Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorCadena Chamorro, Edith Marleny
dc.contributor.advisorOsorio Tobon, Juan Felipe
dc.contributor.authorDiaz Martinez, Gregorio Simon
dc.date.accessioned2023-07-26T16:40:23Z
dc.date.available2023-07-26T16:40:23Z
dc.date.issued2023-07-24
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84291
dc.descriptionilustraciones, diagramas
dc.description.abstractLa investigación tiene como eje principal el desarrollo de un bioplástico biobasado en harina de ñame morado (Dioscorea alata), utilizando su contenido de antocianinas como indicador de pH. Se proyecta un material antiestático, aislante, amortiguador, resistente y completamente biodegradable y/o compostable. Para llevar a cabo el proceso, se inicia con la extracción del pigmento (Antocianinas) presente en la harina, y caracterización físico química de las antocianinas mediante extractos asistidos por ultrasonido, en el cual se evaluaron las mejores condiciones de extracción variando temperatura (30, 50 y 70 °C), amplitud (20, 40 y 60%) y relación Etanol: Agua (80:20 y 50:50). Adicionalmente se procedió con la extracción de nanopartículas de harina a través de un proceso mecánico llamado (Contra Colisión Acuosa). Para esto, se llevó a cabo la descomposición del material utilizando 1.5, 2.0 y 2.5% en relación agua: harina bajo una presión de 200 MPa. Finalmente se procedió con el desarrollo de las películas; donde se evaluaron el contenido de nanopartículas (5, 15 y 25 %), utilizando 15% glicerol con respecto al peso de la harina, la cual fue de 2% como etapa de formulación. Las películas desarrolladas, fueron caracterizadas morfológica, mecánica y superficialmente. Toda la investigación, se llevó a cabo garantizando que el producto final cumpliera con las especificaciones y normativas pertinentes basadas en las pruebas estándares ASTM; potencializando la cadena productiva del ñame morado (Dioscorea alata), generando valor agregado y su aprovechamiento integral para el desarrollo de biomateriales, obteniéndose resultados relevantes, nanopartículas de hasta menos de 100 nm, películas resistentes reflejando una resistencia a la tensión de más de 7.0 MPa, y características hidrofóbicas. Además de contenidos de antocianinas de más de 22 ppm, y la aplicación de una nueva técnica de extracción de nanopartículas para polímeros como la harina. (Texto tomado de la fuente)
dc.description.abstractThe main objective corresponded to the development of a bioplastic biobased on purple yam (Dioscorea alata) flour, using its anthocyanin content as a pH indicator with addition of nanoparticles extracted by a mechanical process; in order to obtain a smart, resistant and completely biodegradable and/or compostable material. The first step was the extraction of anthocyanins in the flour; therefore, a characterization was performed using ultrasound assistance as extraction method, where the best conditions were evaluated applying different temperatures, amplitude and ethanol: water ratio. Then, the extraction of flour nanoparticles was performed through a mechanical process called “Aqueous Counter Collision” or ACC. The decomposition of the material was carried out using specifics concentrations of water: flour ratio. Finally, the development of the films using glycerol and flour was performed, where the content of nanoparticles was evaluated. Also, the anthocyanins content was evaluated as a pH indicator in the films as well. The films were characterized morphologically, mechanically and superficially, obtaining the best analysis through an-ANOVA. All the research was performed ensuring that the material obtained would give value to the purple yam production chain, and its utilization as a possible resource in the food packaging industry. The results obtained were relevant, nanoparticles down to less than 100 nm, resistant films reflecting a tensile strength of more than 7.0 MPa, and hydrophobic characteristics. In addition to anthocyanin contents of more than 22 ppm, and the application of a new nanoparticle extraction technique for polymers such as flour.
dc.format.extent123 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentos
dc.titleDesarrollo de una película flexible con características inteligentes a base de harina de ñame morado (Dioscorea alata) con adición de nanopartículas obtenidas mediante contra colisión acuosa
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Ingeniería Agroindustrial
dc.contributor.researcherLavoine Nathalie
dc.contributor.researchgroupIngeniería Agrícola
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería Agroindustrial
dc.description.researchareaBiomateriales
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedRedCol
dc.relation.indexedLaReferencia
dc.relation.referencesAgcam E, Akyıldız A, Balasubramaniam VM. Optimization of anthocyanins extraction from black carrot pomace with thermosonication. Food Chem [Internet]. 2017; 237:461–70.
dc.relation.referencesAlmeida, A. d., & Ruiz, J. (2004). Bioplásticos: Una alternativa ecológica. Química viva.
dc.relation.referencesAnaya et al. (2012). Polímeros utilizados para la elaboración de película biodegradables. Temas Selectos de Ingeniería de Alimentos, 6.
dc.relation.referencesAndrea Lubbe et al. (2011). Cultivation of medicnla and aromatic plants for specialty industrial materials. Industrial crops and productos, 785–801.
dc.relation.referencesAndres, C., AdeOluwa, O. O., & Bhullar, G. S. (2017). Yam (Dioscorea spp.). In Encyclopedia of Applied Plant Sciences (pp. 435–441). Elsevier.
dc.relation.referencesAndretta, R., Luchese, C. L., Tessaro, I. C., & Spada, J. C. (2019). Development and characterization of pH-indicator films based on cassava starch and blueberry residue by thermocompression. Food Hydrocolloids, 93, 317–324. https://doi.org/10.1016/j.foodhyd.2019.02.019
dc.relation.referencesAndri Cahyo Kumoro et al., (2015). Microwave Assisted Extraction of Dioscorin from Gadung Dioscorea hispida Dennst) Tuber Flour. Procedia Chemestry, 47 – 55.
dc.relation.referencesAnita Patrón Espá, María Eugenia Martín Esparza, Ana María Albors Sorolla, & María Dolores Raigón Jiménez. (2019) Caracterización funcional y química de cuatro variedades de chuño comercializadas en españa. Tesis de Maestría. Universidad Politécnica de Valencia, Instituto de ingeniería de alimentos para el desarrollo, Departamento de tecnología de alimentos. Valencia, España.
dc.relation.referencesAnny Manrich et al. (2017). Hydrophobic edible film made up of tomatoe cutin and pectin. Carbohydrete Polymers.
dc.relation.referencesAranza, Y. R. (2012). E l cultivo de ñame en el Caribe Colombiao. Banco de la Republica.
dc.relation.referencesArgenBio, 2018, http://www.argenbio.org/index.php?action=novedades&note=200
dc.relation.referencesArruda, H. S., Silva, E. K., Peixoto Araujo, N. M., Pereira, G. A., Pastore, G. M., & Marostica Junior, M. R. (2021). Anthocyanins recovered from agri-food by-products using innovative processes: Trends, challenges, and perspectives for their application in food systems. Molecules (Basel, Switzerland), 26(9). https://doi.org/10.3390/molecules26092632
dc.relation.referencesAVANI. (2019). Obtenido de https://www.avanieco.com/about-us/
dc.relation.referencesAlvis, A., Vélez, C. A., Villada, H. S., & Rada-Mendoza, M. (2008). Análisis Fisicoquímico y Morfológico de Almidones de Ñame, Yuca y Papa y Determinación de la Viscosidad de las Pastas. CIT Informacion Tecnologica, 19(1), 19–28. https://doi.org/10.4067/s0718-07642008000100004
dc.relation.referencesBernardo, C. N., Kling, I. C. S., Ferreira, W. H., Andrade, C. T., & Simao, R. A. (2022). Starch films containing starch nanoparticles as produced in a single step green route. Industrial Crops and Products, 177(114481), 114481. https://doi.org/10.1016/j.indcrop.2021.114481
dc.relation.referencesBambang Kuswandi et al. (2011). Smart packaging: sensors for monitoring of food quality and safety. Sens. & Instrumen. Food Qual., 137–146.
dc.relation.referencesBBC. (2019). Obtenido de https://www.bbc.com/mundo/noticias-47620369
dc.relation.referencesBonilla, J., Hoyoc, J., & Villada, H. (2014). Modificación enzimática de almidón de yuca para eldesarrollo de peliculas flexbles. Biotecnologia en el sector Agropecuario y Agroindustrial, 9.
dc.relation.referencesCampelo, P. H., Sant’Ana, A. S., & Pedrosa Silva Clerici, M. T. (2020). Starch nanoparticles: production methods, structure, and properties for food applications. Current Opinion in Food Science, 33, 136–140.
dc.relation.referencesCarle R, S. (2016). andbook on Natural Pigments in Food and Beverages. UK: Duxford, UK: Woodhead Publishing.
dc.relation.referencesCarrera, C., Aliaño-González, M. J., Valaityte, M., Ferreiro-González, M., Barbero, G. F., & Palma, M. (2021). A novel ultrasound-assisted extraction method for the analysis of anthocyanins in potatoes (Solanum tuberosum L.). Antioxidants (Basel, Switzerland), 10(9), 1375. https://doi.org/10.3390/antiox10091375
dc.relation.referencesChampagne et al. (2011). Diversity of anthocyanins and other phenolic compounds among tropical root. Journal of Food Composition and Analysis, 315-325.
dc.relation.referencesChemat, F., Zill-e-Huma, & Khan, M. K. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4), 813–835. https://doi.org/10.1016/j.ultsonch.2010.11.023
dc.relation.referencesChen, L., Ma, R., McClements, D. J., Zhang, Z., Jin, Z., & Tian, Y. (2019). Impact of granule size on microstructural changes and oil absorption of potato starch during frying. FoodHydrocolloids, 94,428–438. https://doi.org/10.1016/j.foodhyd.2019.03.046
dc.relation.referencesCondés, M. C., Añón, M. C., Dufresne, A., & Mauri, A. N. (2018). Composite and nanocomposite films based on amaranth biopolymers. Food Hydrocolloids, 74, 159–167.
dc.relation.referencesDenis Cornet et al. (2014). Yams plant size hierarchy and yield variability: Emergence time is crutial. European Journal of Agronomy.
dc.relation.referencesDong, H., Zhang, Q., Gao, J., Chen, L., & Vasanthan, T. (2022). Preparation and characterization of nanoparticles from cereal and pulse starches by ultrasonic-assisted dissolution and rapid nanoprecipitation. Food Hydrocolloids, 122(107081), 107081. https://doi.org/10.1016/j.foodhyd.2021.107081
dc.relation.referencesDorado, M., & Van, R. (2011). FAO. Obtenido de http://www.fao.org/3/a-i3684s.pdf EFE. (2018). El espectador. Obtenido de: https://www.elespectador.com/noticias/actualidad/cuantos-kilos-de-plastico-se-consumen-en-colombia-articulo-823132
dc.relation.referencesHuang, J., Huang, Q., Chang, P. R., & Yu, J. (2013). Chemical modification of starch nanoparticles. En Biopolymer Nanocomposites (pp. 181–202). John Wiley & Sons, Inc.
dc.relation.referencesEnriquez, M. (2012). Composición y procesamiento de películas biodegradables basadas en almidón. Biotecnología en el Sector Agropecuario y Agroindustrial.
dc.relation.referencesFang, Z., Wu, D., Yü, D., Ye, X., Liu, D., & Chen, J. (2011). Phenolic compounds in Chinese purple yam and changes during vacuum frying. Food Chemistry, 128(4), 943–948. https://doi.org/10.1016/j.foodchem.2011.03.123
dc.relation.referencesFAO. (2015). Obtenido de http://www.fao.org/news/story/es/item/319970/icode/
dc.relation.referencesFAO. (2017). Obtenido de http://www.fao.org/3/ca3540es/ca3540es.pdf
dc.relation.referencesFlórez, j. F., Chamorro, E. M., Sandoval, E. R., & Velásquez, J. S. (2019). Cassava starches modified by enzymatic biocatalysis: effect of reaction time and drying method. DYNA, 162-170.
dc.relation.referencesFrancias Perez et al. (2006). Bioplasticos.
dc.relation.referencesGhafoor, K., Choi, Y. H., Jeon, J. Y., & Jo, I. H. (2009). Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape (Vitis vinifera) seeds. Journal of Agricultural and Food Chemistry, 57(11), 4988–4994. https://doi.org/10.1021/jf9001439
dc.relation.referencesGarzón, G. (2008). Las antocianinas como colorantes naturales y compuestos bioactivos. Acta Bio colombiana.
dc.relation.referencesGarzon, G. A. (2008). Anthocyanins As Natural Colorants And Bioactive Compounds. Act biol.
dc.relation.referencesGenafo, D. F. (s.f). Envases Inteligentes.
dc.relation.referencesGiusi. (2001). Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy. Current Protocols in Food Analytical Chemistry.
dc.relation.referencesGóngora, J. P. (2014). La industria del plastico en Mexico y el mundo. Comercio exterior
dc.relation.referencesGolmohamadi A, Möller G, Powers J, Nindo C. Effect of ultrasound requency on antioxidant activity, total phenolic and anthocyanin content of red raspberry puree. Ultrason Sonochem [Internet]. 2013;20(5):1316–23. Available from: http://dx.doi.org/10.1016/j.ultsonch.2013.01.020
dc.relation.referencesGonzales, C. M. (2012). El Ñame (Dioscorea spp.). Características, usos y valor medicinal. Aspectos de importancia en el desarrollo de su cultivo. Ministerio de Educación Superior. Cuba Instituto Nacional de Ciencias Agrícolas.
dc.relation.referencesGonzales, M. (2012). El ñame: caracteristicas, usos y valor medicinal, aspectos importantes en el desarrollo de su cultivo. Cultivos tropicales. Godoy E, Reinheimer MA, Scenna NJ. Comparison between conventional and ultrasound-assisted techniques for extraction of anthocyanins
dc.relation.referencesGodoy E, Reinheimer MA, Scenna NJ. Comparison between conventional and ultrasound-assisted techniques for extraction of anthocyanins from grape pomace. Experimental results and mathematical modeling. J Food Eng. 2017; 207:56–72.
dc.relation.referencesGuerrero et al. (2012). Polimeros utilizados para la elaboracion de peliculas biodegradables. Temas selectos de Ingenieria de Alimentos.
dc.relation.referencesGujral, H., Sinhmar, A., Nehra, M., Nain, V., Thory, R., Pathera, A. K., & Chavan, P. (2021). Synthesis, characterization, and utilization of potato starch nanoparticles as a filler in nanocomposite films. International Journal of Biological Macromolecules, 186, 155–162. https://doi.org/10.1016/j.ijbiomac.2021.07.005
dc.relation.referencesHou, J., & Yan, X. (2021). Preparation of chitosan-SiO2 nanoparticles by ultrasonic treatment and its effect on the properties of starch film. International Journal of Biological Macromolecules, 189, 271–278. https://doi.org/10.1016/j.ijbiomac.2021.08.141
dc.relation.referencesHumberto Leblanc et al. (2007). Produccion de raices y tuberculos: los ñames cultivados en la region Atlantica de Costa Rica. Costa Rica: Earth.
dc.relation.referencesIshida, K., Yokota, S., & Kondo, T. (2019). Localized surface acetylation of aqueous counter collision cellulose nanofibrils using a Pickering emulsion as an interfacial reaction platform. Carbohydrate Polymers, 261(117845), 117845. https://doi.org/10.1016/j.carbpol.2021.117845
dc.relation.referencesJavier David Vega, A., Hector, R.-E., Juan Jose, L.-G., Maria L, L.-G., Paola, H.-C., Raúl, Á.-S., & Carlos Enrique, O.-V. (2017). Effect of solvents and extraction methods on total anthocyanins, phenolic compounds and antioxidant capacity of Renealmia alpinia (Rottb.) Maas peel. Czech Journal of Food Sciences, 35(5), 456–465. https://doi.org/10.17221/316/2016-cjfs
dc.relation.referencesJia, Y., Asoh, T.-A., Hsu, Y.-I., & Uyama, H. (2020). Wet strength improvement of starch-based blend films by formation of acetal/hemiacetal bonding. Polymer Degradation and Stability, 177(109197), 109197. https://doi.org/10.1016/j.polymdegradstab.2020.109197
dc.relation.referencesFigueroa. (2018). Cassava starches modified by enzymatic biocatalysis: effect of reaction time and drying method. Dyna.
dc.relation.referencesJosé Aliaño González, M., Carrera, C., Barbero, G. F., & Palma, M. (2022). A comparison study between ultrasound-assisted and enzyme-assisted extraction of anthocyanins from blackcurrant (Ribes nigrum L.). Food Chemistry: X, 13(100192), 100192. https://doi.org/10.1016/j.fochx.2021.100192
dc.relation.referencesJosé Cortez et al. (2014). Evalucacion de propiedades mecanicas, opticas y de barrera en peliculas activas de almidon de yuca. Biotecnología en el Sector Agropecuario y Agroindustrial.
dc.relation.referencesK.B. Biji et al. (2015). Smart packaging systems for food applications: a review. Association of Food Scientists & Technologists.
dc.relation.referencesKo, E. B., & Kim, J.-Y. (2021). Application of starch nanoparticles as a stabilizer for Pickering emulsions: Effect of environmental factors and approach for enhancing its storage stability. Food Hydrocolloids, 120(106984), 106984. https://doi.org/10.1016/j.foodhyd.2021.106984
dc.relation.referencesKondo, T., Kose, R., Naito, H., & Kasai, W. (2014). Aqueous counter collision using paired water jets as a novel means of preparing bio-nanofibers. Carbohydrate Polymers, 112, 284–290. https://doi.org/10.1016/j.carbpol.2014.05.064
dc.relation.referencesLe Corre, D., Bras, J., & Dufresne, A. (2010). Starch nanoparticles: a review. Biomacromolecules, 11(5), 1139–1153.
dc.relation.referencesLe Corre, D., & Dufresne, A. (2013). Preparation of starch nanoparticles. En Biopolymer Nanocomposites (pp. 153–180). John Wiley & Sons, Inc.
dc.relation.referencesLi, X., Qiu, C., Ji, N., Sun, C., Xiong, L., & Sun, Q. (2015). Mechanical, barrier and morphological properties of starch nanocrystals-reinforced pea starch films. Carbohydrate Polymers, 121, 155–162.
dc.relation.referencesLiu, D., Wu, Q., Chen, H., & Chang, P. R. (2009). Transitional properties of starch colloid with particle size reduction from micro- to nanometer. Journal of Colloid and Interface Science, 339(1), 117–124. https://doi.org/10.1016/j.jcis.2009.07.035
dc.relation.referencesKM Davies et al. (2017). Anthocyanins. Encyclopedia of Applied Plant Sciences.
dc.relation.referencesMa Lourders Pacheco et al. (2009). Chemical studies of anthocyanins: A review. Mexico.
dc.relation.referencesMane S, Bremner DH, Tziboula-Clarke A, Lemos MA. Effect of ultrasound on the extraction of total anthocyanins from Purple Majesty potato. Ultrason Sonochem [Internet]. 2015; 27:509–14. Available from: http://dx.doi.org/10.1016/j.ultsonch.2015.06.021
dc.relation.referencesManuel Valero et al. (2013). Biopolimeros: avances y perspectivas. Dyna.
dc.relation.referencesMcDonnell C, Tiwari BK. (2017) Ultrasound: A Clean, Green Extraction Technology for Bioactives and Contaminants. In: Ibáñez E, Cifuentes A, editors. Green Extraction Techniques: Principles, Advances and Applications nventional extraction processes. Food and Bioproducts Processing, 122, 111–123. https://doi.org/10.1016/j.fbp.2020.04.007
dc.relation.referencesMoazzami Goudarzi, Z., Behzad, T., & Sheykhzadeh, A. (2022). Effect of hydrophobically modified extracted starch nanocrystal on the properties of LDPE / thermoplastic starch (TPS)/ PE‐g‐MA nanocomposite. Journal of Applied Polymer Science, 139(2), 51490. https://doi.org/10.1002/app.51490
dc.relation.referencesMusso, Y. (2017). Desarrollo de película protéicas para el evasado activo e inteligente de alimentos. La Plata: Universidad Nacional de La Plata.
dc.relation.referencesNarváez-Gómez, G., Figueroa-Flórez, J., Salcedo-Mendoza, J., Pérez-Cervera, C., & Andrade-Pizarro, R. (2021). Development and characterization of dual-modified yam (Dioscorea rotundata) starch-based films. Heliyon, 7(4), e06644. https://doi.org/10.1016/j.heliyon.2021.e06644
dc.relation.referencesNascimento, T. A., Calado, V., & Carvalho, C. W. P. (2012). Development and characterization of flexible film based on starch and passion fruit mesocarp flour with nanoparticles. Food Research International (Ottawa, Ont.), 49(1), 588–595. https://doi.org/10.1016/j.foodres.2012.07.051
dc.relation.referencesOcampo, A. M. (2018). Obtenido de: https://www.revistaialimentos.com/blog/multidimensionales/empaques-inteligentes/
dc.relation.referencesOchoa, S., Durango-Zuleta, M. M., & Felipe Osorio-Tobón, J. (2020). Techno-economic evaluation of the extraction of anthocyanins from purple yam (Dioscorea alata) using ultrasound-assisted extraction and conventional extraction processes. Food and Bioproducts Processing, 122, 111–123. https://doi.org/10.1016/j.fbp.2020.04.007
dc.relation.referencesONU. (5 de 6 de 2018). Obtenido de https://news.un.org/es/story/2018/06/1435111
dc.relation.referencesONU. (2019). Obtenido de https://news.un.org/es/story/2019/03/1452961
dc.relation.referencesONU. (2019). Obtenido de https://news.un.org/es/story/2019/08/1460271
dc.relation.referencesP, N. L., Ribba, L., Dufresne, A., Arangueren, M., & Goyanes, S. (2009). Influencia del tipo de almidón empleado como matriz en las prppiedades fisico-quimicas de nanocompuestos BIODEGRADABLES. Revista Latinoamericana de Metalurgia y Materiales, 6.
dc.relation.referencesParra, R. (2015). Digestión anaerobica: Mecanismos biotcnologicos en el tratamiento de agua residuales y su aplicacion en la industria alimentaria. Produccion limpia. PlasticsEurope. (2019). Obtenido de https://www.plasticseurope.org/es/about-plastics/what-are-plastics/how-plastics-are-made
dc.relation.referencesRatnaningsih, R., Richana, N., Suzuki, S., & Fujii, Y. (2018). Effect of soaking treatment on anthocyanin, flavonoid, phenolic content and antioxidant activities of Dioscorea alata flour. Indonesian journal of chemistry, 18(4), 656. https://doi.org/10.22146/ijc.23945
dc.relation.referencesRodríguez Sauceda, R., Rojo Martínez, G. E., Martínez Ruiz, R., Piña Ruiz, H. H., Ramírez Valverde, B., Vaquera Huerta, H., & Cong Hermida, M. de la C. (2014). Envases inteligentes para la conservación de alimentos. Ra Ximhai, 151–174. https://doi.org/10.35197/rx.10.03.e2.2014.12.rr
dc.relation.referencesRuttarattanamongkol, K., Chittrakorn, S., Weerawatanakorn, M., & Dangpium, N. (2016). Effect of drying conditions on properties, pigments and antioxidant activity retentions of pretreated orange and purple-fleshed sweet potato flours. Journal of Food Science and Technology, 53(4), 1811–1822. https://doi.org/10.1007/s13197-015-2086-7
dc.relation.referencesReyes, M. C. (2017). La problemática de la cultura de del empaque: del diseño centrado en el consumo y centrado en la funcion ambental. Bogota.
dc.relation.referencesRichard Coles, D. M., & Kirwan, M. (2003). Food packaging technology. London.
dc.relation.referencesRodrigues, A. A. M., Costa, R. R. da, Santos, L. F. dos, Silva, S. de M., Britto, D. de, & Lima, M. A. C. de. (2021). Properties and characterization of biodegradable films obtained from different starch sources. Food Science and Technology, 41(suppl 2), 476–482. https://doi.org/10.1590/fst.28520
dc.relation.referencesRodrigues S, Fernandes FAN, de Brito ES, Sousa AD, Narain N. Ultrasound extraction of phenolics and anthocyanins from jabuticaba peel. Ind Crops Prod [Internet]. 2015; 69:400–7. Available from: http://dx.doi.org/10.1016/j.indcrop.2015.02.059
dc.relation.referencesRuan, S., Tang, J., Qin, Y., Wang, J., Yan, T., Zhou, J., Gao, D., Xu, E., & Liu, D. (2022). Mechanical force-induced dispersion of starch nanoparticles and nanoemulsion: Size control, dispersion behaviour, and emulsified stability. Carbohydrate Polymers, 275(118711), 118711. https://doi.org/10.1016/j.carbpol.2021.118711
dc.relation.referencesRubio-Anaya, M., & Guerrero-Beltrán, J. A. (2012). Polímeros utilizados para la elaboración de películas biodegradables. Temas Selectos de Ingeniería de Alimentos, 6.
dc.relation.referencesJ.G. Salcedo-Mendoza, M.C. Rodrıguez-Lora, J.A. Figueroa-Florez (2016). Efecto de la acetilacion en las propiedades estructurales yfuncionales de almidones de yuca (Manihot esculenta Crantz) y ñame (Dioscorea alata cv. Diamante 22. Revista Mexicana de Ingeniería Química.
dc.relation.referencesSantillán, M. L. (27 de 07 de 2018). Universidad Autonoma de Mexico. Obtenido de http://ciencia.unam.mx/leer/766/una-vida-de-plastico
dc.relation.referencesRodríguez Sauceda, R., Rojo Martínez, G. E., Martínez Ruiz, R., Piña Ruiz, H. H., Ramírez Valverde, B., Vaquera Huerta, H., & Cong Hermida, M. de la C. (2014). Envases inteligentes para la conservación de alimentos. Ra Ximhai, 151–174. https://doi.org/10.35197/rx.10.03.e2.2014.12.rr
dc.relation.referencesRojas, A. M., Flores, S., Famá, L., Goyanes, S., & Gerschenson, L. (2007). Physical properties of tapioca-starch edible films: Influence of filmmaking and potassium sorbate. Food Research International (Ottawa, Ont.), 40(2), 257–265. https://doi.org/10.1016/j.foodres.2006.02.004
dc.relation.referencesSun, Q., & Guanghua Li, L. D. (2014). Green preparation and characterisation of waxy maize starch Green preparation and characterisation of waxy maize starch. Food Chemistry, 5.
dc.relation.referencesTamaroh, S., & Sudrajat, A. (2021). Antioxidative characteristics and sensory acceptability of bread substituted with purple yam (Dioscorea alata L.). International Journal of Food Science, 2021, 5586316. https://doi.org/10.1155/2021/5586316
dc.relation.referencesTan, J., Han, Y., Han, B., Qi, X., Cai, X., Ge, S., & Xue, H. (2022). Extraction and purification of anthocyanins: A review. Journal of Agriculture and Food Research, 8(100306), 100306. https://doi.org/10.1016/j.jafr.2022.100306
dc.relation.referencesTiwari, B. K. (2015). Ultrasound: A clean, green extraction technology. Trends in Analytical Chemistry: TRAC, 71, 100–109. https://doi.org/10.1016/j.trac.2015.04.013
dc.relation.referencesVillén, M. (19 de marzo de 2019). CONASI. Obtenido de https://www.conasi.eu/blog/consejos-de-salud/consejos-de-salud-consejos-de-salud/plasticos-reciclables-biodegradables/
dc.relation.referencesWang, F., Qiu, L., & Tian, Y. (2021). Super anti-wetting colorimetric starch-based film modified with poly(dimethylsiloxane) and micro-/nano-starch for aquatic-product freshness monitoring. Biomacromolecules, 22(9), 3769–3779. https://doi.org/10.1021/acs.biomac.1c00588
dc.relation.referencesYan, X., Diao, M., Yu, Y., Gao, F., Wang, E., Wang, Z., & Zhang, T. (2021). Influence of esterification and ultrasound treatment on formation and properties of starch nanoparticles and their impact as a filler on chitosan based films characteristics. International Journal of Biological Macromolecules, 179, 154–160. https://doi.org/10.1016/j.ijbiomac.2021.03.004
dc.relation.referencesYokota, S., Tagawa, S., & Kondo, T. (2021). Facile surface modification of amphiphilic cellulose nanofibrils prepared by aqueous counter collision. Carbohydrate Polymers, 255(117342), 117342. https://doi.org/10.1016/j.carbpol.2020.117342
dc.relation.referencesYasser, M., Badai, M., Thahir, R., Sukasri, A., & Kurniawan. (2021). Antioxidant Extraction from Purple Sweet Potato (Ipomea batatas l.) using Ultrasound Assisted Extraction (UAE). Journal of physics. Conference series, 2049(1), 012027. https://doi.org/10.1088/1742-6596/2049/1/012027
dc.relation.referencesYoshida et al. (1991). Usually satable monoacylated anthocyanin from purple yam (Dioscorea alata).
dc.relation.referencesZhao, T., & Jiang, L. (2018). Contact angle measurement of natural materials. Colloids and Surfaces. B, Biointerfaces, 161, 324–330. https://doi.org/10.1016/j.colsurfb.2017.10.056
dc.relation.referencesZou, J., Xu, M., Wen, L., & Yang, B. (2020). Structure and physicochemical properties of native starch and resistant starch in Chinese yam (Dioscorea opposita Thunb.). Carbohydrate Polymers, 237(116188), 116188. https://doi.org/10.1016/j.carbpol.2020.11618
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembFood industry and trade
dc.subject.lembFood production
dc.subject.lembProducción alimenticia
dc.subject.lembIndustrias alimenticias
dc.subject.proposalAntocianinas
dc.subject.proposalBiobasado
dc.subject.proposalBiodegradable
dc.subject.proposalIndicador de pH
dc.subject.proposalContra Colisión Acuosa
dc.subject.proposalAnthocyanins
dc.subject.proposalbiobased
dc.subject.proposalbiodegradables films
dc.subject.proposalpH indicator
dc.subject.proposalAqueous Counter Collision
dc.title.translatedDevelopment of a flexible film based on Purple Yam Flour and Nanoparticles obtained by aqueous Counter Collision.
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentInvestigadores
dc.description.curricularareaÁrea Curricular en Ingeniería Agrícola y Alimentos
dc.contributor.orcidCadena Chamorro, Edith Marleny [0000-0002-7143-2009]
dc.contributor.orcidOsorio Tobón, Juán Felipe [0000-0002-6853-7184]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito