Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorSierra Ávila, César Augusto
dc.contributor.advisorMéndez Córdoba, Luis Carlos
dc.contributor.authorPérez Martínez, Vanesa
dc.date.accessioned2023-07-27T15:23:03Z
dc.date.available2023-07-27T15:23:03Z
dc.date.issued2022-06-09
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84304
dc.descriptionilustraciones, fotografías, gráficas, tablas
dc.description.abstractPara el área de la salud, en la distribución, almacenamiento y transporte de medicamentos, existen diversos envases poliméricos comercializados en Colombia. Para el caso específico del envase de soluciones salinas intravenosas, el material polimérico más utilizado es el poli cloruro de vinilo (PVC). Desafortunadamente, no hay información clara sobre la composición exacta de estos envases, ni los efectos sobre el material y la solución salina al exponer estos a calentamiento por microondas, proceso normalmente usado para acondicionar el líquido antes de suministrarlo a un paciente. Por tal motivo, envases de soluciones salinas comercializados en Colombia se caracterizaron por espectroscopia infrarroja (IR), termogravimetría (TGA), calorimetría diferencial de barrido (DSC), prueba de esfuerzo-deformación y cromatografía de gases acoplada a espectrómetro de masas (GC-MS). Caracterizaciones realizadas antes y después de someter el empaque junto a su solución salina a calentamiento con microondas. Los resultados indican que el material polimérico en el envase es PVC con un alto contenido de DEP como plastificante. Adicionalmente, y teniendo en cuenta que los resultados muestran que el plastificante está migrando desde el empaque hacia la solución y al ser estas soluciones empleadas en mujeres en estado de embarazo, se generó un protocolo adecuado de calentamiento para ser implementado en el instituto materno infantil de la ciudad de Bogotá. Por último, se planteó una alternativa de envase libre de plastificante con un material biodegradable, el cual es poli 3-hidroxibutirato-co-3-hidroxivalerato (PHBV). (Texto tomado de la fuente)
dc.description.abstractFor the health sector, in the distribution, storage and transport of medicines, there are various options of polymeric packaging available in Colombia. For the specific case of intravenous saline solution containers, the most commonly used polymeric material is polyvinyl chloride (PVC). Unfortunately, there is no clear information on the exact composition of these packaging materials, nor the effects on the material and saline when exposed to microwave heating, a process typically used to condition liquid before administration to a patient. . For this reason, the saline solution containers marketed in Colombia were characterized by infrared spectroscopy (IR), thermogravimetry (TGA), differential scanning calorimetry (DSC), stress-strain tests and gas chromatography-mass spectrometry (GC-MS). The characterizations were carried out before and after submitting the container and the saline solution to microwave heating. The results indicate that the polymeric material of the packaging is PVC with a high content of DEP as a plasticizer. Additionally, considering that the results show that the plasticizer is migrating from the container to the solution and since these solutions used in pregnant women, an adequate heating protocol developed to be implemented in the maternal and child institute of the city of Bogota. Finally, an alternative packaging option proposed that does not contain plasticizers and is made from a biodegradable material called poly 3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV).
dc.format.extent127 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rightsDerechos reservados al autor, 2023
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicada
dc.titleAnálisis de propiedades fisicoquímicas y mecánicas de envases de soluciones salinas intravenosas sometidos a procesos de calentamiento vía microondas
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos
dc.contributor.researchgroupGrupo de Investigación en Macromoléculas
dc.contributor.researchgroupGrupo de Investigación en Ciencia, Ingeniería y Salud - Gicis.
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesos
dc.description.researchareaMateriales poliméricos usados en la industria médica
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesMcGee, S. R. EVIDENCE–BASED PHYSICAL DIAGNOSIS , 3rd ed.; ELSEVIER: Philadelphia, 2012.
dc.relation.referencesFleisher, G. R.; Ludwig, S. Textbook of Pediatric Emergency Medicine, 6th ed.; Lippincott Williams & Wilkins, 2010
dc.relation.referencesBachur, R. G.; Shaw, K. N.; Chamberlain, J. Textbook of Pediatric Emergency Medicine, 6th ed.; Lippincott Williams & Wilkins, 2010
dc.relation.referencesNagami, G. T. Hyperchloremia – Why and How. Nefrología 2016, 36 (4), 347–353. https://doi.org/10.1016/j.nefro.2016.04.001
dc.relation.referencesThomas, D. L.; Lythgoe, M. F.; Pell, G. S.; Calamante, F.; Ordidge, R. J. The Measurement of Diffusion and Perfusion in Biological Systems Using Magnetic Resonance Imaging. Phys Med Biol 2000, 45 (8), R97–R138. https://doi.org/10.1088/0031-9155/45/8/201
dc.relation.referencesGamundi Planas, M. C.; Gaspar Carreño, M. Influencia Del Producto Sanitario Sobre El Medicamento y Su Efecto. El Farmacéutico Hospitales. 2011, pp 25–
dc.relation.referencesBorja Orantes, J. M.; Eva Hernández, S. J. RECOPILACIÓN BIBLIOGRAFICA DE MATERIALES DE ENVASE PRIMARIO, SECUNDARIO Y TERCIARIO, PARA LAS FORMAS FARMACÉUTICAS LIQUIDAS, SÓLIDAS Y SEMISÓLIDAS. , Universidad de el Salvador, San Salvador, 2006
dc.relation.referencesFarmaceutica, P. La evolución y caracteristicas de los contenedores de las soluciones inyectables de gran volumen
dc.relation.referencesTextos cientificos. Propiedades del polietileno. https://www.textoscientificos.com/polimeros/polietileno/propiedades (accessed 2022-09-07)
dc.relation.referencesVan Dooren, A. A. PVC as Pharmaceutical Packaging Material. Pharm Weekbl 1991, 13 (3), 109–118. https://doi.org/10.1007/BF01981526
dc.relation.referencesPVCMED ALLIANCE. Why PVC Should Remain the Preferred Material in Healthcare and Elsewhere. Brussels 2022, pp 1–24
dc.relation.referencesParisian, S. The Potential for Adverse Reactions Due to the Presence of Additives and Preservatives in Intravenous Solutions and Medications. Journal of Vascular Access Devices 1996, 1 (4), 5–14. https://doi.org/10.2309/108300896778225194
dc.relation.referencesMadrigal-Cadavid, J.; Amariles, P. Incompatibilidad de Medicamentos Intravenosos: Revisión Estructuradaurada. Ces Medicina 2017, 31 (1), 58–69. https://doi.org/10.21615/cesmedicina.31.1.6
dc.relation.referencesThomas, J. A.; Darby, T. D.; Wallin, R. F.; Garvin, P. J.; Martis, L. A Review of the Biological Effects of Di-(2-Ethylhexyl) Phthalate. Toxicol Appl Pharmacol 1978, 45 (1), 1–27. https://doi.org/10.1016/0041-008X(78)90024-8
dc.relation.referencesRodríguez Arreola, A. EXPOSICIÓN A FTALATOS EN MUJERES GESTANTES DE COMUNIDADES DE LA RIBERA DEL LAGO DE CHAPALA, Universidad de Guadalajara, Jalisco, 2015. https://riudg.udg.mx/visor/pdfjs/viewer.jsp?in=j&pdf=20.500.12104/84787/1/MCUCBA10171FT.pdf (accessed 2022-09-07)
dc.relation.referencesPlastivida. Esteres de Ftalatos su Relación con el PVC y sus Diferentes. https://studylib.es/doc/7849646/esteres-de-ftalatos-su-relaci%C3%B3n-con-el-pvc-y-sus-diferentes (accessed 2022-09-07)
dc.relation.referencesHahladakis, J. N.; Velis, C. A.; Weber, R.; Iacovidou, E.; Purnell, P. An Overview of Chemical Additives Present in Plastics: Migration, Release, Fate and Environmental Impact during Their Use, Disposal and Recycling. J Hazard Mater 2018, 344, 179–199. https://doi.org/10.1016/j.jhazmat.2017.10.014.
dc.relation.referencesKleydisSuárez, V.; Rodríguez, A. L. Modelización Termodinámica Del Calentamiento de Soluciones Intravenosas; 2017
dc.relation.referencesŠtrac, I. V.; Pušić, M.; Gajski, G.; Garaj-Vrhovac, V. Presence of Phthalate Esters in Intravenous Solution Evaluated Using Gas Chromatography-Mass Spectrometry Method. Journal of Applied Toxicology 2013, 33 (3), 214–219. https://doi.org/10.1002/jat.1741
dc.relation.referencesVenkatasubrahmanayam, K.; Ram Babu, B.; Poornaiah, B.; Srinivasa Rao, Y. The Effect of Microwave Radiation on Polyvinyl Chloride-Graphite Thick Film Resistors. Microelectronics International 2014, 31 (2), 99–103. https://doi.org/10.1108/MI-09-2013-0041
dc.relation.referencesSalwa Abdel Sadic Khalil. Effect of Ionizing Radiation on the Properties of Prepared Plastic/Starch Blends and Their Applications as Biodegradable Materials, University College for Women Ain Shams University, El cairo, 2010
dc.relation.referencesCIEMTO. Centro de información y estudio de medicamentos y tóxicos. Calentamiento de soluciones para administración intravenosa. Universidad de Antioquia. Facultad de medicina. https://ciemto.medicinaudea.co/system/comfy/cms/files/files/000/000/332/original/caso_clínico_4.pdf (accessed 2023-01-14)
dc.relation.referencesMrkić, S.; Galić, K.; Ivanković, M. Effect of Temperature and Mechanical Stress on Barrier Properties of Polymeric Films Used for Food Packaging. Journal of Plastic Film & Sheeting 2007, 23 (3), 239–256. https://doi.org/10.1177/8756087907086102
dc.relation.referencesGalotto, M. J.; Ulloa, P. A.; Hernández, D.; Fernández-Martín, F.; Gavara, R.; Guarda, A. Mechanical and Thermal Behaviour of Flexible Food Packaging Polymeric Films Materials under High Pressure/Temperature Treatments. Packaging Technology and Science 2008, 21 (5), 297–308. https://doi.org/10.1002/pts.807
dc.relation.referencesHaji Harunarashid, N. Z. I.; Lim, L. H.; Harunsani, M. H. Phthalate Sample Preparation Methods and Analysis in Food and Food Packaging: A Review. Food Anal Methods 2017, 10 (12), 3790–3814. https://doi.org/10.1007/s12161-017-0938-7
dc.relation.referencesExcellence. Intravenous Fluid Therapy in Adults in Hospital; National Institute for Health and Care, 2017
dc.relation.referencesEpstein EM, W. M. Crystalloid Fluids. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK537326/ (accessed 2022-11-15)
dc.relation.referencesRudloff, E.; Hopper, K. Crystalloid and Colloid Compositions and Their Impact. Front Vet Sci 2021, 8. https://doi.org/10.3389/fvets.2021.
dc.relation.referencesCenters for disease control and prevention. Intravenous Fluids. Module 3. Intravenous Fluids and The Dengue Patient — A Closer Look
dc.relation.referencesWesley, J. R. Intravenous Containers and Solution Packaging. Nutrition 2000, 16 (7–8), 597–598. https://doi.org/10.1016/S0899-9007(00)00330-0
dc.relation.referencesBenavides Cuellar, M. A. PROYECTO DE INVESTIGACION APLICADA: Aplicaciones de Los Polimeros En La Medicina . INFORMADOR TECNICO. Cali 2000, pp 31–36
dc.relation.referencesMcKeen, L. W. Plastics Used in Medical Devices. In Handbook of Polymer Applications in Medicine and Medical Devices; Elsevier, 2014; pp 21–53. https://doi.org/10.1016/B978-0-323-22805-3.00003-7
dc.relation.referencesCorpaul. Solución cloruro de sodio al 0,9%. Corpaul
dc.relation.referencesPlastics Europe; EPRO. Plásticos – Situación en 2020. Plastics Europe
dc.relation.referencesJohnsen, T. When plastics revolutionised healthcare – medical devices in a historical perspective. PVCMed Alliance
dc.relation.referencesGavrila, D. E. Studies of Degradation of Plasticized Polyvinyl Chloride. Int J Eng Res Appl 2016, 6 (1), 56–63
dc.relation.referencesHerbert, C. G.; de Andrade Lima, L. R.; Gonçalves, C. Alternative to Phthalate Plasticizer for PVC/NBR Formulation Used in Automotive Fuel System with Biodiesel; 2017. https://doi.org/10.4271/2017-01-0482
dc.relation.referencesErythropel, H. C.; Maric, M.; Nicell, J. A.; Leask, R. L.; Yargeau, V. Leaching of the Plasticizer Di(2-Ethylhexyl)Phthalate (DEHP) from Plastic Containers and the Question of Human Exposure. Appl Microbiol Biotechnol 2014, 98 (24), 9967–9981. https://doi.org/10.1007/s00253-014-6183-8
dc.relation.referencesAutian, J. Toxicity and Health Threats of Phthalate Esters: Review of the Literature. Environ Health Perspect 1973, 4, 3–26. https://doi.org/10.1289/ehp.73043
dc.relation.referencesHaned, Z.; Moulay, S.; Lacorte, S. Migration of Plasticizers from Poly(Vinyl Chloride) and Multilayer Infusion Bags Using Selective Extraction and GC–MS. J Pharm Biomed Anal 2018, 156, 80–87. https://doi.org/10.1016/j.jpba.2018.04.011
dc.relation.referencesCenter for Devices and Radiological Health U.S. Food and Drug Administration. Safety Assessment of Di(2-Ethylhexyl)Phthalate (DEHP) Released from PVC Medical Devices; Rockville, 2001
dc.relation.referencesMalarvannan, G.; Onghena, M.; Verstraete, S.; van Puffelen, E.; Jacobs, A.; Vanhorebeek, I.; Verbruggen, S. C. A. T.; Joosten, K. F. M.; van den Berghe, G.; Jorens, P. G.; Covaci, A. Phthalate and Alternative Plasticizers in Indwelling Medical Devices in Pediatric Intensive Care Units. J Hazard Mater 2019, 363, 64–72. https://doi.org/10.1016/j.jhazmat.2018.09.087
dc.relation.referencesMarkarian, J. PVC Additives – What Lies Ahead? Plastics, Additives and Compounding 2007, 9 (6), 22–25. https://doi.org/10.1016/S1464-391X(07)70153-8
dc.relation.referencesRodríguez Arreola, A. EXPOSICIÓN A FTALATOS EN MUJERES GESTANTES DE COMUNIDADES DE LA RIBERA DEL LAGO DE CHAPALA, UNIVERSIDAD DE GUADALAJARA, Zapopan, 2015
dc.relation.referencesPlastivida. Esteres de Ftalatos: Su Relación Con El PVC y Sus Diferentes Aplicaciones . Entidad Técnica Profesional Especializada en Plásticos y Medio Ambiente. Reconquista 2007, pp 8–12
dc.relation.referencesShea, K. M. Pediatric Exposure and Potential Toxicity of Phthalate Plasticizers. Pediatrics 2003, 111 (6), 1467–1474. https://doi.org/10.1542/peds.111.6.1467
dc.relation.referencesDen Braver-Sewradj, S. P.; Piersma, A.; Hessel, E. V. S. An Update on the Hazard of and Exposure to Diethyl Hexyl Phthalate (DEHP) Alternatives Used in Medical Devices. Crit Rev Toxicol 2020, 50 (8), 650–672. https://doi.org/10.1080/10408444.2020.1816896
dc.relation.referencesReport Linker. Non-PVC IV Bags Market Size, Share & Trends Analysis Report By Product, By Material, By Content And Segment Forecasts, 2022 - 2030. Grand View Research. San Francisco May 18, 2022
dc.relation.referencesTüzüm Demir, A. P.; Ulutan, S. Migration of Phthalate and Non-Phthalate Plasticizers out of Plasticized PVC Films into Air. J Appl Polym Sci 2012, n/a-n/a. https://doi.org/10.1002/app.38291
dc.relation.referencesAouachria, K.; Quintard, G.; Massardier-Nageotte, V.; Belhaneche-Bensemra, N. The Effect of Di-(-2-Ethyl Hexyl) Phthalate (Dehp) as Plasticizer on the Thermal and Mechanical Properties of Pvc/Pmma Blends. Polímeros 2014, 24 (4), 428–433. https://doi.org/10.1590/0104-1428.1588
dc.relation.referencesSatapathy, S.; Palanisamy, A. Mechanical and Barrier Properties of Polyvinyl Chloride Plasticized with Dioctyl Phthalate, Epoxidized Soybean Oil, and Epoxidized Cardanol. Journal of Vinyl and Additive Technology 2021, 27 (3), 599–611. https://doi.org/10.1002/vnl.21831
dc.relation.referencesRijavec, T. Plastics in Heritage Collections: Poly(Vinyl Chloride) Degradation and Characterization. Acta Chim Slov 2020, 67 (4), 993–1013. https://doi.org/10.17344/acsi.2020.6479
dc.relation.referencesChiellini, F.; Ferri, M.; Latini, G. Physical–Chemical Assessment of Di-(2-Ethylhexyl)-Phthalate Leakage from Poly(Vinyl Chloride) Endotracheal Tubes after Application in High Risk Newborns. Int J Pharm 2011, 409 (1–2), 57–61. https://doi.org/10.1016/j.ijpharm.2011.02.024
dc.relation.referencesKeller, P. E.; Kouzes, R. T. Water Vapor Permeation in Plastics; Richland, WA (United States), 2017. https://doi.org/10.2172/1411940
dc.relation.referencesHaned, Z.; Moulay, S.; Lacorte, S. Migration of Plasticizers from Poly(Vinyl Chloride) and Multilayer Infusion Bags Using Selective Extraction and GC–MS. J Pharm Biomed Anal 2018, 156, 80–87. https://doi.org/10.1016/j.jpba.2018.04.011
dc.relation.referencesCastillo, C.; Candia, C.; Marroquín, H. Manejo de La Temperatura En El Perioperatorio y Frecuencia de Hipotermia Inadvertida En Un Hospital General. Revista Colombiana de Anestesiología 2013, 41, 97–103.
dc.relation.referencesJohn, M.; Ford, J.; Harper, M. Peri-Operative Warming Devices: Performance and Clinical Application. Anaesthesia 2014, 69 (6), 623–638. https://doi.org/10.1111/anae.12626
dc.relation.referencesYokoyama, K.; Suzuki, M.; Shimada, Y.; Matsushima, T.; Bito, H.; Sakamoto, A. Effect of Administration of Pre-Warmed Intravenous Fluids on the Frequency of Hypothermia Following Spinal Anesthesia for Cesarean Delivery. J Clin Anesth 2009, 21 (4), 242–248. https://doi.org/10.1016/j.jclinane.2008.12.010
dc.relation.referencesLópez, Á.; Suárez, K. MODELIZACIÓN TERMODINÁMICA DEL CALENTAMIENTO DE SOLUCIONES INTRAVENOSAS. Vita Scientiis 2018, 1, 34–45
dc.relation.referencesChittawatanarat, K.; Akanitthaphichat, S. Microwave Oven: How to Use It as a Crystalloid Fluid Warmer. J Med Assoc Thai 2009, 92 (11), 1428–1433
dc.relation.referencesRischall, M. L.; Rowland-Fisher, A. Evidence-Based Management Of Accidental Hypothermia In The Emergency Department. Emerg Med Pract 2016, 18 (1), 1–18; quiz 18–19
dc.relation.referencesSieunarine, K.; White, G. H. Full-Thickness Burn and Venous Thrombosis Following Intravenous Infusion of Microwave-Heated Crystalloid Fluids. Burns 1996, 22 (7), 568–569. https://doi.org/10.1016/0305-4179(96)00020-4
dc.relation.referencesLeaman, P. L.; Martyak, G. G. Microwave Warming of Resuscitation Fluids. Ann Emerg Med 1985, 14 (9), 876–879. https://doi.org/10.1016/S0196-0644(85)80637-5
dc.relation.referencesAnshus, J. S.; Endahl, G. L.; Mottley, J. L. Microwave Heating of Intravenous Fluids. Am J Emerg Med 1985, 3 (4), 316–319. https://doi.org/10.1016/0735-6757(85)90054-3
dc.relation.referencesy, A. Reliability of Modern Microwave Ovens to Safely Heat Intravenous Fluids for Resuscitation. Emergency Medicine Australasia 2001, 13 (2), 181–185. https://doi.org/10.1046/j.1442-2026.2001.00207.x
dc.relation.referencesMartucci, J. Medication Delivery. 2004/0104271 A1, June 3, 2004
dc.relation.referencesPlastics Europe - Association of Plastics Manufactures. Plastics – the Facts 2020. PLASTICS EUROPE
dc.relation.referencesGotlib, E. M.; Grinberg, L. P.; Chakirov, R. R. Composition of Incineration Products of Plasticized PVC Materials. React Funct Polym 2001, 48 (1–3), 209–213. https://doi.org/10.1016/S1381-5148(01)00051-7
dc.relation.referencesBaxter. PVC EN MOVIMIENTO. Memoria de responsabilidad corporativa 2020. Cali June 9, 2021
dc.relation.referencesChiulan, I.; Mihaela Panaitescu, D.; Nicoleta Frone, A.; Teodorescu, M.; Andi Nicolae, C.; Căşărică, A.; Tofan, V.; Sălăgeanu, A. Biocompatible Polyhydroxyalkanoates/Bacterial Cellulose Composites: Preparation, Characterization, and in Vitro Evaluation. J Biomed Mater Res A 2016, 104 (10), 2576–2584. https://doi.org/10.1002/jbm.a.35800
dc.relation.referencesmexpolimeros. polihidroxibutirato-valerato. Biopolímeros
dc.relation.referencesEl-Hadi, A.; Schnabel, R.; Straube, E.; Müller, G.; Henning, S. Correlation between Degree of Crystallinity, Morphology, Glass Temperature, Mechanical Properties and Biodegradation of Poly (3-Hydroxyalkanoate) PHAs and Their Blends. Polym Test 2002, 21 (6), 665–674. https://doi.org/10.1016/S0142-9418(01)00142-8
dc.relation.referencesLindhoff, G. A.; MacG. Palmer, J. H. An Assessment of the Thermal Safety of Microwave Warming of Crystalloid Fluids. Anaesthesia 2000, 55 (3), 251–254. https://doi.org/10.1046/j.1365-2044.2000.01319.x
dc.relation.referencesBaxter Healthcare Corporation. Baxter Sodium Chloride Injection, USP in AVIVA Plastic Container. FDA. Deerfield September 2013, pp 1–6. https://doi.org/10.1016/0010-440x(88)90011-9
dc.relation.referencesSmith, B. The Infrared Spectra of Polymers II: Polyethylene. Spectroscopy. 2021, pp 24–29
dc.relation.referencesMERCK. TABLA DE ESPECTRO DE INFRARROJOS POR INTERVALO DE FRECUENCIA. Sigma Aldrich webpage
dc.relation.referencesKhalajmasoumi, M.; Koloor, S. S. R.; Arefnia, A.; Ibrahim, I. S.; Yatim, J. M. Hyperelastic Analysis of High Density Polyethylene under Monotonic Compressive Load. Applied Mechanics and Materials 2012, 229–231, 309–313. https://doi.org/10.4028/www.scientific.net/AMM.229-231.309
dc.relation.referencesPoitou, K.; Rogez-Florent, T.; Lecoeur, M.; Danel, C.; Regnault, R.; Vérité, P.; Monteil, C.; Foulon, C. Analysis of Phthalates and Alternative Plasticizers in Gloves by Gas Chromatography–Mass Spectrometry and Liquid Chromatography–UV Detection: A Comparative Study. Toxics 2021, 9 (9), 200. https://doi.org/10.3390/toxics9090200
dc.relation.referencesYuan, X.; Liu, T.; Gao, L.; Xing, L.; Zhu, Y.; Li, S. A Convenient Separation Method for Di(2-Ethylhexyl)Phthalate by Novel Superparamagnetic Molecularly Imprinted Polymers. RSC Adv 2018, 8 (63). https://doi.org/10.1039/c8ra07316c
dc.relation.referencesHitachi High-Technologies Corporation. Analysis of Bis (2-Ethylhexyl) Phthalate (DEHP) in Drinking Water. Chromaster. Chiyoda 2022.
dc.relation.referencesCentro Nacional de Información Biotecnológica. Ftalato de dietilo. PubChem
dc.relation.referencesCentro Nacional de Información Biotecnológica. Ftalato de dibutilo. PubChem
dc.relation.referencesGreenFacts. Ftalatos Dibutilftalato. GreenFacts
dc.relation.referencesRastegari, F.; Amin, M. M.; Ebrahim, K. Risk of Phthalate Exposure among Hospitalized Patient via Intravenous Fluids Receiving. Iranian Jornal of Toxicology 2017, 11 (3), 33–38. https://doi.org/10.29252/arakmu.11.3.33
dc.relation.referencesRibeiro, F. A. dos S. V.; Cavalcante, M. de P.; Tavares, M. I. B.; Melo, A. R. A. Effect of Modified Microcrystalline Cellulose on Poly(3-Hydroxybutyrate) Molecular Dynamics by Proton Relaxometry. Polymers and Polymer Composites 2021, 29 (5), 553–560. https://doi.org/10.1177/0967391120926078
dc.relation.referencesASTDR. ToxFAQsTM sobre el cloroformo. ASTDR. Agencia para sustancias tóxicas y el registro de enfermedades
dc.relation.referencesMofokeng, J. P.; Luyt, A. S. Dynamic Mechanical Properties of PLA/PHBV, PLA/PCL, PHBV/PCL Blends and Their Nanocomposites with TiO2 as Nanofiller. Thermochim Acta 2015, 613, 41–53. https://doi.org/10.1016/j.tca.2015.05.019
dc.relation.referencesBledzki, A. K.; Jaszkiewicz, A. Mechanical Performance of Biocomposites Based on PLA and PHBV Reinforced with Natural Fibres – A Comparative Study to PP. Compos Sci Technol 2010, 70 (12), 1687–1696. https://doi.org/10.1016/j.compscitech.2010.06.005
dc.relation.referencesJost, V. Blending of Polyhydroxybutyrate-Co-Valerate with Polylactic Acid for Packaging Applications – Reflections on Miscibility and Effects on the Mechanical and Barrier Properties. Chem Biochem Eng Q 2015, 29 (2), 221–246. https://doi.org/10.15255/CABEQ.2014.2257
dc.relation.referencesOlejnik, O.; Masek, A.; Zawadziłło, J. Processability and Mechanical Properties of Thermoplastic Polylactide/Polyhydroxybutyrate (PLA/PHB) Bioblends. Materials 2021, 14 (4), 898. https://doi.org/10.3390/ma14040898
dc.relation.referencesZhao, H.; Cui, Z.; Wang, X.; Turng, L.-S.; Peng, X. Processing and Characterization of Solid and Microcellular Poly(Lactic Acid)/Polyhydroxybutyrate-Valerate (PLA/PHBV) Blends and PLA/PHBV/Clay Nanocomposites. Compos B Eng 2013, 51, 79–91. https://doi.org/10.1016/j.compositesb.2013.02.034.
dc.relation.referencesBoufarguine, M.; Guinault, A.; Miquelard-Garnier, G.; Sollogoub, C. PLA/PHBV Films with Improved Mechanical and Gas Barrier Properties. Macromol Mater Eng 2013, 298 (10), 1065–1073. https://doi.org/10.1002/mame.201200285
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsSolución Salina
dc.subject.decsSaline Solution
dc.subject.decsAdministración Intravenosa
dc.subject.decsAdministration, Intravenous
dc.subject.proposalEnvase
dc.subject.proposalSolución intravenosa
dc.subject.proposalPVC
dc.subject.proposalDEP
dc.subject.proposalMicroondas
dc.subject.proposalMujeres en embarazo
dc.subject.proposalPHBV
dc.subject.proposalContainer
dc.subject.proposalIntravenous saline solution
dc.subject.proposalPVC
dc.subject.proposalDEP
dc.subject.proposalMicrowave
dc.subject.proposalPregnant women
dc.subject.proposalPHBV
dc.title.translatedAnalysis of physicochemical and mechanical properties of intravenous saline solution containers subjected to microwave heating processes
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentInvestigadores


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito