Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorTorres Fernandez, Orlando
dc.contributor.advisorCastellanos Parra, Jaime Eduardo
dc.contributor.authorÁlvarez Díaz, Diego Alejandro
dc.date.accessioned2023-07-26T14:06:03Z
dc.date.available2023-07-26T14:06:03Z
dc.date.issued2023-01-31
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84273
dc.descriptionilustraciones, diagramas
dc.description.abstractLa vigilancia genómica del SARS-CoV-2 en Colombia permitió identificar la importación y emergencia autóctona de variantes de preocupación (VOC) o de interés (VOI) del SARS-CoV-2 con mutaciones asociadas al escape inmunológico o resistencia a la acción de los anticuerpos neutralizantes (nAbs) generados por infección natural o vacunación. Las vacunas contra el COVID-19 autorizadas en Colombia fueron diseñadas antes de la emergencia de las VOC/VOI, por lo que este estudio se enfocó en evaluar la capacidad de las variantes locales para escapar a los nAbs inducidos por la vacunación. Se realizaron aislamientos de linajes del SARS-CoV-2 que circularon durante los años 2020-2022 en Colombia. Se evaluaron las respuestas de los nAbs en individuos convalecientes, individuos no expuestos al SARS-CoV-2 (naïve) con esquemas primarios de CoronaVac, BNT162b2, ChAdOx1 o Ad26.COV2.S, en individuos con refuerzo homólogo, heterólogo e individuos con inmunidad híbrida-heteróloga. Las respuestas de los nAbs se evaluaron mediante ensayos de neutralización y el título medio de neutralización (MN50) se calculó por el método de Reed-Muench. Finalmente, se evaluaron anticuerpos totales IgM/IgG contra los antígenos S1, S2, RBD y contra la proteína N del SARS-CoV-2, en individuos con inmunidad heteróloga e híbrida-heteróloga mediante paneles Luminex. El linaje B.1 con la mutación E484K demostró capacidad moderada de escape a nAbs de sueros convalecientes, mientras que los niveles de nAbs fueron entre 3,3 a 55 veces menores contra Mu, Delta y Ómicron, comparado con B.1.111 y Gamma en individuos naïve con vacunación primaria. Además, las respuestas de los nAbs contra Mu y Ómicron fueron significativamente mayores tras el refuerzo heterólogo comparado con el esquema primario u homólogo. Finalmente, no se observaron diferencias en los niveles de nAbs contra Ómicron y anticuerpos IgG contra la subunidad S1 y el RBD entre individuos con inmunidad heteróloga e híbrida-heteróloga. Los resultados sugieren que el refuerzo heterólogo rescata las respuestas neutralizantes contra VOI/VOCs a niveles comparables con individuos que presentan inmunidad híbrida. (Texto tomado de la fuente)
dc.description.abstractGenomic surveillance of SARS-CoV-2 in Colombia allowed us to identify the importation and autochthonous emergence of variants of concern (VOC) or of interest" (VOI) of SARS-CoV-2 with mutations associated with the escape of neutralizing antibodies (nAbs) generated by natural infection or vaccination Vaccines against COVID-19 authorized in Colombia were designed before the emergence of VOCs/VOIs, so this study sought to assess the ability of local variants to escape vaccination-induced nAbs. Isolations of SARS-CoV-2 lineages circulating in Colombia were performed between 2020 and 2022. The nAbs responses were evaluated in convalescent individuals, individuals with no history of previous SARS-CoV-2 infection (naïve), individuals with primary schemes of CoronaVac, BNT162b2, ChAdOx1, or Ad26.COV2.S, individuals with homologous, heterologous boost, and individuals with hybrid-heterologous immunity. nAbs responses were assessed by neutralization assays and the mean neutralization titer (MN50) was calculated by the Reed-Muench method. Finally, total IgM/IgG antibodies against the S1, S2, RBD, and N antigens of SARS-CoV-2 were evaluated in individuals with heterologous and hybrid-heterologous immunity using Luminex panels. The B.1 lineage with the E484K mutation demonstrated moderate escape capacity to nAbs from convalescent sera, while nAbs levels were 3.3 to 55-fold lower against Mu, Delta, and Omicron, compared to B.1.111 and Gamma in naïve individuals with primary vaccination. In addition, nAb responses against Mu and Omicron were significantly higher after heterologous boost compared to the primary or homologous regimen. Finally, no differences were observed in the levels of nAbs against Omicron and IgG antibodies against the S1 and the RBD antigens between individuals with heterologous and hybrid-heterologous immunity. The results suggest that heterologous boosting rescues neutralizing responses against VOI/VOCs at levels comparable to individuals with hybrid immunity.
dc.format.extent95 páginas
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/vnd.ms-excel
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc570 - Biología::576 - Genética y evolución
dc.subject.ddc610 - Medicina y salud::616 - Enfermedades
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéutica
dc.titleImpacto de la diversificación de variantes del SARS-CoV-2 durante la pandemia de COVID-19 en Colombia frente al escape de anticuerpos neutralizantes generados por inmunidad natural y vacunal
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Biología
dc.contributor.researchgroupGenómica de Microorganismos Emergentes - Instituto Nacional de Salud
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ciencias - Biología
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesMorens, D.M.; Breman, J.G.; Calisher, C.H.; Doherty, P.C.; Hahn, B.H.; Keusch, G.T.; Kramer, L.D.; LeDuc, J.W.; Monath, T.P.; Taubenberger, J.K. The Origin of COVID-19 and Why It Matters. Am J Trop Med Hyg 2020, 103, 955-959, doi:10.4269/ajtmh.20-0849.
dc.relation.referencesLaiton-Donato, K.; Villabona-Arenas, C.J.; Usme-Ciro, J.; Franco-Muñoz, C.; Álvarez-Díaz, D.; Villabona-Arenas, L.S.; Echeverría-Londoño, S.; Cucunubá, Z.; Franco-Sierra, N.; Flórez, A.; et al. Genomic Epidemiology of Severe Acute Respiratory Syndrome Coronavirus 2, Colombia. Emerging Infectious Disease journal 2020, 26, doi:10.3201/eid2612.202969.
dc.relation.referencesINS. COVID-19 en Colombia. Available online: https://www.ins.gov.co/Noticias/Paginas/coronavirus.aspx (accessed on Dec 28 2022).
dc.relation.referencesDong, E.; Du, H.; Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis 2020, 20, 533-534, doi:10.1016/S1473-3099(20)30120-1.
dc.relation.referencesWHO. Tracking SARS-CoV-2 variants. Available online: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/ (accessed on Dec 28, 2022).
dc.relation.referencesMohammed, R.N.; Tamjidifar, R.; Rahman, H.S.; Adili, A.; Ghoreishizadeh, S.; Saeedi, H.; Thangavelu, L.; Shomali, N.; Aslaminabad, R.; Marof, F.; et al. Correction: A comprehensive review about immune responses and exhaustion during coronavirus disease (COVID-19). Cell Commun Signal 2022, 20, 139, doi:10.1186/s12964-022-00967-4.
dc.relation.referencesMorales-Nunez, J.J.; Munoz-Valle, J.F.; Torres-Hernandez, P.C.; Hernandez-Bello, J. Overview of Neutralizing Antibodies and Their Potential in COVID-19. Vaccines (Basel) 2021, 9, doi:10.3390/vaccines9121376.
dc.relation.referencesHeinz, F.X.; Stiasny, K. Distinguishing features of current COVID-19 vaccines: knowns and unknowns of antigen presentation and modes of action. NPJ Vaccines 2021, 6, 104, doi:10.1038/s41541-021-00369-6.
dc.relation.referencesValdes-Balbin, Y.; Santana-Mederos, D.; Paquet, F.; Fernandez, S.; Climent, Y.; Chiodo, F.; Rodriguez, L.; Sanchez Ramirez, B.; Leon, K.; Hernandez, T.; et al. Molecular Aspects Concerning the Use of the SARS-CoV-2 Receptor Binding Domain as a Target for Preventive Vaccines. ACS Cent Sci 2021, 7, 757-767, doi:10.1021/acscentsci.1c00216.
dc.relation.referencesNegi, S.S.; Schein, C.H.; Braun, W. Regional and temporal coordinated mutation patterns in SARS-CoV-2 spike protein revealed by a clustering and network analysis. Sci Rep 2022, 12, 1128, doi:10.1038/s41598-022-04950-4.
dc.relation.referencesMinsalud. Vacunación contra COVID-19. Available online: https://www.minsalud.gov.co/salud/publica/Vacunacion/Paginas/Vacunacion-covid-19.aspx (accessed on December 13, 2022).
dc.relation.referencesFiolet, T.; Kherabi, Y.; MacDonald, C.J.; Ghosn, J.; Peiffer-Smadja, N. Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: a narrative review. Clin Microbiol Infect 2022, 28, 202-221, doi:10.1016/j.cmi.2021.10.005.
dc.relation.referencesLu, L.; Mok, B.W.; Chen, L.L.; Chan, J.M.; Tsang, O.T.; Lam, B.H.; Chuang, V.W.; Chu, A.W.; Chan, W.M.; Ip, J.D.; et al. Neutralization of SARS-CoV-2 Omicron variant by sera from BNT162b2 or Coronavac vaccine recipients. Clin Infect Dis 2021, doi:10.1093/cid/ciab1041.
dc.relation.referencesFukutani, K.F.; Barreto, M.L.; Andrade, B.B.; Queiroz, A.T.L. Correlation Between SARS-Cov-2 Vaccination, COVID-19 Incidence and Mortality: Tracking the Effect of Vaccination on Population Protection in Real Time. Front Genet 2021, 12, 679485, doi:10.3389/fgene.2021.679485.
dc.relation.referencesWHO. Interim statement on booster doses for COVID-19 vaccination. Available online: (https://www.who.int/news/item/22-12-2021-interim-statement-on-booster-doses-for-covid-19-vaccination---update-22-december-2021 (accessed on March 11, 2022).
dc.relation.referencesAtmar, R.L.; Lyke, K.E.; Deming, M.E.; Jackson, L.A.; Branche, A.R.; El Sahly, H.M.; Rostad, C.A.; Martin, J.M.; Johnston, C.; Rupp, R.E.; et al. Homologous and Heterologous Covid-19 Booster Vaccinations. N Engl J Med 2022, 386, 1046-1057, doi:10.1056/NEJMoa2116414.
dc.relation.referencesCrotty, S. Hybrid immunity. 2021, 372, 1392-1393, doi:doi:10.1126/science.abj2258.
dc.relation.referencesAlvarez-Diaz, D.A.; Laiton-Donato, K.; Franco-Munoz, C.; Mercado-Reyes, M. SARS-CoV-2 sequencing: The technological initiative to strengthen early warning systems for public health emergencies in Latin America and the Caribbean. Biomedica 2020, 40, 188-197, doi:10.7705/biomedica.5841.
dc.relation.referencesLaiton-Donato, K.; Franco-Munoz, C.; Alvarez-Diaz, D.A.; Ruiz-Moreno, H.A.; Usme-Ciro, J.A.; Prada, D.A.; Reales-Gonzalez, J.; Corchuelo, S.; Herrera-Sepulveda, M.T.; Naizaque, J.; et al. Characterization of the emerging B.1.621 variant of interest of SARS-CoV-2. Infect Genet Evol 2021, 95, 105038, doi:10.1016/j.meegid.2021.105038.
dc.relation.referencesLaiton-Donato, K.; Usme-Ciro, J.A.; Franco-Munoz, C.; Alvarez-Diaz, D.A.; Ruiz-Moreno, H.A.; Reales-Gonzalez, J.; Prada, D.A.; Corchuelo, S.; Herrera-Sepulveda, M.T.; Naizaque, J.; et al. Novel Highly Divergent SARS-CoV-2 Lineage With the Spike Substitutions L249S and E484K. Front Med (Lausanne) 2021, 8, 697605, doi:10.3389/fmed.2021.697605.
dc.relation.referencesSilva, A.R.D., Jr.; Villas-Boas, L.S.; Tozetto-Mendoza, T.R.; Honorato, L.; Paula, A.; Witkin, S.S.; Mendes-Correa, M.C. Generation of neutralizing antibodies against Omicron, Gamma and Delta SARS-CoV-2 variants following CoronaVac vaccination. Rev Inst Med Trop Sao Paulo 2022, 64, e19, doi:10.1590/S1678-9946202264019.
dc.relation.referencesFerrareze, P.A.G.; Franceschi, V.B.; Mayer, A.M.; Caldana, G.D.; Zimerman, R.A.; Thompson, C.E. E484K as an innovative phylogenetic event for viral evolution: Genomic analysis of the E484K spike mutation in SARS-CoV-2 lineages from Brazil. Infect Genet Evol 2021, 93, 104941, doi:10.1016/j.meegid.2021.104941.
dc.relation.referencesBoehm, E.; Kronig, I.; Neher, R.A.; Eckerle, I.; Vetter, P.; Kaiser, L.; Geneva Centre for Emerging Viral, D. Novel SARS-CoV-2 variants: the pandemics within the pandemic. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases 2021, 27, 1109-1117, doi:10.1016/j.cmi.2021.05.022.
dc.relation.referencesWHO. COVID-19 Weekly Epidemiological Update Available online: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---31-august-2021 (accessed on May 23, 2022).
dc.relation.referencesZhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 2020, 382, 727-733, doi:10.1056/NEJMoa2001017.
dc.relation.referencesZhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270-273, doi:10.1038/s41586-020-2012-7.
dc.relation.referencesCoronaviridae Study Group of the International Committee on Taxonomy of, V. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020, 5, 536-544, doi:10.1038/s41564-020-0695-z.
dc.relation.referencesWHO. WHO Director-General's opening remarks at the media briefing on COVID-19 - 11 March 2020. Available online: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 (accessed on 2020, May 05).
dc.relation.referencesLaiton-Donato K, V.-A.C., Usme-Ciro JA, Franco-Muñoz C, Álvarez-Díaz DA, Villabona-Arenas LS, et al. Genomic epidemiology of severe acute respiratory syndrome coronavirus 2, Colombia. Emerg Infect Dis 2020, 26, 2854-2862, doi:0.3201/eid2612.202969.
dc.relation.referencesLaiton-Donato, K.; Alvarez, D.A.; Pelaez-Carvajal, D.; Mercado, M.; Ajami, N.J.; Bosch, I.; Usme-Ciro, J.A. Molecular characterization of dengue virus reveals regional diversification of serotype 2 in Colombia. Virol J 2019, 16, 62, doi:10.1186/s12985-019-1170-4.
dc.relation.referencesLaiton-Donato, K.; Alvarez-Diaz, D.A.; Rengifo, A.C.; Torres-Fernandez, O.; Usme-Ciro, J.A.; Rivera, J.A.; Santamaria, G.; Naizaque, J.; Monroy-Gomez, J.; Sarmiento, L.; et al. Complete Genome Sequence of a Colombian Zika Virus Strain Obtained from BALB/c Mouse Brain after Intraperitoneal Inoculation. Microbiol Resour Announc 2019, 8, doi:10.1128/MRA.01719-18.
dc.relation.referencesRosales-Munar, A.; Alvarez-Diaz, D.A.; Laiton-Donato, K.; Pelaez-Carvajal, D.; Usme-Ciro, J.A. Efficient Method for Molecular Characterization of the 5' and 3' Ends of the Dengue Virus Genome. Viruses 2020, 12, doi:10.3390/v12050496.
dc.relation.referencesOrjuela, L.I.; Alvarez-Diaz, D.A.; Morales, J.A.; Grisales, N.; Ahumada, M.L.; Venegas, H.J.; Quinones, M.L.; Yasnot, M.F. Absence of knockdown mutations in pyrethroid and DDT resistant populations of the main malaria vectors in Colombia. Malar J 2019, 18, 384, doi:10.1186/s12936-019-3034-1.
dc.relation.referencesAlvarez-Diaz, D.A.; Franco-Munoz, C.; Laiton-Donato, K.; Usme-Ciro, J.A.; Franco-Sierra, N.D.; Florez-Sanchez, A.C.; Gomez-Rangel, S.; Rodriguez-Calderon, L.D.; Barbosa-Ramirez, J.; Ospitia-Baez, E.; et al. Molecular analysis of several in-house rRT-PCR protocols for SARS-CoV-2 detection in the context of genetic variability of the virus in Colombia. Infect Genet Evol 2020, 84, 104390, doi:10.1016/j.meegid.2020.104390.
dc.relation.referencesFranco-Munoz, C.; Alvarez-Diaz, D.A.; Laiton-Donato, K.; Wiesner, M.; Escandon, P.; Usme-Ciro, J.A.; Franco-Sierra, N.D.; Florez-Sanchez, A.C.; Gomez-Rangel, S.; Rodriguez-Calderon, L.D.; et al. Substitutions in Spike and Nucleocapsid proteins of SARS-CoV-2 circulating in South America. Infect Genet Evol 2020, 104557, doi:10.1016/j.meegid.2020.104557.
dc.relation.referencesVolz, E.; Hill, V.; McCrone, J.T.; Price, A.; Jorgensen, D.; O'Toole, A.; Southgate, J.; Johnson, R.; Jackson, B.; Nascimento, F.F.; et al. Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity. Cell 2021, 184, 64-75 e11, doi:10.1016/j.cell.2020.11.020.
dc.relation.referencesPlante, J.A.; Liu, Y.; Liu, J.; Xia, H.; Johnson, B.A.; Lokugamage, K.G.; Zhang, X.; Muruato, A.E.; Zou, J.; Fontes-Garfias, C.R.; et al. Author Correction: Spike mutation D614G alters SARS-CoV-2 fitness. Nature 2021, 595, E1, doi:10.1038/s41586-021-03657-2.
dc.relation.referencesRotondo, J.C.; Martini, F.; Maritati, M.; Mazziotta, C.; Di Mauro, G.; Lanzillotti, C.; Barp, N.; Gallerani, A.; Tognon, M.; Contini, C. SARS-CoV-2 Infection: New Molecular, Phylogenetic, and Pathogenetic Insights. Efficacy of Current Vaccines and the Potential Risk of Variants. Viruses 2021, 13, doi:10.3390/v13091687.
dc.relation.referencesChakraborty, S. E484K and N501Y SARS-CoV 2 spike mutants Increase ACE2 recognition but reduce affinity for neutralizing antibody. Int Immunopharmacol 2022, 102, 108424, doi:10.1016/j.intimp.2021.108424.
dc.relation.referencesLiu, Y.; Liu, J.; Plante, K.S.; Plante, J.A.; Xie, X.; Zhang, X.; Ku, Z.; An, Z.; Scharton, D.; Schindewolf, C.; et al. The N501Y spike substitution enhances SARS-CoV-2 infection and transmission. Nature 2022, 602, 294-299, doi:10.1038/s41586-021-04245-0.
dc.relation.referencesLaffeber, C.; de Koning, K.; Kanaar, R.; Lebbink, J.H.G. Experimental Evidence for Enhanced Receptor Binding by Rapidly Spreading SARS-CoV-2 Variants. J Mol Biol 2021, 433, 167058, doi:10.1016/j.jmb.2021.167058.
dc.relation.referencesTian, D.; Sun, Y.; Zhou, J.; Ye, Q. The global epidemic of SARS-CoV-2 variants and their mutational immune escape. Journal of Medical Virology 2022, 94, 847-857, doi:https://doi.org/10.1002/jmv.27376.
dc.relation.referencesYang, W.T.; Huang, W.H.; Liao, T.L.; Hsiao, T.H.; Chuang, H.N.; Liu, P.Y. SARS-CoV-2 E484K Mutation Narrative Review: Epidemiology, Immune Escape, Clinical Implications, and Future Considerations. Infect Drug Resist 2022, 15, 373-385, doi:10.2147/IDR.S344099.
dc.relation.referencesFraley, E.; LeMaster, C.; Geanes, E.; Banerjee, D.; Khanal, S.; Grundberg, E.; Selvarangan, R.; Bradley, T. Humoral immune responses during SARS-CoV-2 mRNA vaccine administration in seropositive and seronegative individuals. BMC Med 2021, 19, 169, doi:10.1186/s12916-021-02055-9.
dc.relation.referencesKrammer, F.; Srivastava, K.; Alshammary, H.; Amoako, A.A.; Awawda, M.H.; Beach, K.F.; Bermudez-Gonzalez, M.C.; Bielak, D.A.; Carreno, J.M.; Chernet, R.L.; et al. Antibody Responses in Seropositive Persons after a Single Dose of SARS-CoV-2 mRNA Vaccine. N Engl J Med 2021, 384, 1372-1374, doi:10.1056/NEJMc2101667.
dc.relation.referencesGoldberg, Y.; Mandel, M.; Bar-On, Y.M.; Bodenheimer, O.; Freedman, L.S.; Ash, N.; Alroy-Preis, S.; Huppert, A.; Milo, R. Protection and Waning of Natural and Hybrid Immunity to SARS-CoV-2. N Engl J Med 2022, doi:10.1056/NEJMoa2118946.
dc.relation.referencesMercado-Reyes, M.; Malagon-Rojas, J.; Rodriguez-Barraquer, I.; Zapata-Bedoya, S.; Wiesner, M.; Cucunuba, Z.; Toloza-Perez, Y.G.; Hernandez-Ortiz, J.P.; Acosta-Reyes, J.; Parra-Barrera, E.; et al. Seroprevalence of anti-SARS-CoV-2 antibodies in Colombia, 2020: A population-based study. Lancet Reg Health Am 2022, 9, 100195, doi:10.1016/j.lana.2022.100195.
dc.relation.referencesLaajaj, R.; De Los Rios, C.; Sarmiento-Barbieri, I.; Aristizabal, D.; Behrentz, E.; Bernal, R.; Buitrago, G.; Cucunuba, Z.; de la Hoz, F.; Gaviria, A.; et al. COVID-19 spread, detection, and dynamics in Bogota, Colombia. Nat Commun 2021, 12, 4726, doi:10.1038/s41467-021-25038-z.
dc.relation.referencesChiesa, V.; Antony, G.; Wismar, M.; Rechel, B. COVID-19 pandemic: health impact of staying at home, social distancing and 'lockdown' measures-a systematic review of systematic reviews. J Public Health (Oxf) 2021, 43, e462-e481, doi:10.1093/pubmed/fdab102.
dc.relation.referencesUN. The Impact of COVID-19 on Latin America and the Caribbean. 2020, 25.
dc.relation.referencesPerez, J.; Ricciulli-Marín, D.; Bonet, J.; Haddad, E.; Araújo, I.; S. Perobelli, F. Regional differences in the economic impact of lockdown measures to prevent the spread of COVID-19: A case study for Colombia. Cuadernos de Economia 2021, 40, doi:10.15446/cuad.econ.v40n85.90803.
dc.relation.referencesRestrepo Zea, J.H.; Espinal Piedrahita, J.; Palacios Romaña, L.D. Gasto en salud durante la pandemia por covid-19 en países de América Latina; Asociación Nacional de Empresarios -ANDI; Universidad de Antioquia: 2022.
dc.relation.referencesINS. COVID-19: progreso de la pandemia y sus desigualdades en Colombia Décimo tercero Informe Técnico. 2021, 278.
dc.relation.referencesINS. Coronavirus (COVID - 2019) en Colombia: Genoma. Available online: https://www.ins.gov.co/Noticias/Paginas/coronavirus-genoma.aspx (accessed on April 18, 2022).
dc.relation.referencesOPS. Reportes de Situación COVID-19: Colombia. Available online: https://www.paho.org/es/reportes-situacion-covid-19-colombia?topic=All&d%5Bmin%5D=&d%5Bmax%5D=&page=0 (accessed on Dec 14, 2022).
dc.relation.referencesNg, O.T.; Marimuthu, K.; Lim, N.; Lim, Z.Q.; Thevasagayam, N.M.; Koh, V.; Chiew, C.J.; Ma, S.; Koh, M.; Low, P.Y.; et al. Analysis of COVID-19 Incidence and Severity Among Adults Vaccinated With 2-Dose mRNA COVID-19 or Inactivated SARS-CoV-2 Vaccines With and Without Boosters in Singapore. JAMA Netw Open 2022, 5, e2228900, doi:10.1001/jamanetworkopen.2022.28900.
dc.relation.referencesAndrews, N.; Tessier, E.; Stowe, J.; Gower, C.; Kirsebom, F.; Simmons, R.; Gallagher, E.; Thelwall, S.; Groves, N.; Dabrera, G.; et al. Duration of Protection against Mild and Severe Disease by Covid-19 Vaccines. N Engl J Med 2022, 386, 340-350, doi:10.1056/NEJMoa2115481.
dc.relation.referencesMueller, A.L.; McNamara, M.S.; Sinclair, D.A. Why does COVID-19 disproportionately affect older people? Aging (Albany NY) 2020, 12, 9959-9981, doi:10.18632/aging.103344.
dc.relation.referencesCollarino, R.; Vauloup-Fellous, C.; Allemang-Trivalle, A.; Mouna, L.; Baudouin, E.P.; Keravec, H.; Neiss, M.; Bouchareb, S.; Bessai, C.; Sanchez-Tamayo, J.; et al. Persistence of Neutralizing Antibodies and Clinical Protection up to 12 Months After Severe Acute Respiratory Syndrome Coronavirus 2 Infection in the Elderly. Open Forum Infect Dis 2022, 9, ofac613, doi:10.1093/ofid/ofac613.
dc.relation.referencesMinsalud. Personas con hipertensión arterial, priorizadas en el Plan Nacional de Vacunación. Available online: https://www.minsalud.gov.co/Paginas/Personas-con-hipertension-arterial-priorizadas-en-el-Plan-Nacional-de-Vacunacion.aspx (accessed on November 29, 2021).
dc.relation.referencesTo, K.K.; Tsang, O.T.; Chik-Yan Yip, C.; Chan, K.H.; Wu, T.C.; Chan, J.M.C.; Leung, W.S.; Chik, T.S.; Choi, C.Y.; Kandamby, D.H.; et al. Consistent detection of 2019 novel coronavirus in saliva. Clin Infect Dis 2020, doi:10.1093/cid/ciaa149.
dc.relation.referencesCorman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin 2020, 25, 2000045, doi:10.2807/1560-7917.ES.2020.25.3.2000045.
dc.relation.referencesLi, H.; Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010, 26, 589-595, doi:10.1093/bioinformatics/btp698.
dc.relation.referencesKatoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 2019, 20, 1160-1166, doi:10.1093/bib/bbx108.
dc.relation.referencesWHO. Novel Coronavirus (2019-nCoV) technical guidance: Laboratory testing for 2019-nCoV in humans. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/laboratory-guidance (accessed on Febrary 7th, 2020).
dc.relation.referencesEdgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32, 1792-1797, doi:10.1093/nar/gkh340.
dc.relation.referencesKumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol 2018, 35, 1547-1549, doi:10.1093/molbev/msy096.
dc.relation.referencesVerity, R.; Okell, L.C.; Dorigatti, I.; Winskill, P.; Whittaker, C.; Imai, N.; Cuomo-Dannenburg, G.; Thompson, H.; Walker, P.G.T.; Fu, H.; et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect Dis 2020, 20, 669-677, doi:10.1016/S1473-3099(20)30243-7.
dc.relation.referencesReed, L.J.; Muench, H. A simple method of estimating fifty per cent endpoints. American Journal of Epidemiology 1938, 27, 493-497, doi:10.1093/oxfordjournals.aje.a118408.
dc.relation.referencesAlgaissi, A.; Hashem, A.M. Evaluation of MERS-CoV Neutralizing Antibodies in Sera Using Live Virus Microneutralization Assay. Methods in molecular biology (Clifton, N.J.) 2020, 2099, 107-116, doi:10.1007/978-1-0716-0211-9_9.
dc.relation.referencesSaker, K.; Escuret, V.; Pitiot, V.; Massardier-Pilonchery, A.; Paul, S.; Mokdad, B.; Langlois-Jacques, C.; Rabilloud, M.; Goncalves, D.; Fabien, N.; et al. Evaluation of Commercial Anti-SARS-CoV-2 Antibody Assays and Comparison of Standardized Titers in Vaccinated Health Care Workers. J Clin Microbiol 2022, 60, e0174621, doi:10.1128/JCM.01746-21.
dc.relation.referencesColombini, A.; Vigano, M.; Tomaiuolo, R.; Di Resta, C.; Corea, F.; Sabetta, E.; Ferrari, D.; De Vecchi, E.; Maria Spano, S.; Banfi, G. Exploratory assessment of serological tests to determine antibody titer against SARS-CoV-2: Appropriateness and limits. J Clin Lab Anal 2022, 36, e24363, doi:10.1002/jcla.24363.
dc.relation.referencesÁlvarez-Díaz, D.A.; Franco-Muñoz, C.; Laiton-Donato, K.; Usme-Ciro, J.A.; Franco-Sierra, N.D.; Flórez-Sánchez, A.C.; Gómez-Rangel, S.; Rodríguez-Calderon, L.D.; Barbosa-Ramirez, J.; Ospitia-Baez, E.; et al. Molecular analysis of several in-house rRT-PCR protocols for SARS-CoV-2 detection in the context of genetic variability of the virus in Colombia. Infection, Genetics and Evolution 2020, 84, 104390, doi:https://doi.org/10.1016/j.meegid.2020.104390.
dc.relation.referencesAlvarez-Diaz, D.A.; Ruiz-Moreno, H.A.; Zapata-Bedoya, S.; Franco-Munoz, C.; Laiton-Donato, K.; Ferro, C.; Sepulveda, M.T.H.; Pacheco-Montealegre, M.; Walteros, D.M.; Carrero-Galindo, L.C.; et al. Clinical outcomes associated with Mu variant infection during the third epidemic peak of COVID-19 in Colombia. Int J Infect Dis 2022, 125, 149-152, doi:10.1016/j.ijid.2022.10.028.
dc.relation.referencesWHO. Tracking SARS-CoV-2 variants. Available online: https://www.who.int/activities/tracking-SARS-CoV-2-variants (accessed on Dec 25, 2022).
dc.relation.referencesFaria, N.R.; Mellan, T.A.; Whittaker, C.; Claro, I.M.; Candido, D.D.S.; Mishra, S.; Crispim, M.A.E.; Sales, F.C.S.; Hawryluk, I.; McCrone, J.T.; et al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science 2021, 372, 815-821, doi:10.1126/science.abh2644.
dc.relation.referencesMlcochova, P.; Kemp, S.A.; Dhar, M.S.; Papa, G.; Meng, B.; Ferreira, I.; Datir, R.; Collier, D.A.; Albecka, A.; Singh, S.; et al. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature 2021, 599, 114-119, doi:10.1038/s41586-021-03944-y.
dc.relation.referencesPlanas, D.; Veyer, D.; Baidaliuk, A.; Staropoli, I.; Guivel-Benhassine, F.; Rajah, M.M.; Planchais, C.; Porrot, F.; Robillard, N.; Puech, J.; et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature 2021, 596, 276-280, doi:10.1038/s41586-021-03777-9.
dc.relation.referencesDhawan, M.; Sharma, A.; Priyanka; Thakur, N.; Rajkhowa, T.K.; Choudhary, O.P. Delta variant (B.1.617.2) of SARS-CoV-2: Mutations, impact, challenges and possible solutions. Hum Vaccin Immunother 2022, 18, 2068883, doi:10.1080/21645515.2022.2068883.
dc.relation.referencesO'Toole, A., E. Scher, and A. Rambaut. Lineage List. Available online: https://cov-lineages.org/lineage_list.html (accessed on Dec 27, 2022).
dc.relation.referencesAraf, Y.; Akter, F.; Tang, Y.D.; Fatemi, R.; Parvez, M.S.A.; Zheng, C.; Hossain, M.G. Omicron variant of SARS-CoV-2: Genomics, transmissibility, and responses to current COVID-19 vaccines. J Med Virol 2022, 94, 1825-1832, doi:10.1002/jmv.27588.
dc.relation.referencesGangavarapu, K.; Latif, A.; Mullen, J.; Alkuzweny, M.; Hufbauer, E.; Tsueng, G.; Haag, E.; Zeller, M.; Aceves, C.; Zaiets, K.; et al. Omicron Variant Report Available online: https://outbreak.info/situation-reports/Omicron?xmin=2022-06-27&xmax=2022-12-27 (accessed on 27 December 2022.).
dc.relation.referencesAlvarez-Diaz, D.A.; Laiton-Donato, K.; Torres-Garcia, O.A.; Ruiz-Moreno, H.A.; Franco-Munoz, C.; Beltran, M.A.; Mercado-Reyes, M.; Rueda, M.G.; Munoz, A.L. Reduced levels of convalescent neutralizing antibodies against SARS-CoV-2 B.1+L249S+E484K lineage. Virus Res 2022, 308, 198629, doi:10.1016/j.virusres.2021.198629.
dc.relation.referencesAlvarez-Diaz, D.A.; Munoz, A.L.; Herrera-Sepulveda, M.T.; Tavera-Rodriguez, P.; Laiton-Donato, K.; Franco-Munoz, C.; Ruiz-Moreno, H.A.; Galindo, M.; Catama, J.D.; Bermudez-Forero, A.; et al. Neutralizing Antibody Responses Elicited by Inactivated Whole Virus and Genetic Vaccines against Dominant SARS-CoV-2 Variants during the Four Epidemic Peaks of COVID-19 in Colombia. Vaccines (Basel) 2022, 10, doi:10.3390/vaccines10122144.
dc.relation.referencesAlvarez-Diaz, D.A.; Munoz, A.L.; Tavera-Rodriguez, P.; Herrera-Sepulveda, M.T.; Ruiz-Moreno, H.A.; Laiton-Donato, K.; Franco-Munoz, C.; Pelaez-Carvajal, D.; Cuellar, D.; Munoz-Suarez, A.M.; et al. Low Neutralizing Antibody Titers against the Mu Variant of SARS-CoV-2 in 31 BNT162b2 Vaccinated Individuals in Colombia. Vaccines (Basel) 2022, 10, doi:10.3390/vaccines10020180.
dc.relation.referencesGdoura, M.; Abouda, I.; Mrad, M.; Ben Dhifallah, I.; Belaiba, Z.; Fares, W.; Chouikha, A.; Khedhiri, M.; Layouni, K.; Touzi, H.; et al. SARS-CoV2 RT-PCR assays: In vitro comparison of 4 WHO approved protocols on clinical specimens and its implications for real laboratory practice through variant emergence. Virology Journal 2022, 19, 54, doi:10.1186/s12985-022-01784-4.
dc.relation.referencesRazu, M.H.; Ahmed, Z.B.; Hossain, M.I.; Rabbi, M.F.A.; Nayem, M.R.; Hassan, M.A.; Paul, G.K.; Khan, M.R.; Moniruzzaman, M.; Karmaker, P.; et al. Performance Evaluation of Developed Bangasure Multiplex rRT-PCR Assay for SARS-CoV-2 Detection in Bangladesh: A Blinded Observational Study at Two Different Sites. Diagnostics (Basel) 2022, 12, doi:10.3390/diagnostics12112617.
dc.relation.referencesFu, J.Y.L.; Chong, Y.M.; Sam, I.C.; Chan, Y.F. SARS-CoV-2 multiplex RT-PCR to detect variants of concern (VOCs) in Malaysia, between January to May 2021. J Virol Methods 2022, 301, 114462, doi:10.1016/j.jviromet.2022.114462.
dc.relation.referencesNg, W.H.; Tipih, T.; Makoah, N.A.; Vermeulen, J.G.; Goedhals, D.; Sempa, J.B.; Burt, F.J.; Taylor, A.; Mahalingam, S. Comorbidities in SARS-CoV-2 Patients: a Systematic Review and Meta-Analysis. mBio 2021, 12, doi:10.1128/mBio.03647-20.
dc.relation.referencesPadilla-Rojas, C.; Jimenez-Vasquez, V.; Hurtado, V.; Mestanza, O.; Molina, I.S.; Barcena, L.; Morales Ruiz, S.; Acedo, S.; Lizarraga, W.; Bailon, H.; et al. Genomic analysis reveals a rapid spread and predominance of lambda (C.37) SARS-COV-2 lineage in Peru despite circulation of variants of concern. J Med Virol 2021, 93, 6845-6849, doi:10.1002/jmv.27261.
dc.relation.referencesYang, Y.; Du, L. SARS-CoV-2 spike protein: a key target for eliciting persistent neutralizing antibodies. Signal Transduct Target Ther 2021, 6, 95, doi:10.1038/s41392-021-00523-5.
dc.relation.referencesJangra, S.; Ye, C.; Rathnasinghe, R.; Stadlbauer, D.; Personalized Virology Initiative study, g.; Krammer, F.; Simon, V.; Martinez-Sobrido, L.; Garcia-Sastre, A.; Schotsaert, M. SARS-CoV-2 spike E484K mutation reduces antibody neutralisation. Lancet Microbe 2021, 2, e283-e284, doi:10.1016/S2666-5247(21)00068-9.
dc.relation.referencesPlanas, D.; Bruel, T.; Grzelak, L.; Guivel-Benhassine, F.; Staropoli, I.; Porrot, F.; Planchais, C.; Buchrieser, J.; Rajah, M.M.; Bishop, E.; et al. Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies. Nat Med 2021, 27, 917-924, doi:10.1038/s41591-021-01318-5.
dc.relation.referencesAnnavajhala, M.K.; Mohri, H.; Wang, P.; Nair, M.; Zucker, J.E.; Sheng, Z.; Gomez-Simmonds, A.; Kelley, A.L.; Tagliavia, M.; Huang, Y.; et al. Emergence and expansion of SARS-CoV-2 B.1.526 after identification in New York. Nature 2021, 597, 703-708, doi:10.1038/s41586-021-03908-2.
dc.relation.referencesMcCallum, M.; Bassi, J.; De Marco, A.; Chen, A.; Walls, A.C.; Di Iulio, J.; Tortorici, M.A.; Navarro, M.J.; Silacci-Fregni, C.; Saliba, C.; et al. SARS-CoV-2 immune evasion by the B.1.427/B.1.429 variant of concern. Science 2021, 373, 648-654, doi:10.1126/science.abi7994.
dc.relation.referencesMalli, F.; Lampropoulos, I.C.; Papagiannis, D.; Papathanasiou, I.V.; Daniil, Z.; Gourgoulianis, K.I. Association of SARS-CoV-2 Vaccinations with SARS-CoV-2 Infections, ICU Admissions and Deaths in Greece. Vaccines (Basel) 2022, 10, doi:10.3390/vaccines10020337.
dc.relation.referencesHasan, T.; Beardsley, J.; Marais, B.J.; Nguyen, T.A.; Fox, G.J. The Implementation of Mass-Vaccination against SARS-CoV-2: A Systematic Review of Existing Strategies and Guidelines. Vaccines (Basel) 2021, 9, doi:10.3390/vaccines9040326.
dc.relation.referencesBian, L.; Liu, J.; Gao, F.; Gao, Q.; He, Q.; Mao, Q.; Wu, X.; Xu, M.; Liang, Z. Research progress on vaccine efficacy against SARS-CoV-2 variants of concern. Hum Vaccin Immunother 2022, 18, 2057161, doi:10.1080/21645515.2022.2057161.
dc.relation.referencesMinsalud. Dosis aplicadas contra COVID-19. Available online: https://app.powerbi.com/view?r=eyJrIjoiNThmZTJmZWYtOWFhMy00OGE1LWFiNDAtMTJmYjM0NDA5NGY2IiwidCI6ImJmYjdlMTNhLTdmYjctNDAxNi04MzBjLWQzNzE2ZThkZDhiOCJ9 (accessed on July 14, 2022).
dc.relation.referencesLopera, T.J.; Chvatal-Medina, M.; Florez-Alvarez, L.; Zapata-Cardona, M.I.; Taborda, N.A.; Rugeles, M.T.; Hernandez, J.C. Humoral Response to BNT162b2 Vaccine Against SARS-CoV-2 Variants Decays After Six Months. Front Immunol 2022, 13, 879036, doi:10.3389/fimmu.2022.879036.
dc.relation.referencesYu, J.; Collier, A.Y.; Rowe, M.; Mardas, F.; Ventura, J.D.; Wan, H.; Miller, J.; Powers, O.; Chung, B.; Siamatu, M.; et al. Neutralization of the SARS-CoV-2 Omicron BA.1 and BA.2 Variants. N Engl J Med 2022, 386, 1579-1580, doi:10.1056/NEJMc2201849.
dc.relation.referencesOu, J.; Lan, W.; Wu, X.; Zhao, T.; Duan, B.; Yang, P.; Ren, Y.; Quan, L.; Zhao, W.; Seto, D.; et al. Tracking SARS-CoV-2 Omicron diverse spike gene mutations identifies multiple inter-variant recombination events. Signal Transduct Target Ther 2022, 7, 138, doi:10.1038/s41392-022-00992-2.
dc.relation.referencesMagazine, N.; Zhang, T.; Wu, Y.; McGee, M.C.; Veggiani, G.; Huang, W. Mutations and Evolution of the SARS-CoV-2 Spike Protein. Viruses 2022, 14, doi:10.3390/v14030640.
dc.relation.referencesFratev, F. R346K Mutation in the Mu Variant of SARS-CoV-2 Alters the Interactions with Monoclonal Antibodies from Class 2: A Free Energy Perturbation Study. J Chem Inf Model 2022, 62, 627-631, doi:10.1021/acs.jcim.1c01243.
dc.relation.referencesKoyama, T.; Miyakawa, K.; Tokumasu, R.; S, S.J.; Kudo, M.; Ryo, A. Evasion of vaccine-induced humoral immunity by emerging sub-variants of SARS-CoV-2. Future Microbiol 2022, 17, 417-424, doi:10.2217/fmb-2022-0025.
dc.relation.referencesMcLean, G.; Kamil, J.; Lee, B.; Moore, P.; Schulz, T.F.; Muik, A.; Sahin, U.; Tureci, O.; Pather, S. The Impact of Evolving SARS-CoV-2 Mutations and Variants on COVID-19 Vaccines. mBio 2022, 13, e0297921, doi:10.1128/mbio.02979-21.
dc.relation.referencesMuttineni, R.; R, N.B.; Putty, K.; Marapakala, K.; K, P.S.; Panyam, J.; Vemula, A.; Singh, S.M.; Balachandran, S.; S, T.V.; et al. SARS-CoV-2 variants and spike mutations involved in second wave of COVID-19 pandemic in India. Transbound Emerg Dis 2022, 69, e1721-e1733, doi:10.1111/tbed.14508.
dc.relation.referencesDi Giacomo, S.; Mercatelli, D.; Rakhimov, A.; Giorgi, F.M. Preliminary report on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike mutation T478K. J Med Virol 2021, 93, 5638-5643, doi:10.1002/jmv.27062.
dc.relation.referencesAndrews, N.; Stowe, J.; Kirsebom, F.; Toffa, S.; Rickeard, T.; Gallagher, E.; Gower, C.; Kall, M.; Groves, N.; O'Connell, A.M.; et al. Covid-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant. N Engl J Med 2022, 386, 1532-1546, doi:10.1056/NEJMoa2119451.
dc.relation.referencesBarros-Martins, J.; Hammerschmidt, S.I.; Cossmann, A.; Odak, I.; Stankov, M.V.; Morillas Ramos, G.; Dopfer-Jablonka, A.; Heidemann, A.; Ritter, C.; Friedrichsen, M.; et al. Immune responses against SARS-CoV-2 variants after heterologous and homologous ChAdOx1 nCoV-19/BNT162b2 vaccination. Nat Med 2021, 27, 1525-1529, doi:10.1038/s41591-021-01449-9.
dc.relation.referencesDeng, J.; Ma, Y.; Liu, Q.; Du, M.; Liu, M.; Liu, J. Comparison of the Effectiveness and Safety of Heterologous Booster Doses with Homologous Booster Doses for SARS-CoV-2 Vaccines: A Systematic Review and Meta-Analysis. Int J Environ Res Public Health 2022, 19, doi:10.3390/ijerph191710752.
dc.relation.referencesNtziora, F.; Kostaki, E.G.; Karapanou, A.; Mylona, M.; Tseti, I.; Sipsas, N.V.; Paraskevis, D.; Sfikakis, P.P. Protection of vaccination versus hybrid immunity against infection with COVID-19 Omicron variants among Health-Care Workers. Vaccine 2022, 40, 7195-7200, doi:10.1016/j.vaccine.2022.09.042.
dc.relation.referencesHo-Yan Fong, C.; Zhang, X.; Chen, L.L.; Wing-Shan Poon, R.; Pui-Chun Chan, B.; Zhao, Y.; King-Ho Wong, C.; Chan, K.H.; Yuen, K.Y.; Fan-Ngai Hung, I.; et al. Effect of vaccine booster, vaccine type, and hybrid immunity on humoral and cellular immunity against SARS-CoV-2 ancestral strain and Omicron variant sublineages BA.2 and BA.5 among older adults with comorbidities: a cross sectional study. EBioMedicine 2023, 88, 104446, doi:10.1016/j.ebiom.2023.104446.
dc.relation.referencesCervantes-Luevano, K.; Espino-Vazquez, A.N.; Flores-Acosta, G.; Bernaldez-Sarabia, J.; Cabanillas-Bernal, O.; Gasperin-Bulbarela, J.; Gonzalez-Sanchez, R.; Comas-Garcia, A.; Licea-Navarro, A.F. Neutralizing antibodies levels are increased in individuals with heterologous vaccination and hybrid immunity with Ad5-nCoV in the north of Mexico. PLoS One 2022, 17, e0269032, doi:10.1371/journal.pone.0269032.
dc.relation.referencesTai, W.; He, L.; Zhang, X.; Pu, J.; Voronin, D.; Jiang, S.; Zhou, Y.; Du, L. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol 2020, 17, 613-620, doi:10.1038/s41423-020-0400-4.
dc.relation.referencesAlaofi, A.L.; Shahid, M. Mutations of SARS-CoV-2 RBD May Alter Its Molecular Structure to Improve Its Infection Efficiency. Biomolecules 2021, 11, doi:10.3390/biom11091273.
dc.relation.referencesHernandez-Luis, P.; Aguilar, R.; Pelegrin-Perez, J.; Ruiz-Olalla, G.; Garcia-Basteiro, A.L.; Tortajada, M.; Moncunill, G.; Dobano, C.; Angulo, A.; Engel, P. Decreased and Heterogeneous Neutralizing Antibody Responses Against RBD of SARS-CoV-2 Variants After mRNA Vaccination. Front Immunol 2022, 13, 816389, doi:10.3389/fimmu.2022.816389.
dc.relation.referencesLiu, S.; Jia, Z.; Nie, J.; Liang, Z.; Xie, J.; Wang, L.; Zhang, L.; Wang, X.; Wang, Y.; Huang, W. A broader neutralizing antibody against all the current VOCs and VOIs targets unique epitope of SARS-CoV-2 RBD. Cell Discovery 2022, 8, 81, doi:10.1038/s41421-022-00443-w.
dc.relation.referencesStarr, T.N.; Czudnochowski, N.; Liu, Z.; Zatta, F.; Park, Y.-J.; Addetia, A.; Pinto, D.; Beltramello, M.; Hernandez, P.; Greaney, A.J.; et al. SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape. Nature 2021, 597, 97-102, doi:10.1038/s41586-021-03807-6.
dc.relation.referencesSpeletas, M.; Voulgaridi, I.; Sarrou, S.; Dadouli, A.; Mouchtouri, V.A.; Nikoulis, D.J.; Tsakona, M.; Kyritsi, M.A.; Peristeri, A.M.; Avakian, I.; et al. Intensity and Dynamics of Anti-SARS-CoV-2 Immune Responses after BNT162b2 mRNA Vaccination: Implications for Public Health Vaccination Strategies. Vaccines (Basel) 2022, 10, doi:10.3390/vaccines10020316.
dc.relation.referencesLau, E.H.Y.; Tsang, O.T.Y.; Hui, D.S.C.; Kwan, M.Y.W.; Chan, W.H.; Chiu, S.S.; Ko, R.L.W.; Chan, K.H.; Cheng, S.M.S.; Perera, R.; et al. Neutralizing antibody titres in SARS-CoV-2 infections. Nat Commun 2021, 12, 63, doi:10.1038/s41467-020-20247-4.
dc.relation.referencesGharbharan, A.; Jordans, C.C.E.; GeurtsvanKessel, C.; den Hollander, J.G.; Karim, F.; Mollema, F.P.N.; Stalenhoef-Schukken, J.E.; Dofferhoff, A.; Ludwig, I.; Koster, A.; et al. Effects of potent neutralizing antibodies from convalescent plasma in patients hospitalized for severe SARS-CoV-2 infection. Nat Commun 2021, 12, 3189, doi:10.1038/s41467-021-23469-2.
dc.relation.referencesMoss, P. The T cell immune response against SARS-CoV-2. Nat Immunol 2022, 23, 186-193, doi:10.1038/s41590-021-01122-w.
dc.relation.referencesBertoletti, A.; Le Bert, N.; Tan, A.T. SARS-CoV-2-specific T cells in the changing landscape of the COVID-19 pandemic. Immunity 2022, 55, 1764-1778, doi:10.1016/j.immuni.2022.08.008.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsVacunas contra la COVID-19
dc.subject.decsCOVID-19 Vaccines
dc.subject.lembINMUNIDAD
dc.subject.lembImmunity
dc.subject.proposalCOVID-19
dc.subject.proposalSARS-CoV-2
dc.subject.proposalVariant of interest
dc.subject.proposalVariant of Concern
dc.subject.proposalNeutralizing antibodies
dc.subject.proposalVaccines
dc.subject.proposalGenomic surveillance
dc.subject.proposalVariantes de interés
dc.subject.proposalVariantes de preocupación
dc.subject.proposalAnticuerpos neutralizantes
dc.subject.proposalVacunas
dc.subject.proposalVigilancia genómica
dc.title.translatedImpact of the diversification of SARS-CoV-2 variants during the COVID-19 pandemic in Colombia against the escape of neutralizing antibodies generated by natural and vaccine immunity
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleCORHUCO
oaire.awardtitleEvaluación de la inmunidad pos-inmunización contra el SARS-CoV-2 en una cohorte de trabajadores de la salud, Colombia 2021
oaire.awardtitleEvaluación de la respuesta inmune contra el SARS-CoV-2 en una cohorte de población colombiana inmunizada con las vacunas incluidas dentro del Plan Nacional de vacunación en Colombia, 2021
oaire.fundernameInstituto Nacional de Salud
oaire.fundernameUnidad Nacional para la Gestión del Riesgo de Desastres
oaire.fundernameEnterritorio
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dc.contributor.orcidDiego Alejandro Alvarez-Diaz [0000000265340079]
dc.contributor.cvlacALVAREZ DIAZ, DIEGO ALEJANDRO [0000944122#]
dc.contributor.researchgateDiego Alejandro Alvarez Díaz [Diego-Alvarez-Diaz-2]
dc.contributor.googlescholarDiego Alejandro Álvarez-Díaz [ApWpYpwAAAAJ]


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito