z
dc.date.issued2023-05
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84267
dc.descriptionilustraciones, fotográfías, gráficas, tablas
dc.description.abstractComo respuesta a la necesidad de diseñar tecnologías de tratamiento de aguas, las reacciones tipo Fenton han surgido como Procesos Avanzados de Oxidación que han demostrado alta eficiencia y potencial aplicación en la degradación de contaminantes. Por otra parte, los óxidos de hierro han sido ampliamente usados como catalizadores de sistemas Fenton. En el siguiente documento se detallan la síntesis, caracterización y evaluación de sólidos basados en α-Fe2O3 como catalizadores de la reacción tipo Fenton para la degradación del colorante textil AR 145. Se sintetizaron sólidos de α-Fe2O3 y se caracterizaron usando técnicas como: SEM, TEM, DRX, Espectroscopias IR, Raman y Vis-NIR, sortometría, TGA/DSC, entre otras. Posteriormente, se evaluó su actividad catalítica en la degradación del AR 145. Los resultados obtenidos mostraron la síntesis exitosa de sólidos con morfología multirramificada y estructura tipo hematita. Además, el sólido Cu-Co/α-Fe2O3 exhibió el mejor desempeño catalítico alcanzando un porcentaje de mineralización de AR 145 mayor al 70% en condiciones suaves y 180 minutos de reacción. (Texto tomado de la fuente)
dc.description.abstractIn response to the need to design water treatment technologies, Fenton-type reactions have emerged as Advanced Oxidation Processes that have demonstrated high efficiency and potential application in pollutant degradation. On the other hand, iron oxides have been widely used as catalysts for Fenton systems. The following document details the synthesis, characterization, and evaluation of solids based on α-Fe2O3 as catalysts for the Fenton-type reaction for the degradation of the textile dye AR 145. Solids of α-Fe2O3 were synthesized and characterized using SEM, TEM, XRD, IR, Raman, Vis-NIR spectroscopies, sortometry, and TGA/DSC, among others. Subsequently, its catalytic activity in the degradation of AR 145 was evaluated. The results showed the successful synthesis of solids with multibranched morphology and hematite-like structure. In addition, the solid Cu-Co/α-Fe2O3 exhibited the best catalytic performance, reaching a mineralization percentage of AR 145 greater than 70% under mild conditions and 180 minutes of reaction.
dc.format.extentxviii, 103 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rightsDerechos reservados al autor, 2023
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
dc.titleSólidos basados en α-Fe2O3 como catalizadores de procesos tipo Fenton
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Química
dc.contributor.researchgroupDiseño y Reactividad de Estructuras Sólidas
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Química
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references[1] C. Amor, L. Marchão, M. S. Lucas, and J. A. Peres, “Application of Advanced Oxidation Processes for the Treatment of Recalcitrant Agro-Industrial Wastewater: A Review,” Water (Basel), vol. 11, no. 2, p. 205, Jan. 2019, doi: 10.3390/w11020205.
dc.relation.references[2] Y. di Chen et al., “Advanced oxidation processes for water disinfection: Features, mechanisms and prospects,” Chemical Engineering Journal, vol. 409. Elsevier B.V., p. 128207, Apr. 01, 2021. doi: 10.1016/j.cej.2020.128207.
dc.relation.references[3] F. E. Titchou et al., “An overview on the elimination of organic contaminants from aqueous systems using electrochemical advanced oxidation processes,” Journal of Water Process Engineering, vol. 41. Elsevier Ltd, p. 102040, Jun. 01, 2021. doi: 10.1016/j.jwpe.2021.102040.
dc.relation.references[4] J. Wang and J. Tang, “Fe-based Fenton-like catalysts for water treatment: Catalytic mechanisms and applications,” J Mol Liq, vol. 332, p. 115755, Jun. 2021, doi: 10.1016/j.molliq.2021.115755.
dc.relation.references[5] I. F. Macías-Quiroga, P. A. Henao-Aguirre, A. Marín-Flórez, S. M. Arredondo-López, and N. R. Sanabria-González, “Bibliometric analysis of advanced oxidation processes (AOPs) in wastewater treatment: global and Ibero-American research trends,” Environmental Science and Pollution Research, vol. 28, no. 19, pp. 23791–23811, May 2021, doi: 10.1007/s11356-020-11333-7.
dc.relation.references[6] D. Rawat, V. Mishra, and R. S. Sharma, “Detoxification of azo dyes in the context of environmental processes,” Chemosphere, vol. 155, pp. 591–605, Jul. 2016, doi: 10.1016/J.CHEMOSPHERE.2016.04.068.
dc.relation.references[7] S. Benkhaya, S. M’rabet, H. Lgaz, A. El Bachiri, and A. El Harfi, “Dyes: Classification, Pollution, and Environmental Effects,” 2022, pp. 1–50. doi: 10.1007/978-981-16-5932-4_1.
dc.relation.references[8] N. Tara et al., “Graphene, graphene oxide, and reduced graphene oxide-based materials: a comparative adsorption performance,” Contamination of Water: Health Risk Assessment and Treatment Strategies, pp. 495–507, Jan. 2021, doi: 10.1016/B978-0-12-824058-8.00014-1.
dc.relation.references[9] A. G. R Ananthashankar, “Production, Characterization and Treatment of Textile Effluents: A Critical Review,” Journal of Chemical Engineering & Process Technology, vol. 05, no. 01, 2013, doi: 10.4172/2157-7048.1000182.
dc.relation.references[11] D. Ma et al., “Critical review of advanced oxidation processes in organic wastewater treatment,” Chemosphere, p. 130104, Feb. 2021, doi: 10.1016/j.chemosphere.2021.130104.
dc.relation.references[12] R. Ameta, A. K. Chohadia, A. Jain, and P. B. Punjabi, “Fenton and Photo-Fenton Processes,” in Advanced Oxidation Processes for Waste Water Treatment, Elsevier, 2018, pp. 49–87. doi: 10.1016/B978-0-12-810499-6.00003-6.
dc.relation.references[13] N. Thomas, D. D. Dionysiou, and S. C. Pillai, “Heterogeneous Fenton catalysts: A review of recent advances,” Journal of Hazardous Materials, vol. 404. Elsevier B.V., p. 124082, Feb. 15, 2021. doi: 10.1016/j.jhazmat.2020.124082.
dc.relation.references[14] C. Santhosh, A. Malathi, E. Dhaneshvar, A. Bhatnagar, A. N. Grace, and J. Madhavan, “Iron Oxide Nanomaterials for Water Purification,” in Nanoscale Materials in Water Purification, Elsevier, 2018, pp. 431–446. doi: 10.1016/B978-0-12-813926-4.00022-7.
dc.relation.references[15] Y. Zhu, R. Zhu, Y. Xi, J. Zhu, G. Zhu, and H. He, “Strategies for enhancing the heterogeneous fenton catalytic reactivity: A review,” Applied Catalysis B: Environmental, vol. 255. Elsevier B.V., p. 117739, Oct. 15, 2019. doi: 10.1016/j.apcatb.2019.05.041.
dc.relation.references[16] S. Rahim Pouran, A. A. Abdul Raman, and W. M. A. Wan Daud, “Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions,” J Clean Prod, vol. 64, pp. 24–35, Feb. 2014, doi: 10.1016/j.jclepro.2013.09.013.
dc.relation.references[17] C. N. C. Hitam and A. A. Jalil, “A review on exploration of Fe2O3 photocatalyst towards degradation of dyes and organic contaminants,” J Environ Manage, vol. 258, p. 110050, Mar. 2020, doi: 10.1016/J.JENVMAN.2019.110050.
dc.relation.references[18] X. Hu, J. C. Yu, and J. Gong, “Fast Production of Self-Assembled Hierarchical α-Fe 2 O 3 Nanoarchitectures,” The Journal of Physical Chemistry C, vol. 111, no. 30, Aug. 2007, doi: 10.1021/jp073073e.
dc.relation.references[19] V. Polshettiwar, B. Baruwati, and R. S. Varma, “Self-Assembly of Metal Oxides into Three-Dimensional Nanostructures: Synthesis and Application in Catalysis,” ACS Nano, vol. 3, no. 3, Mar. 2009, doi: 10.1021/nn800903p.
dc.relation.references[20] A. M. Carrillo Romero, “Síntesis y caracterización de catalizadores a partir de los metales Cu y Co soportados sobre un mineral de arcilla tipo haloisita para la oxidación total de tolueno.,” 2013.
dc.relation.references[21] GVR, “Dyes & Pigments Market Size, Share & Trends Analysis Report By Product (Dyes, Pigments), By Application, By Regions, And Segment Forecasts, 2022 - 2030,” 2022.
dc.relation.references[22] S. C. Bhatia, Pollution Control in Textile Industry. WPI Publishing, 2017. doi: 10.1201/9781315148588.
dc.relation.references[23] R. Kishor et al., “Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety,” J Environ Chem Eng, vol. 9, no. 2, p. 105012, Apr. 2021, doi: 10.1016/J.JECE.2020.105012.
dc.relation.references[24] A. Desore and S. A. Narula, “An overview on corporate response towards sustainability issues in textile industry,” Environ Dev Sustain, vol. 20, no. 4, pp. 1439–1459, Aug. 2018, doi: 10.1007/s10668-017-9949-1.
dc.relation.references[25] S. M. Shang, “Process control in dyeing of textiles,” in Process Control in Textile Manufacturing, Elsevier, 2013, pp. 300–338. doi: 10.1533/9780857095633.3.300.
dc.relation.references[26] A. Gürses, M. Açıkyıldız, K. Güneş, and M. S. Gürses, “Classification of Dye and Pigments,” 2016, pp. 31–45. doi: 10.1007/978-3-319-33892-7_3.
dc.relation.references[27] S. Benkhaya, S. M’rabet, and A. El Harfi, “Classifications, properties, recent synthesis and applications of azo dyes,” Heliyon, vol. 6, no. 1, p. e03271, Jan. 2020, doi: 10.1016/J.HELIYON.2020.E03271.
dc.relation.references[28] S. H. Hashemi and M. Kaykhaii, “Azo dyes: Sources, occurrence, toxicity, sampling, analysis, and their removal methods,” Emerging Freshwater Pollutants, pp. 267–287, Jan. 2022, doi: 10.1016/B978-0-12-822850-0.00013-2.
dc.relation.references[29] N. Garg, A. Garg, and S. Mukherji, “Eco-friendly decolorization and degradation of reactive yellow 145 textile dye by Pseudomonas aeruginosa and Thiosphaera pantotropha,” J Environ Manage, vol. 263, p. 110383, Jun. 2020, doi: 10.1016/J.JENVMAN.2020.110383.
dc.relation.references[30] B. Lellis, C. Z. Fávaro-Polonio, J. A. Pamphile, and J. C. Polonio, “Effects of textile dyes on health and the environment and bioremediation potential of living organisms,” Biotechnology Research and Innovation, vol. 3, no. 2, pp. 275–290, Jul. 2019, doi: 10.1016/J.BIORI.2019.09.001.
dc.relation.references[31] P. Pal, “Industry-Specific Water Treatment,” in Industrial Water Treatment Process Technology, Elsevier, 2017, pp. 243–511. doi: 10.1016/B978-0-12-810391-3.00006-0.
dc.relation.references[32] P. Chakravarty, K. Bauddh, and M. Kumar, “Remediation of Dyes from Aquatic Ecosystems by Biosorption Method Using Algae,” in Algae and Environmental Sustainability, New Delhi: Springer India, 2015, pp. 97–106. doi: 10.1007/978-81-322-2641-3_8.
dc.relation.references[33] B. J. Brüschweiler, S. Küng, D. Bürgi, L. Muralt, and E. Nyfeler, “Identification of non-regulated aromatic amines of toxicological concern which can be cleaved from azo dyes used in clothing textiles,” Regulatory Toxicology and Pharmacology, vol. 69, no. 2, pp. 263–272, Jul. 2014, doi: 10.1016/J.YRTPH.2014.04.011.
dc.relation.references[34] A. Gürses, M. Açıkyıldız, K. Güneş, and M. S. Gürses, “Colorants in Health and Environmental Aspects,” 2016, pp. 69–83. doi: 10.1007/978-3-319-33892-7_5.
dc.relation.references[35] R. Al-Tohamy et al., “A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety,” Ecotoxicol Environ Saf, vol. 231, p. 113160, Feb. 2022, doi: 10.1016/J.ECOENV.2021.113160.
dc.relation.references[36] H. Tounsadi, Y. Metarfi, M. Taleb, K. El Rhazi, and Z. Rais, “Impact of chemical substances used in textile industry on the employee’s health: Epidemiological study,” Ecotoxicol Environ Saf, vol. 197, p. 110594, Jul. 2020, doi: 10.1016/J.ECOENV.2020.110594.
dc.relation.references[37] Ministerio de Ambiente y Desarrollo Sostenible, RESOLUCIÓN 631 DE 2015. Colombia : Imprenta Nacional de Colombia , 2015.
dc.relation.references[38] S. Samsami, M. Mohamadi, M. H. Sarrafzadeh, E. R. Rene, and M. Firoozbahr, “Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives,” Process Safety and Environmental Protection, vol. 143, pp. 138–163, Nov. 2020, doi: 10.1016/J.PSEP.2020.05.034.
dc.relation.references[39] M. Sardar, M. Manna, M. Maharana, and S. Sen, “Remediation of Dyes from Industrial Wastewater Using Low-Cost Adsorbents,” 2021, pp. 377–403. doi: 10.1007/978-3-030-47400-3_15.
dc.relation.references[40] S. Mani, P. Chowdhary, and R. N. Bharagava, “Textile Wastewater Dyes: Toxicity Profile and Treatment Approaches,” in Emerging and Eco-Friendly Approaches for Waste Management, Singapore: Springer Singapore, 2019, pp. 219–244. doi: 10.1007/978-981-10-8669-4_11.
dc.relation.references[41] Y. Zhou, J. Lu, Y. Zhou, and Y. Liu, “Recent advances for dyes removal using novel adsorbents: A review,” Environmental Pollution, vol. 252, pp. 352–365, Sep. 2019, doi: 10.1016/J.ENVPOL.2019.05.072.
dc.relation.references[42] A. Ahmad et al., “Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater,” RSC Adv, vol. 5, no. 39, pp. 30801–30818, 2015, doi: 10.1039/C4RA16959J.
dc.relation.references[43] S. Arslan, M. Eyvaz, E. Gürbulak, and E. Yüksel, “A Review of State-of-the-Art Technologies in Dye-Containing Wastewater Treatment – The Textile Industry Case,” in Textile Wastewater Treatment, InTech, 2016. doi: 10.5772/64140.
dc.relation.references[44] N. MOHAN, N. BALASUBRAMANIAN, and C. BASHA, “Electrochemical oxidation of textile wastewater and its reuse,” J Hazard Mater, vol. 147, no. 1–2, pp. 644–651, Aug. 2007, doi: 10.1016/j.jhazmat.2007.01.063.
dc.relation.references[45] K. Siddique, M. Rizwan, M. J. Shahid, S. Ali, R. Ahmad, and H. Rizvi, “Textile Wastewater Treatment Options: A Critical Review,” in Enhancing Cleanup of Environmental Pollutants, Cham: Springer International Publishing, 2017, pp. 183–207. doi: 10.1007/978-3-319-55423-5_6.
dc.relation.references[46] S. Atalay and G. Ersöz, “Advanced Oxidation Processes for Removal of Dyes from Aqueous Media,” in Green Chemistry for Dyes Removal from Wastewater, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. doi: 10.1002/9781118721001.ch3.
dc.relation.references[47] S. C. Ameta, “Introduction,” in Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology, Elsevier Inc., 2018, pp. 1–12. doi: 10.1016/B978-0-12-810499-6.00001-2.
dc.relation.references[48] A. Babuponnusami and K. Muthukumar, “A review on Fenton and improvements to the Fenton process for wastewater treatment,” Journal of Environmental Chemical Engineering, vol. 2, no. 1. Elsevier Ltd, pp. 557–572, Mar. 01, 2014. doi: 10.1016/j.jece.2013.10.011.
dc.relation.references[49] J. A. Torres-Luna, G. I. Giraldo-Gómez, N. R. Sanabria-González, and J. G. Carriazo, “Catalytic degradation of real-textile azo-dyes in aqueous solutions by using Cu–Co/halloysite,” Bulletin of Materials Science, vol. 42, no. 4, Aug. 2019, doi: 10.1007/s12034-019-1817-1.
dc.relation.references[50] M. Coha, G. Farinelli, A. Tiraferri, M. Minella, and D. Vione, “Advanced oxidation processes in the removal of organic substances from produced water: Potential, configurations, and research needs,” Chemical Engineering Journal, vol. 414. Elsevier B.V., p. 128668, Jun. 15, 2021. doi: 10.1016/j.cej.2021.128668.
dc.relation.references[51] Q. Q. Cai, L. Jothinathan, S. H. Deng, S. L. Ong, H. Y. Ng, and J. Y. Hu, “Fenton- and ozone-based AOP processes for industrial effluent treatment,” in Advanced Oxidation Processes for Effluent Treatment Plants, Elsevier, 2021, pp. 199–254. doi: 10.1016/b978-0-12-821011-6.00011-6.
dc.relation.references[52] J. P. Ribeiro and M. I. Nunes, “Recent trends and developments in Fenton processes for industrial wastewater treatment – A critical review,” Environmental Research, vol. 197. Academic Press Inc., p. 110957, Jun. 01, 2021. doi: 10.1016/j.envres.2021.110957.
dc.relation.references[53] N. Wang, T. Zheng, G. Zhang, and P. Wang, “A review on Fenton-like processes for organic wastewater treatment,” Journal of Environmental Chemical Engineering, vol. 4, no. 1. Elsevier Ltd, pp. 762–787, Mar. 01, 2016. doi: 10.1016/j.jece.2015.12.016.
dc.relation.references[54] G. Pliego, J. A. Zazo, P. Garcia-Muñoz, M. Munoz, J. A. Casas, and J. J. Rodriguez, “Trends in the Intensification of the Fenton Process for Wastewater Treatment: An Overview,” Crit Rev Environ Sci Technol, vol. 45, no. 24, Dec. 2015, doi: 10.1080/10643389.2015.1025646.
dc.relation.references[55] M. Usman and Y.-S. Ho, “A bibliometric study of the Fenton oxidation for soil and water remediation,” J Environ Manage, vol. 270, p. 110886, Sep. 2020, doi: 10.1016/j.jenvman.2020.110886.
dc.relation.references[56] M. hui Zhang, H. Dong, L. Zhao, D. xi Wang, and D. Meng, “A review on Fenton process for organic wastewater treatment based on optimization perspective,” Science of the Total Environment, vol. 670. Elsevier B.V., pp. 110–121, Jun. 20, 2019. doi: 10.1016/j.scitotenv.2019.03.180.
dc.relation.references[57] Y. Ruan et al., “Review on the synthesis and activity of iron-based catalyst in catalytic oxidation of refractory organic pollutants in wastewater,” J Clean Prod, vol. 321, p. 128924, Oct. 2021, doi: 10.1016/J.JCLEPRO.2021.128924.
dc.relation.references[58] R. M. Cornell and U. Schwertmann, The Iron Oxides. Wiley, 2003. doi: 10.1002/3527602097.
dc.relation.references[59] G. S. Parkinson, “Iron oxide surfaces,” Surface Science Reports, vol. 71, no. 1. Elsevier B.V., pp. 272–365, Mar. 01, 2016. doi: 10.1016/j.surfrep.2016.02.001.
dc.relation.references[60] J. He, X. Yang, B. Men, and D. Wang, “Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: A review,” J Environ Sci (China), vol. 39, pp. 97–109, Jan. 2016, doi: 10.1016/j.jes.2015.12.003.
dc.relation.references[61] A. N. Soon and B. H. Hameed, “Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process,” Desalination, vol. 269, no. 1–3. Elsevier, pp. 1–16, Mar. 15, 2011. doi: 10.1016/j.desal.2010.11.002.
dc.relation.references[62] L. Zhao, Z. R. Lin, X. hong Ma, and Y. H. Dong, “Catalytic activity of different iron oxides: Insight from pollutant degradation and hydroxyl radical formation in heterogeneous Fenton-like systems,” Chemical Engineering Journal, vol. 352, pp. 343–351, Nov. 2018, doi: 10.1016/j.cej.2018.07.035.
dc.relation.references[63] F. C. C. Moura et al., “Efficient use of Fe metal as an electron transfer agent in a heterogeneous Fenton system based on Fe0/Fe3O4 composites,” Chemosphere, vol. 60, no. 8, pp. 1118–1123, Aug. 2005, doi: 10.1016/j.chemosphere.2004.12.076.
dc.relation.references[64] X. Xue, K. Hanna, and N. Deng, “Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide,” J Hazard Mater, vol. 166, no. 1, pp. 407–414, Jul. 2009, doi: 10.1016/j.jhazmat.2008.11.089.
dc.relation.references[65] T. Shahwan et al., “Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes,” Chemical Engineering Journal, vol. 172, no. 1, pp. 258–266, Aug. 2011, doi: 10.1016/J.CEJ.2011.05.103.
dc.relation.references[66] W. M. Wang, X. Li, X. Du, and Q. Y. Wu, “A feasible approach for azo dye degradation using natural magnetite in heterogeneous Fenton oxidation,” Water Cycle, vol. 3, pp. 100–105, Jan. 2022, doi: 10.1016/J.WATCYC.2022.06.002.
dc.relation.references[67] M. G. Tavares et al., “Reusable iron magnetic catalyst for organic pollutant removal by Adsorption, Fenton and Photo Fenton process,” J Photochem Photobiol A Chem, vol. 432, p. 114089, Nov. 2022, doi: 10.1016/J.JPHOTOCHEM.2022.114089.
dc.relation.references[68] P. J. Vikesland, A. M. Heathcock, R. L. Rebodos, and K. E. Makus, “Particle Size and Aggregation Effects on Magnetite Reactivity toward Carbon Tetrachloride,” Environ Sci Technol, vol. 41, no. 15, Aug. 2007, doi: 10.1021/es062082i.
dc.relation.references[69] Y. Wang, Y. Gao, L. Chen, and H. Zhang, “Goethite as an efficient heterogeneous Fenton catalyst for the degradation of methyl orange,” Catal Today, vol. 252, pp. 107–112, Sep. 2015, doi: 10.1016/j.cattod.2015.01.012.
dc.relation.references[70] Y. Li and F. S. Zhang, “Catalytic oxidation of Methyl Orange by an amorphous FeOOH catalyst developed from a high iron-containing fly ash,” Chemical Engineering Journal, vol. 158, no. 2, pp. 148–153, Apr. 2010, doi: 10.1016/j.cej.2009.12.021.
dc.relation.references[71] H. Zhang, H. Fu, and D. Zhang, “Degradation of C.I. Acid Orange 7 by ultrasound enhanced heterogeneous Fenton-like process,” J Hazard Mater, vol. 172, no. 2–3, pp. 654–660, doi: 10.1016/j.jhazmat.2009.07.047.
dc.relation.references[72] H. Wu, X. Dou, D. Deng, Y. Guan, L. Zhang, and G. He, “Decolourization of the azo dye Orange G in aqueous solution via a heterogeneous Fenton-like reaction catalysed by goethite,” Environ Technol, vol. 33, no. 14, pp. 1545–1552, Jul. 2012, doi: 10.1080/09593330.2011.635709.
dc.relation.references[73] E. Ghasemi, H. Ziyadi, A. M. Afshar, and M. Sillanpää, “Iron oxide nanofibers: A new magnetic catalyst for azo dyes degradation in aqueous solution,” Chemical Engineering Journal, vol. 264, pp. 146–151, Mar. 2015, doi: 10.1016/J.CEJ.2014.11.021.
dc.relation.references[74] X. Huang, X. Hou, J. Zhao, and L. Zhang, “Hematite facet confined ferrous ions as high efficient Fenton catalysts to degrade organic contaminants by lowering H2O2 decomposition energetic span,” Appl Catal B, vol. 181, pp. 127–137, Feb. 2016, doi: 10.1016/j.apcatb.2015.06.061.
dc.relation.references[75] A. M. G. Domacena, C. L. E. Aquino, and M. D. L. Balela, “Photo-fenton degradation of methyl orange using hematite (α-Fe2O3) of various morphologies,” in Materials Today: Proceedings, Elsevier Ltd, Jan. 2020, pp. 248–254. doi: 10.1016/j.matpr.2019.08.095.
dc.relation.references[76] C. Xiao, J. Li, and G. Zhang, “Synthesis of stable burger-like α-Fe2O3 catalysts: Formation mechanism and excellent photo-Fenton catalytic performance,” J Clean Prod, vol. 180, pp. 550–559, Apr. 2018, doi: 10.1016/j.jclepro.2018.01.127.
dc.relation.references[77] R. Jain, S. Mendiratta, L. Kumar, and A. Srivastava, “Green synthesis of iron nanoparticles using Artocarpus heterophyllus peel extract and their application as a heterogeneous Fenton-like catalyst for the degradation of Fuchsin Basic dye,” Current Research in Green and Sustainable Chemistry, vol. 4, p. 100086, Jan. 2021, doi: 10.1016/J.CRGSC.2021.100086.
dc.relation.references[78] H. Ghasemi, B. Aghabarari, M. Alizadeh, A. Khanlarkhani, and N. Abu-Zahra, “High efficiency decolorization of wastewater by Fenton catalyst: Magnetic iron-copper hybrid oxides,” Journal of Water Process Engineering, vol. 37, p. 101540, Oct. 2020, doi: 10.1016/j.jwpe.2020.101540.
dc.relation.references[79] M. Haris et al., “Carbon encapsulated iron oxide for simultaneous Fenton degradation and adsorption of cationic and anionic dyes from water,” J Environ Chem Eng, vol. 10, no. 6, p. 108968, Dec. 2022, doi: 10.1016/J.JECE.2022.108968.
dc.relation.references[80] T. H. Wang, C. C. Yang, K. Qin, C. W. Chen, and C. Di Dong, “Life time enhanced Fenton-like catalyst by dispersing iron oxides in activated carbon: Preparation and reactivation through carbothermal reaction,” J Hazard Mater, vol. 406, p. 124791, Mar. 2021, doi: 10.1016/j.jhazmat.2020.124791.
dc.relation.references[81] N. A. Zubir, C. Yacou, J. Motuzas, X. Zhang, X. S. Zhao, and J. C. Diniz da Costa, “The sacrificial role of graphene oxide in stabilising a Fenton-like catalyst GO–Fe 3 O 4,” Chemical Communications, vol. 51, no. 45, 2015, doi: 10.1039/C5CC02292D.
dc.relation.references[82] M. Tadić, N. Čitaković, M. Panjan, Z. Stojanović, D. Marković, and V. Spasojević, “Synthesis, morphology, microstructure and magnetic properties of hematite submicron particles,” J Alloys Compd, vol. 509, no. 28, pp. 7639–7644, Jul. 2011, doi: 10.1016/J.JALLCOM.2011.04.117.
dc.relation.references[83] A. Lassoued, B. Dkhil, A. Gadri, and S. Ammar, “Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method,” Results Phys, vol. 7, pp. 3007–3015, Jan. 2017, doi: 10.1016/J.RINP.2017.07.066.
dc.relation.references[84] L. Vayssieres, C. Sathe, S. M. Butorin, D. K. Shuh, J. Nordgren, and J. Guo, “One-Dimensional Quantum-Confinement Effect in α-Fe2O3 Ultrafine Nanorod Arrays,” Advanced Materials, vol. 17, no. 19, pp. 2320–2323, Oct. 2005, doi: 10.1002/adma.200500992.
dc.relation.references[85] W. Tan, Y. Liang, Y. Xu, and M. Wang, “Structural-controlled formation of nano-particle hematite and their removal performance for heavy metal ions: A review,” Chemosphere, vol. 306, p. 135540, Nov. 2022, doi: 10.1016/J.CHEMOSPHERE.2022.135540.
dc.relation.references[86] J. Gu et al., “Single-crystalline α-Fe2O3 with hierarchical structures: Controllable synthesis, formation mechanism and photocatalytic properties,” J Solid State Chem, vol. 182, no. 5, pp. 1265–1272, May 2009, doi: 10.1016/J.JSSC.2009.01.041.
dc.relation.references[87] M. Cao et al., “Single-Crystal Dendritic Micro-Pines of Magnetic α-Fe2O3: Large-Scale Synthesis, Formation Mechanism, and Properties,” Angewandte Chemie International Edition, vol. 44, no. 27, Jul. 2005, doi: 10.1002/anie.200500448.
dc.relation.references[88] G. Sun, B. Dong, M. Cao, B. Wei, and C. Hu, “Hierarchical Dendrite-Like Magnetic Materials of Fe 3 O 4 , γ-Fe 2 O 3 , and Fe with High Performance of Microwave Absorption,” Chemistry of Materials, vol. 23, no. 6, Mar. 2011, doi: 10.1021/cm103441u.
dc.relation.references[89] A. E. Green et al., “Growth Mechanism of Dendritic Hematite via Hydrolysis of Ferricyanide,” Cryst Growth Des, vol. 17, no. 2, Feb. 2017, doi: 10.1021/acs.cgd.6b01655.
dc.relation.references[90] H. Wu and L. Wang, “Phase transformation-induced crystal plane effect of iron oxide micropine dendrites on gaseous toluene photocatalytic oxidation,” Appl Surf Sci, vol. 288, pp. 398–404, Jan. 2014, doi: 10.1016/J.APSUSC.2013.10.046.
dc.relation.references[91] M. R. Shenoy et al., “Preparation and characterization of porous iron oxide dendrites for photocatalytic application,” Solid State Sci, vol. 95, p. 105939, Sep. 2019, doi: 10.1016/J.SOLIDSTATESCIENCES.2019.105939.
dc.relation.references[92] R. C. C. Costa et al., “Novel active heterogeneous Fenton system based on Fe3-xM xO4 (Fe, Co, Mn, Ni): The role of M2+ species on the reactivity towards H2O2 reactions,” J Hazard Mater, vol. 129, no. 1–3, pp. 171–178, Feb. 2006, doi: 10.1016/j.jhazmat.2005.08.028.
dc.relation.references[93] J. Xu et al., “Large scale preparation of Cu-doped α-FeOOH nanoflowers and their photo-Fenton-like catalytic degradation of diclofenac sodium,” Chemical Engineering Journal, vol. 291, pp. 174–183, May 2016, doi: 10.1016/j.cej.2016.01.059.
dc.relation.references[94] I. R. Guimaraes, A. Giroto, L. C. A. Oliveira, M. C. Guerreiro, D. Q. Lima, and J. D. Fabris, “Synthesis and thermal treatment of cu-doped goethite: Oxidation of quinoline through heterogeneous fenton process,” Appl Catal B, vol. 91, no. 3–4, pp. 581–586, Sep. 2009, doi: 10.1016/j.apcatb.2009.06.030.
dc.relation.references[95] World Bank, “Colombia un Cambio de Rumbo : Seguridad hídrica para la recuperación y crecimiento sostenible.,” Notas de política. Washington D.C, Sep. 2020.
dc.relation.references[96] P. A. Espinel González, D. M. Aparicio Soto, and A. J. Mora, “SECTOR TEXTIL COLOMBIANO Y SU INFLUENCIA EN LA ECONOMÍA DEL PAÍS,” Punto de vista, vol. 9, no. 13, Feb. 2018, doi: 10.15765/pdv.v9i13.1118.
dc.relation.references[97] E. M. Patarroyo, “Procesos de estabilización de residuos generados en la industria textil en Colombia mediante lodos activados.,” Universidad Militar Nueva Granada, 2013.
dc.relation.references[98] H. Luo, Y. Zeng, D. He, and X. Pan, “Application of iron-based materials in heterogeneous advanced oxidation processes for wastewater treatment: A review,” Chemical Engineering Journal, vol. 407. Elsevier B.V., p. 127191, Mar. 01, 2021. doi: 10.1016/j.cej.2020.127191.
dc.relation.references[99] M. C. Pereira, L. C. A. Oliveira, and E. Murad, “Iron oxide catalysts: Fenton and Fentonlike reactions – a review,” Clay Miner, vol. 47, no. 3, Sep. 2012, doi: 10.1180/claymin.2012.047.3.01.
dc.relation.references[100] J. D. Navratil, “Wastewater Treatment Technology Based on Iron Oxides,” in Natural Microporous Materials in Environmental Technology, Dordrecht: Springer Netherlands, 1999. doi: 10.1007/978-94-011-4499-5_31.
dc.relation.references[101] M. Tadic, D. Trpkov, L. Kopanja, S. Vojnovic, and M. Panjan, “Hydrothermal synthesis of hematite (α-Fe2O3) nanoparticle forms: Synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties,” J Alloys Compd, vol. 792, pp. 599–609, Jul. 2019, doi: 10.1016/j.jallcom.2019.03.414.
dc.relation.references[102] Y. Cheng, Y. Wang, D. Chen, and F. Bao, “Evolution of Single Crystalline Dendrites from Nanoparticles through Oriented Attachment,” J Phys Chem B, vol. 109, no. 2, pp. 794–798, Jan. 2005, doi: 10.1021/jp0460240.
dc.relation.references[103] W. Ramírez, “Síntesis de micropartículas multirramificadas de óxidos de metales de transición,” Universidad Nacional de Colombia, Bogotá, 2019.
dc.relation.references[104] K. He, C. Y. Xu, L. Zhen, and W. Z. Shao, “Fractal growth of single-crystal α-Fe2O3: From dendritic micro-pines to hexagonal micro-snowflakes,” Mater Lett, vol. 62, no. 4–5, pp. 739–742, Feb. 2008, doi: 10.1016/J.MATLET.2007.06.082.
dc.relation.references[105] S. Bharathi et al., “Controlled growth of single-crystalline, nanostructured dendrites and snowflakes of α-Fe 2 O 3 : influence of the surfactant on the morphology and investigation of morphology dependent magnetic properties,” CrystEngComm, vol. 12, no. 2, pp. 373–382, 2010, doi: 10.1039/B910550F.
dc.relation.references[106] M. Nasrollahzadeh, M. Atarod, M. Sajjadi, S. M. Sajadi, and Z. Issaabadi, “Plant-Mediated Green Synthesis of Nanostructures: Mechanisms, Characterization, and Applications,” Interface Science and Technology, vol. 28, pp. 199–322, Jan. 2019, doi: 10.1016/B978-0-12-813586-0.00006-7.
dc.relation.references[107] S. Zeng et al., “Facile Route for the Fabrication of Porous Hematite Nanoflowers: Its Synthesis, Growth Mechanism, Application in the Lithium Ion Battery, and Magnetic and Photocatalytic Properties,” The Journal of Physical Chemistry C, vol. 112, no. 13, pp. 4836–4843, Apr. 2008, doi: 10.1021/jp0768773.
dc.relation.references[108] J. Lai, S. Xuan, and K. C.-F. Leung, “Tunable Synthesis of Hematite Structures with Nanoscale Subunits for the Heterogeneous Photo-Fenton Degradation of Azo Dyes,” ACS Appl Nano Mater, vol. 5, no. 10, pp. 13768–13778, Oct. 2022, doi: 10.1021/acsanm.2c00983.
dc.relation.references[109] D. E. Fouad, C. Zhang, H. El-Didamony, L. Yingnan, T. D. Mekuria, and A. H. Shah, “Improved size, morphology and crystallinity of hematite (α-Fe2O3) nanoparticles synthesized via the precipitation route using ferric sulfate precursor,” Results Phys, vol. 12, pp. 1253–1261, Mar. 2019, doi: 10.1016/J.RINP.2019.01.005.
dc.relation.references[110] Suman, S. Chahal, A. Kumar, and P. Kumar, “Zn Doped α-Fe2O3: An Efficient Material for UV Driven Photocatalysis and Electrical Conductivity,” Crystals (Basel), vol. 10, no. 4, p. 273, Apr. 2020, doi: 10.3390/cryst10040273.
dc.relation.references[111] M. Valášková, J. Tokarský, J. Pavlovský, T. Prostějovský, and K. Kočí, “α-Fe2O3 Nanoparticles/Vermiculite Clay Material: Structural, Optical and Photocatalytic Properties,” Materials, vol. 12, no. 11, p. 1880, Jun. 2019, doi: 10.3390/ma12111880.
dc.relation.references[112] J. Torrent and V. Barrón, “Diffuse Reflectance Spectroscopy of Iron Oxides,” Encyclopedia of Surface and Colloid Science, vol. 1, Jan. 2002.
dc.relation.references[113] N. Pailhé, A. Wattiaux, M. Gaudon, and A. Demourgues, “Impact of structural features on pigment properties of α-Fe2O3 haematite,” J Solid State Chem, vol. 181, no. 10, pp. 2697–2704, Oct. 2008, doi: 10.1016/J.JSSC.2008.06.049.
dc.relation.references[114] N. Pailhé, A. Wattiaux, M. Gaudon, and A. Demourgues, “Correlation between structural features and vis–NIR spectra of α-Fe2O3 hematite and AFe2O4 spinel oxides (A=Mg, Zn),” J Solid State Chem, vol. 181, no. 5, pp. 1040–1047, May 2008, doi: 10.1016/J.JSSC.2008.02.009.
dc.relation.references[115] P. Makuła, M. Pacia, and W. Macyk, “How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra,” J Phys Chem Lett, vol. 9, no. 23, pp. 6814–6817, Dec. 2018, doi: 10.1021/acs.jpclett.8b02892.
dc.relation.references[116] T. Dimopoulos, “All-Oxide Solar Cells,” in The Future of Semiconductor Oxides in Next-Generation Solar Cells, Elsevier, 2018, pp. 439–480. doi: 10.1016/B978-0-12-811165-9.00011-9.
dc.relation.references[117] S. Sivakumar, D. Anusuya, C. P. Khatiwada, J. Sivasubramanian, A. Venkatesan, and P. Soundhirarajan, “Characterizations of diverse mole of pure and Ni-doped α-Fe2O3 synthesized nanoparticles through chemical precipitation route,” Spectrochim Acta A Mol Biomol Spectrosc, vol. 128, pp. 69–75, Jul. 2014, doi: 10.1016/J.SAA.2014.02.136.
dc.relation.references[118] J. S. Nyarige, T. P. J. Krüger, and M. Diale, “Structural and optical properties of hematite and L-arginine/hematite nanostructures prepared by thermal spray pyrolysis,” Surfaces and Interfaces, vol. 18, p. 100394, Mar. 2020, doi: 10.1016/j.surfin.2019.100394.
dc.relation.references[119] A. I. Kokorin and D. Bahnemann, Chemical Physics of Nanostructured Semiconductors. CRC Press, 2003. doi: 10.1201/9781498708630.
dc.relation.references[120] A. Lassoued, B. Dkhil, A. Gadri, and S. Ammar, “Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method,” Results Phys, vol. 7, pp. 3007–3015, Jan. 2017, doi: 10.1016/J.RINP.2017.07.066.
dc.relation.references[121] J. Wang and J. Tang, “Fe-based Fenton-like catalysts for water treatment: Preparation, characterization and modification,” Chemosphere, vol. 276. Elsevier Ltd, p. 130177, Aug. 01, 2021. doi: 10.1016/j.chemosphere.2021.130177.
dc.relation.references[122] A. Dehbi, Y. Dehmani, H. Omari, A. Lammini, K. Elazhari, and A. Abdallaoui, “Hematite iron oxide nanoparticles (α-Fe2O3): Synthesis and modelling adsorption of malachite green,” J Environ Chem Eng, vol. 8, no. 1, p. 103394, Feb. 2020, doi: 10.1016/j.jece.2019.103394.
dc.relation.references[123] P. Pinto, G. Lanza, J. Ardisson, and R. Lago, “Controlled Dehydration of Fe(OH)3 to Fe2O3: Developing Mesopores with Complexing Iron Species for the Adsorption of β-Lactam Antibiotics,” J Braz Chem Soc, 2018, doi: 10.21577/0103-5053.20180179.
dc.relation.references[124] M. Popescu et al., “The Influence of Synthesis Parameters on FeO(OH) / Fe 2 O 3 Formation by Hydrothermal Techniques,” Zeitschrift für Naturforschung B, vol. 65, no. 8, pp. 1024–1032, Aug. 2010, doi: 10.1515/znb-2010-0808.
dc.relation.references[125] N. Nurdini, M. M. Ilmi, E. Maryanti, P. Setiawan, G. T. M. Kadja, and Ismunandar, “Thermally-induced color transformation of hematite: insight into the prehistoric natural pigment preparation,” Heliyon, vol. 8, no. 8, p. e10377, Aug. 2022, doi: 10.1016/J.HELIYON.2022.E10377.
dc.relation.references[126] J. W. Geus and A. J. van Dillen, “Preparation of Supported Catalysts by Deposition-Precipitation,” in Handbook of Heterogeneous Catalysis, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2008. doi: 10.1002/9783527610044.hetcat0021.
dc.relation.references[127] P. W. N. M. van L. R. A. van S. J.A. Moulijn, “Preparation of supported catalysts,” 1993, pp. 335–360. doi: 10.1016/S0167-2991(08)63813-6.
dc.relation.references[128] D. C. Joy and D. G. Howitt, “Scanning Electron Microscopy,” in Encyclopedia of Physical Science and Technology, Elsevier, 2003, pp. 457–467. doi: 10.1016/B0-12-227410-5/00674-8.
dc.relation.references[129] R. Marassi and F. Nobili, “MEASUREMENT METHODS | Structural and Chemical Properties: Transmission Electron Microscopy,” Encyclopedia of Electrochemical Power Sources, pp. 769–789, Jan. 2009, doi: 10.1016/B978-044452745-5.00072-1.
dc.relation.references[130] G. I. N. Waterhouse, G. A. Bowmaker, and J. B. Metson, “The thermal decomposition of silver (I, III) oxide: A combined XRD, FT-IR and Raman spectroscopic study,” Physical Chemistry Chemical Physics, vol. 3, no. 17, 2001, doi: 10.1039/b103226g.
dc.relation.references[131] S. M. Hosseinpour-Mashkani and M. Ramezani, “Silver and silver oxide nanoparticles: Synthesis and characterization by thermal decomposition,” Mater Lett, vol. 130, pp. 259–262, Sep. 2014, doi: 10.1016/J.MATLET.2014.05.133.
dc.relation.references[132] G. I. N. Waterhouse, G. A. Bowmaker, and J. B. Metson, “The thermal decomposition of silver (I, III) oxide: A combined XRD, FT-IR and Raman spectroscopic study,” Physical Chemistry Chemical Physics, vol. 3, no. 17, pp. 3838–3845, 2001, doi: 10.1039/b103226g.
dc.relation.references[133] P. Paknahad, M. Askari, and M. Ghorbanzadeh, “Characterization of nanocrystalline CuCo2O4 spinel prepared by sol–gel technique applicable to the SOFC interconnect coating,” Applied Physics A, vol. 119, no. 2, pp. 727–734, May 2015, doi: 10.1007/s00339-015-9021-7.
dc.relation.references[134] N. N. Patil and S. R. Shukla, “Degradation of Reactive Yellow 145 dye by persulfate using microwave and conventional heating,” Journal of Water Process Engineering, vol. 7, pp. 314–327, Sep. 2015, doi: 10.1016/J.JWPE.2015.08.003.
dc.relation.references[135] D. P. Chattopadhyay, “Chemistry of dyeing,” in Handbook of Textile and Industrial Dyeing, Elsevier, 2011, pp. 150–183. doi: 10.1533/9780857093974.1.150.
dc.relation.references[136] D. M. Lewis, “The chemistry of reactive dyes and their application processes,” in Handbook of Textile and Industrial Dyeing, Elsevier, 2011, pp. 303–364. doi: 10.1533/9780857093974.2.301.
dc.relation.references[137] L. Pereira and M. Alves, “Dyes—Environmental Impact and Remediation,” in Environmental Protection Strategies for Sustainable Development, Dordrecht: Springer Netherlands, 2012, pp. 111–162. doi: 10.1007/978-94-007-1591-2_4.
dc.relation.references[138] H. M. Pinheiro, E. Touraud, and O. Thomas, “Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters,” Dyes and Pigments, vol. 61, no. 2, pp. 121–139, May 2004, doi: 10.1016/j.dyepig.2003.10.009.
dc.relation.references[139] G. Lyu, G. Shi, L. Tang, H. Fang, and M. Wu, “Mechanism of degradation of a nitrogenous heterocycle induced by a reductive radical: decomposition of a sym-triazine ring,” Physical Chemistry Chemical Physics, vol. 19, no. 14, pp. 9354–9357, 2017, doi: 10.1039/C7CP00004A.
dc.relation.references[140] B. Yuan, S. Liang, Y.-X. Jin, M.-J. Zhang, J.-B. Zhang, and N.-H. Kim, “Toxic effects of atrazine on porcine oocytes and possible mechanisms of action,” PLoS One, vol. 12, no. 6, p. e0179861, Jun. 2017, doi: 10.1371/journal.pone.0179861.
dc.relation.references[141] N. Watanabe, S. Horikoshi, H. Hidaka, and N. Serpone, “On the recalcitrant nature of the triazinic ring species, cyanuric acid, to degradation in Fenton solutions and in UV-illuminated TiO2 (naked) and fluorinated TiO2 aqueous dispersions,” J Photochem Photobiol A Chem, vol. 174, no. 3, pp. 229–238, Sep. 2005, doi: 10.1016/j.jphotochem.2005.03.013.
dc.relation.references[142] M. A. Breshears and A. W. Confer, “The Urinary System,” Pathologic Basis of Veterinary Disease Expert Consult, pp. 617-681.e1, Jan. 2017, doi: 10.1016/B978-0-323-35775-3.00011-4.
dc.relation.references[143] S. Song et al., “Mineralization of CI Reactive Yellow 145 in Aqueous Solution by Ultraviolet-Enhanced Ozonation,” Ind Eng Chem Res, vol. 47, no. 5, pp. 1386–1391, Mar. 2008, doi: 10.1021/ie0711628.
dc.relation.references[144] S. C. Gad, “Aniline,” in Encyclopedia of Toxicology, Elsevier, 2014, pp. 240–242. doi: 10.1016/B978-0-12-386454-3.00813-7.
dc.relation.references[145] A. L. Singh, S. Chaudhary, S. Kumar, A. Kumar, A. Singh, and A. Yadav, “Biodegradation of Reactive Yellow-145 azo dye using bacterial consortium: A deterministic analysis based on degradable Metabolite, phytotoxicity and genotoxicity study,” Chemosphere, vol. 300, p. 134504, Aug. 2022, doi: 10.1016/J.CHEMOSPHERE.2022.134504.
dc.relation.references[146] R. Sennaj et al., “Eco-friendly degradation of reactive red 195, reactive blue 214, and reactive yellow 145 by Klebsiella pneumoniae MW815592 isolated from textile waste,” J Microbiol Methods, vol. 204, p. 106659, Jan. 2023, doi: 10.1016/J.MIMET.2022.106659.
dc.relation.references[147] S. Krishnasamy et al., “Effective Removal of Reactive Yellow 145 (RY145) using Biochar Derived from Groundnut Shell,” Advances in Materials Science and Engineering, vol. 2022, pp. 1–7, Mar. 2022, doi: 10.1155/2022/8715669.
dc.relation.references[148] S. Benkaddour et al., “Removal of reactive yellow 145 by adsorption onto treated watermelon seeds: Kinetic and isotherm studies,” Sustain Chem Pharm, vol. 10, pp. 16–21, Dec. 2018, doi: 10.1016/J.SCP.2018.08.003.
dc.relation.references[149] E. A. Ofudje, E. F. Sodiya, F. H. Ibadin, A. A. Ogundiran, S. O. Alayande, and O. A. Osideko, “Mechanism of Cu 2+ and reactive yellow 145 dye adsorption onto eggshell waste as low-cost adsorbent,” Chemistry and Ecology, vol. 37, no. 3, pp. 268–289, Mar. 2021, doi: 10.1080/02757540.2020.1855153.
dc.relation.references[150] A. Saravanan et al., “Optimization and modeling of reactive yellow adsorption by surface modified Delonix regia seed: Study of nonlinear isotherm and kinetic parameters,” Surfaces and Interfaces, vol. 20, p. 100520, Sep. 2020, doi: 10.1016/J.SURFIN.2020.100520.
dc.relation.references[151] P. Gharbani, “Modeling and optimization of reactive yellow 145 dye removal process onto synthesized MnOX-CeO2 using response surface methodology,” Colloids Surf A Physicochem Eng Asp, vol. 548, pp. 191–197, Jul. 2018, doi: 10.1016/J.COLSURFA.2018.03.046.
dc.relation.references[152] B. Hatimi et al., “Physicochemical and statistical modeling of reactive Yellow 145 enhanced adsorption onto pyrrhotite Ash-Based novel (Catechin-PG-Fe)-Complex,” Mater Sci Energy Technol, vol. 6, pp. 65–76, Jan. 2023, doi: 10.1016/J.MSET.2022.11.007.
dc.relation.references[153] N. A. Kalkan, S. Aksoy, E. A. Aksoy, and N. Hasirci, “Adsorption of reactive yellow 145 onto chitosan coated magnetite nanoparticles,” J Appl Polym Sci, vol. 124, no. 1, pp. 576–584, Apr. 2012, doi: 10.1002/app.34986.
dc.relation.references[154] S. K. Fatima et al., “Visible Light-Induced Reactive Yellow 145 Discoloration: Structural and Photocatalytic Studies of Graphene Quantum Dot-Incorporated TiO 2,” ACS Omega, Jan. 2023, doi: 10.1021/acsomega.2c05805.
dc.relation.references[155] A. Aguedach, S. Brosillon, J. Morvan, and E. K. Lhadi, “Photocatalytic degradation of azo-dyes reactive black 5 and reactive yellow 145 in water over a newly deposited titanium dioxide,” Appl Catal B, vol. 57, no. 1, pp. 55–62, Apr. 2005, doi: 10.1016/J.APCATB.2004.10.009.
dc.relation.references[156] S. Alahiane, S. Qourzal, M. El Ouardi, A. Abaamrane, and A. Assabbane, “Factors Influencing the Photocatalytic Degradation of Reactive Yellow 145 by TiO<sub>2</sub>-Coated Non-Woven Fibers,” Am J Analyt Chem, vol. 05, no. 08, pp. 445–454, 2014, doi: 10.4236/ajac.2014.58053.
dc.relation.references[157] M. B. Nguyen et al., “Bimetallic Ag-Zn-BTC/GO composite as highly efficient photocatalyst in the photocatalytic degradation of reactive yellow 145 dye in water,” J Hazard Mater, vol. 420, p. 126560, Oct. 2021, doi: 10.1016/J.JHAZMAT.2021.126560.
dc.relation.references[158] S. Alahiane, A. Sennaoui, F. Sakr, M. Dinne, S. Qourzal, and A. Assabbane, “Photo-mineralization of azo dye reactive yellow 145 in aqueous medium by TiO2-coated non-woven fibres,” Mediterranean Journal of Chemistry, vol. 10, no. 2, pp. 107–115, Feb. 2020, doi: 10.13171/mjc10102002051208sa.
dc.relation.references[159] Ş. Gül, Ö. Özcan, and O. Erbatur, “Ozonation of C.I. Reactive Red 194 and C.I. Reactive Yellow 145 in aqueous solution in the presence of granular activated carbon,” Dyes and Pigments, vol. 75, no. 2, pp. 426–431, Jan. 2007, doi: 10.1016/J.DYEPIG.2006.06.018.
dc.relation.references[160] Ş. Gül and Ö. Özcan-Yildirim, “Degradation of Reactive Red 194 and Reactive Yellow 145 azo dyes by O3 and H2O2/UV-C processes,” Chemical Engineering Journal, vol. 155, no. 3, pp. 684–690, Dec. 2009, doi: 10.1016/J.CEJ.2009.08.029.
dc.relation.references[161] T. H. Bokhari et al., “Degradation Study of C.I. Reactive Yellow 145 by Advanced Oxidation Process,” Asian Journal of Chemistry, vol. 25, no. 15, pp. 8668–8672, 2013, doi: 10.14233/ajchem.2013.14996.
dc.relation.references[162] C. Özdemir, M. K. Öden, S. Şahinkaya, and E. Kalipçi, “Color Removal from Synthetic Textile Wastewater by Sono-Fenton Process,” Clean (Weinh), vol. 39, no. 1, pp. 60–67, Jan. 2011, doi: 10.1002/clen.201000263.
dc.relation.references[163] S. Brosillon, H. Djelal, N. Merienne, and A. Amrane, “Innovative integrated process for the treatment of azo dyes: coupling of photocatalysis and biological treatment,” Desalination, vol. 222, no. 1–3, pp. 331–339, Mar. 2008, doi: 10.1016/J.DESAL.2007.01.153.
dc.relation.references[164] R. F. P. Nogueira, M. C. Oliveira, and W. C. Paterlini, “Simple and fast spectrophotometric determination of H2O2 in photo-Fenton reactions using metavanadate,” Talanta, vol. 66, no. 1, pp. 86–91, Mar. 2005, doi: 10.1016/J.TALANTA.2004.10.001.
dc.relation.references[165] E. Lee, H. Lee, Y. K. Kim, K. Sohn, and K. Lee, “Hydrogen peroxide interference in chemical oxygen demand during ozone based advanced oxidation of anaerobically digested livestock wastewater,” International Journal of Environmental Science & Technology, vol. 8, no. 2, pp. 381–388, Mar. 2011, doi: 10.1007/BF03326225.
dc.relation.references[166] E. Elnemma, “Spectrophotometric Determination of Hydrogen Peroxide by a Hydroquinone-Aniline System Catalyzed by Molybdate,” Bull Korean Chem Soc, vol. 25, no. 1, pp. 127–129, Jan. 2004, doi: 10.5012/bkcs.2004.25.1.127.
dc.relation.references[167] J. G. Carriazo, Luis. F. Bossa-Benavides, and E. Castillo, “Actividad catalítica de metales de transición en la descomposición de peróxido de hidrógeno,” Quim Nova, vol. 35, no. 6, pp. 1101–1106, 2012, doi: 10.1590/S0100-40422012000600006.
dc.relation.references[168] M. H. Maleki Rizi, B. Aghabarari, M. Alizadeh, A. Khanlarkhani, and M. V. Martinez Huerta, “The role of cobalt and copper nanoparticles on performance of magnetite-rich waste material in Fenton reaction,” International Journal of Environmental Science and Technology, vol. 16, no. 1, pp. 373–382, Jan. 2019, doi: 10.1007/s13762-017-1579-5.
dc.relation.references[169] Y. Wang, H. Zhao, M. Li, J. Fan, and G. Zhao, “Magnetic ordered mesoporous copper ferrite as a heterogeneous Fenton catalyst for the degradation of imidacloprid,” Appl Catal B, vol. 147, pp. 534–545, Apr. 2014, doi: 10.1016/j.apcatb.2013.09.017.
dc.relation.references[170] H. H. Huang, M. C. Lu, and J. N. Chen, “Catalytic decomposition of hydrogen peroxide and 2-chlorophenol with iron oxides,” Water Res, vol. 35, no. 9, pp. 2291–2299, 2001, doi: 10.1016/S0043-1354(00)00496-6.
dc.relation.references[171] W. He, Y.-T. Zhou, W. G. Wamer, M. D. Boudreau, and J.-J. Yin, “Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles,” Biomaterials, vol. 33, no. 30, pp. 7547–7555, Oct. 2012, doi: 10.1016/j.biomaterials.2012.06.076.
dc.relation.references[172] S. Hussain, E. Aneggi, and D. Goi, “Catalytic activity of metals in heterogeneous Fenton-like oxidation of wastewater contaminants: a review,” Environ Chem Lett, vol. 19, no. 3, pp. 2405–2424, Jun. 2021, doi: 10.1007/s10311-021-01185-z.
dc.relation.references[173] M. Hermanek, R. Zboril, I. Medrik, J. Pechousek, and C. Gregor, “Catalytic Efficiency of Iron(III) Oxides in Decomposition of Hydrogen Peroxide: Competition between the Surface Area and Crystallinity of Nanoparticles,” J Am Chem Soc, vol. 129, no. 35, pp. 10929–10936, Sep. 2007, doi: 10.1021/ja072918x.
dc.relation.references[174] P. Bernard, P. Stelmachowski, P. Broś, W. Makowski, and A. Kotarba, “Demonstration of the Influence of Specific Surface Area on Reaction Rate in Heterogeneous Catalysis,” J Chem Educ, vol. 98, no. 3, pp. 935–940, Mar. 2021, doi: 10.1021/acs.jchemed.0c01101.
dc.relation.references[175] R. Prucek, M. Hermanek, and R. Zbořil, “An effect of iron(III) oxides crystallinity on their catalytic efficiency and applicability in phenol degradation-A competition between homogeneous and heterogeneous catalysis,” Appl Catal A Gen, vol. 366, no. 2, pp. 325–332, Sep. 2009, doi: 10.1016/j.apcata.2009.07.019.
dc.relation.references[176] Y. Artioli, “Adsorption,” Encyclopedia of Ecology, Five-Volume Set, pp. 60–65, Jan. 2008, doi: 10.1016/B978-008045405-4.00252-4.
dc.relation.references[177] H. Hu and K. Xu, “Physicochemical technologies for HRPs and risk control,” High-Risk Pollutants in Wastewater, pp. 169–207, Jan. 2020, doi: 10.1016/B978-0-12-816448-8.00008-3.
dc.relation.references[178] M. E. Mahmoud, G. M. Nabil, N. M. El-Mallah, and S. B. Karar, “Improved removal and decolorization of C.I. anionic reactive yellow 145 A dye from water in a wide pH range via active carbon adsorbent-loaded-cationic surfactant,” Desalination Water Treat, vol. 55, no. 1, pp. 227–240, Jul. 2015, doi: 10.1080/19443994.2014.913265.
dc.relation.references[179] B. Saha, S. Das, J. Saikia, and G. Das, “Preferential and Enhanced Adsorption of Different Dyes on Iron Oxide Nanoparticles: A Comparative Study,” The Journal of Physical Chemistry C, vol. 115, no. 16, pp. 8024–8033, Apr. 2011, doi: 10.1021/jp109258f.
dc.relation.references[180] A. Ö. Yıldırım, Ş. Gül, O. Eren, and E. Kuşvuran, “A Comparative Study of Ozonation, Homogeneous Catalytic Ozonation, and Photocatalytic Ozonation for C.I. Reactive Red 194 Azo Dye Degradation,” Clean (Weinh), vol. 39, no. 8, pp. 795–805, Aug. 2011, doi: 10.1002/clen.201000192.
dc.relation.references[181] M. L. Yola, T. Eren, N. Atar, and S. Wang, “Adsorptive and photocatalytic removal of reactive dyes by silver nanoparticle-colemanite ore waste,” Chemical Engineering Journal, vol. 242, pp. 333–340, Apr. 2014, doi: 10.1016/j.cej.2013.12.086.
dc.relation.references[182] M. Gorjanc and M. Šala, “Durable antibacterial and UV protective properties of cellulose fabric functionalized with Ag/TiO2 nanocomposite during dyeing with reactive dyes,” Cellulose, vol. 23, no. 3, pp. 2199–2209, Jun. 2016, doi: 10.1007/s10570-016-0945-7.
dc.relation.references[183] L. Xu and J. Wang, “Fenton-like degradation of 2,4-dichlorophenol using Fe 3O 4 magnetic nanoparticles,” Appl Catal B, vol. 123–124, pp. 117–126, Jul. 2012, doi: 10.1016/j.apcatb.2012.04.028.
dc.relation.references[184] X. Xue, K. Hanna, M. Abdelmoula, and N. Deng, “Adsorption and oxidation of PCP on the surface of magnetite: Kinetic experiments and spectroscopic investigations,” Appl Catal B, vol. 89, no. 3–4, pp. 432–440, Jul. 2009, doi: 10.1016/j.apcatb.2008.12.024.
dc.relation.references[185] K. Rusevova, F. D. Kopinke, and A. Georgi, “Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions-Influence of Fe(II)/Fe(III) ratio on catalytic performance,” J Hazard Mater, vol. 241–242, pp. 433–440, Nov. 2012, doi: 10.1016/j.jhazmat.2012.09.068.
dc.relation.references[186] D. He, A. M. Jones, S. Garg, A. N. Pham, and T. D. Waite, “Silver Nanoparticle−Reactive Oxygen Species Interactions: Application of a Charging−Discharging Model,” The Journal of Physical Chemistry C, vol. 115, no. 13, pp. 5461–5468, Apr. 2011, doi: 10.1021/jp111275a.
dc.relation.references[187] M. Y. Alkawareek, A. Bahlool, S. R. Abulateefeh, and A. M. Alkilany, “Synergistic antibacterial activity of silver nanoparticles and hydrogen peroxide,” PLoS One, vol. 14, no. 8, p. e0220575, Aug. 2019, doi: 10.1371/journal.pone.0220575.
dc.relation.references[188] M. Sahoo, “Degradation and mineralization of organic contaminants by Fenton and photo-Fenton processes: Review of mechanisms and effects of organic and inorganic additives,” Res J Chem Environ, vol. 15, no. 2, pp. 96–112, 2011.
dc.relation.references[10] A. M. Botero-Coy et al., “‘An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater,’” Science of the Total Environment, vol. 642, pp. 842–853, Nov. 2018, doi: 10.1016/j.scitotenv.2018.06.088.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalReacción tipo Fenton
dc.subject.proposalÓxido de hierro
dc.subject.proposalCatálisis heterogénea
dc.subject.proposalColorante textil
dc.subject.proposalFenton-type reaction
dc.subject.proposalIron oxide
dc.subject.proposalHeterogeneous catalysis
dc.subject.proposalTextile dye
dc.subject.unescoTecnología sanitaria
dc.title.translatedSolids based on α-Fe2O3 as catalysts for Fenton-type processes
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
dc.contributor.orcidGarzon Cucaita, Angie Valentina [0000-0003-2557-7546]
dc.subject.wikidataCatalizadores


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito