Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorDueñas Gómez, Zulma Janeth
dc.contributor.authorCeballos Ordoñez, Leidy Johanna
dc.date.accessioned2023-07-28T01:27:03Z
dc.date.available2023-07-28T01:27:03Z
dc.date.issued2023-06-29
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84343
dc.descriptionilustraciones, fotografías, gráficas
dc.description.abstractIntroducción: En roedores como en humanos la separación materna durante la lactancia (SMDL) incide en el neurodesarrollo al ser un factor estresor, afectando el metabolismo, comportamiento y aprendizaje. Por otro lado, la exposición a un ambiente enriquecido (AE) activa el sistema nervioso central proporcionando estímulos físicos, sociales y sensoriales que conllevarían a una reducción del estrés y adaptación de respuestas neurobiológicas. Objetivo: Analizar el efecto de 15 días de ambiente enriquecido, posterior a la separación materna durante la lactancia, sobre la cantidad y morfología de la microglía y la concentración de corticosterona, en ratas Wistar machos y hembras durante la adolescencia temprana. Metodología: Se utilizaron 78 crías de ratas Wistar divididas en dos grupos, con y sin SMDL. El día 22 fueron separadas por sexo y tratamiento, y ubicadas en un AE o estándar por 15 días. Los animales se anestesiaron y perfundieron el día 37, se tomó muestra sérica para medir corticosterona y se extrajo el tejido cerebral. Resultados: el AE posterior a la SMDL no revirtió la disminución de los niveles de corticosterona de la SMDL y AE por sí solos, pero si disminuyó el número de microglías por debajo de los números de la SMDL sola, incidiendo en la adaptación de una morfología ramificada. Conclusión: La SMDL puede afectar el sistema neuroendocrino y neuroinflamatorio, mediados por la expresión de corticosterona y glucocorticoides. Aunque la exposición del AE posterior a la SMDL disminuyó el número de microglías y proporcionó una morfología ramificada, este paradigma funcionaría como un modelo de estrés que adapta el sistema garantizando un adecuado funcionamiento a estresores futuros. (Texto tomado de la fuente).
dc.description.abstractIntroduction: In rodents as in humans, maternal separation during breastfeeding (MSDB) as a stressor factor affects neurodevelopment, including alteration in metabolism, behavior and learning. On the other hand, exposure to an enriched environment (EA) activates the central nervous system by providing physical, social and sensory stimuli that would lead to a reduction in stress and adaptation of neurobiological responses. Objective: To analyze the effect of 15 days of enriched environment, after maternal separation during breastfeeding, on the quantity and morphology of microglia and the concentration of corticosterone, in male and female Wistar rats during early adolescence. Methodology: 78 offspring of Wistar rats were divided into two groups, with and without SMDL, were used. On day 22 they were separated by sex and treatment and placed in an EA or standard for 15 days. The animals were anesthetized and perfused on day 37, a serum sample was taken to measure corticosterone, and brain tissue was removed. Results: the EA after the MSDB did not the decrease in corticosterone levels of the baseline MSDB and EA, but it did decrease the number of microglia below the numbers of the MSDB, affecting the adaptation of a branched morphology. Conclusion: MSDB may affects the neuroendocrine and neuroinflammatory system, mediated by the expression of corticosterone and glucocorticoids. Although exposure of the EA after MSDB decreased the number of microglia and provided a branched morphology, this paradigm would work as a stress model that adapts the system, guaranteeing proper functioning to future stressors.
dc.format.extent106 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc570 - Biología::571 - Fisiología y temas relacionados
dc.titleEfecto del ambiente enriquecido, posterior a la separación materna, sobre la morfología microglial y concentración de corticosterona, en ratas Wistar adolescentes
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Medicina - Maestría en Neurociencias
dc.contributor.researchgroupNeurobiología y Comportamiento
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Neurociencias
dc.description.researchareaEfectos neurales y comportamentales del estrés
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Medicina
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.indexedBireme
dc.relation.references1. Swain J., Lorberbaum J., Kose S. & Strathearn, L. Brain basis of early parent-infant interactions: psychology, physiology, and in vivo functional neuroimaging studies. Child Psychol. Psychiatry. 2007; 48(3-4): 262-87.
dc.relation.references2. Vivineto A., Suárez M., Rivarola M. Neurobiological effects of neonatal maternal separation and post-weaning environmental enrichment. Behavioural Brain Research. 2013(240): 110-8.
dc.relation.references3. Koe A., Ashokan A., Mitra R. Short environmental enrichment in adulthood reverses anxiety and basolateral amygdala hypertrophy induced by maternal separation. Translational Psychiatry. 2016(6), e729; doi:10.1038/tp.2015.217
dc.relation.references4. Ministerio de salud y protección social. Encuesta nacional de salud mental. 2015. Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/presentacion-encuesta-nacional-salud-mental-2015.pdf
dc.relation.references5. Patiño J., Corredor L., & Dueñas Z. Impacto de la separación materna duranta la lactancia sobre el tamaño del cerebro y la inmunorreacción al receptor Gaba-A. Revista Investig.Salud Univ. Boyacá. 2013,1(1): 31-44.
dc.relation.references6. Noble KG., Houston SM., Brito NH., Bartsch H., Kan E., Kuperman JM., et al. Family income, parental education and brain structure in children and adolescents. Nature Neuroscience. 2015; 18(5): 773–78.doi:10.1038/nn.3983
dc.relation.references7. Departamento Administrativo Nacional de Estadística – DANE. Disponible en: https://www.dane.gov.co/
dc.relation.references8. Ministerio de salud y protección social. Boletín de salud mental en niños, niñas y adolescentes, 2017.Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/ENT/boletin-4-salud-mental-nna-2017.pdf
dc.relation.references9. Ball N., Mercado E., & Orduña I. Enriched Environments as a Potential Treatment for Developmental Disorders: A Critical Assessment. Frontiers in Psychology. 2019; 10:466. doi: 10.3389/fpsyg.2019.00466
dc.relation.references10. Calcia M., Bonsall D., Bloomfield P., Selvaraj S., Barichello T., & Howes O. Stress and neuroinflammation: a systematic review of the effects of stress on microglia and the implications for mental illness. Psychofarmacology.2016(233):1637-50.
dc.relation.references12. Novick A, Levandowski M, Laumann L., Philip N., Price L, & Tyrka, A. The effects of early life stress on reward processing. Journal of Psychiatric Research. 2018. 101, 80–103.doi:10.1016/j.jpsychires.2018.0
dc.relation.references13. Barrera I., Dueñas Z. La separación materna durante la lactancia altera los niveles basales del sistema neuroendocrino en ratas adolescentes y adultas. Biomédica, 2016; 36, 67-77.
dc.relation.references14. Liu C, Hao S, Zhu M, Wang Y, Zhang T, Yang Z. Maternal separation induces different autophagic responses in the hippocampus and prefrontal cortex of adult rats. Neuroscience. 2018 374:287–94. doi: 10.1016/j.neuroscience.2018.01.043
dc.relation.references15. Liu S., & Zhao M. Neuroprotective effect of estrogen: Role of nonsynaptic NR2B-containing NMDA receptors. Brain Research Bulletin. 2013; 93: 27–31.doi:10.1016/j.brainresbull.2012.10.004
dc.relation.references16. Liu Y., Wong T., Aarts M., Rooyakkers A., Liu L., Lai T., et al. NMDA Receptor Subunits Have Differential Roles in Mediating Excitotoxic Neuronal Death Both In Vitro and In Vivo. Journal of Neuroscience. 2007; 27(11): 2846–57. doi:10.1523/jneurosci.0116-07.2007
dc.relation.references17. Aparicio I., Muñoz P., Salido G., Peña F., & Tapia J. The autophagy-related protein LC3 is processed in stallion spermatozoa during short-and long-term storage and the related stressful conditions. Animal. 2016; 10(07): 1182–91. doi:10.1017/s1751731116000240
dc.relation.references18. Chen W., Sun Y., Liu K., & Sun X. Autophagy: a double-edged sword for neuronal survival after cerebral ischemia. Neural Regeneration research. 2014; 9(12): 1210-16. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4146291/
dc.relation.references19. Dueñas Z; Caicedo-Mera JC & Torner L. Global Effects of Early Life Stress on Neurons and Glial Cells. Current Pharmaceutical Design, 2017, 23, 1-8. DOI: 10.2174/1381612823666170224111641
dc.relation.references20. Johnson F., & Kaffman A. Early life stress perturbs the function of microglia in the developing rodent brain: New insights and future challenges. Brain, Behavior, and Immunity. 2018; 69: 18–27. doi:10.1016/j.bbi.2017.06.008
dc.relation.references21. Hanamsagar R. & Bilbo S. Environment matters: microglia function and dysfunction in a changing world. Current Opinion in Neurobiology. 2017; 47: 146–55.doi:10.1016/j.conb.2017.10.007
dc.relation.references22. Delpech J., Wei L., Hao J., Yu X., Madore C., Butovsky O., & Kaffman A. Early life stress perturbs the maturation of microglia in the developing hippocampus. Brain Behav Inmmun. 2016 (57): 79-93.
dc.relation.references23. Neal S., Kent M., Bardi M., Lambert K. Enriched Environment Exposure Enhances Social Interactions and Oxytocin Responsiveness in Male Long-Evans Rats. Frontiers in Behavioral Neuroscience. 2018 (12):1-10.
dc.relation.references24. Novaes L., Barreto dos Santos N., Batalhote R., Malta M., Camarini R., Scavone, C. et al. Environmental enrichment protects against stress-induced anxiety: Role of glucocorticoid receptor, ERK, and CREB signaling in the basolateral amygdala. 2017 (113): 457-66.
dc.relation.references25. Cao, W., Hu, Z., Xu, Y., Zhang, W., Huang, F., Qiao, X., Cui, Y., Wan, W., Wang, X., Liu, D., Dai, R., Li, D., Li, C. Role of early environmental enrichment on the social dominance tube test at adulthood in the rat. Psychopharmacology. 2017 (22), 234: 3321-34.
dc.relation.references26. Dandi E., Kalamari A., Touloumi O., Lagoudaki R., Nousiopoulou E., Simeonidou, et al. Beneficial effects of environmental enrichment on behavior, stress reactivity and synaptophysin/BDNF expression in hippocampus following early life stress. International Journal of Developmental. Neuroscience.2018(67):19-32.
dc.relation.references27. Hofer M. Psychobiological Roots of Early Attachment. 2006. Current Directions in Psychological Science. 15(2), 84–88. doi:10.1111/j.0963-7214.2006.00412.x
dc.relation.references28. Herzberg M., & Gunnar, M. Early life stress and brain function: Activity and connectivity associated with processing emotion and reward. 2019. NeuroImage, 116493.doi:10.1016/j.neuroimage.2019.1
dc.relation.references29. Swain J, Lorberbaum J, Kose S, Strathearn, L. Brain basis of early parent-infant interactions: psychology, physiology, and in vivo functional neuroimaging studies. 2007. J. Child Psychol. Psychiatry ;48(3-4):262-87
dc.relation.references30. Strathearn L, Li J, Fonagy P, Montague PR. What’s in a smile? Maternal brain responses to infant facial cues. 2008. Pediatrics;122(1):40-51.
dc.relation.references31. Bowlby J. Grief and mourning in infancy and early childhood. 1960. Psychoanal Study Child; 15:9-52
dc.relation.references32. Feldman R. Oxytocin and social affiliation in humans. 2012. Hormones and Behavior; 61:380-91.
dc.relation.references33. Winnicott D. Nuevas observaciones sobre la teoría de la relación parento-filial. 1961. Obras Completas.
dc.relation.references34. Kristal M. The Biopsychology of Maternal Behavior in Nonhuman Mammals. 2009. ILAR Journal. 50(1): 51–63. doi:10.1093/ilar.50.1.51
dc.relation.references35. Suomi S, van der Horst F, Van der Veer R. Rigorous experiments on monkey love: an account of Harry F. Harlow’s role in the history of attachment theory. 2008. Integr Psychol Behav Sci.;42:354–369. https://doi.org/10.1007/s12124-008-9072-9.
dc.relation.references36. Harlow H. Love in Infant Monkeys. 1959. . Scientific American. 200(6), 68–74.doi:10.1038/scientificamerican0659-68
dc.relation.references37. Levine S. Infantile Experience and Resistance to Physiological Stress. 1957. Science,. 126 (3270), 405–405.doi:10.1126/science.126.3270.
dc.relation.references38. Spitz R. Hospitalism; an inquiry into the genesis of psychiatric conditions in early childhood. 1945. Psychoanal Study Child; 1:53-74.
dc.relation.references40. Harlow H, Dodsworth R, Harlow M. Total social isolation in monkeys. 1965. Proc Natl Acad Sci USA 1965; 54:90-7
dc.relation.references41. Mitchell, G, Raymond E, Ruppenthal G, Harlow H. Long-term effects of total social isolation upon behavior of rhesus monkeys. Psychological Reports 1966;18;567-80.
dc.relation.references42. Rodríguez D., & Dueñaz Z. efectos de la separación materna temprana sobre el desempeño en el laberinto en cruz elevado en ratas adultas. Acta biol. Colomb. 2012 (17); 1:129.42.
dc.relation.references43. Hebb D. The mammal and his environment. Annual American Psychiatry Association. 1955; 111: 826-31.
dc.relation.references44. Hunt J. Psychological development: Early Experience. Annual reviews psychological. 1979; 30: 103-43.
dc.relation.references45. Diamond, M. Response of the Brain to Enrichmen. Anais da Academia Brasileira de Ciencias, 2001 (2); 73.
dc.relation.references46. Lopes D., Souza T., Andrade J., Silva M, Antunes H., LeSueur-Maluf L. et al. Environmental enrichment decreases avoidance responses in the elevated Tmaze and delta FosB immunoreactivity in anxiety-related brain regions. Behavioural Brain Research. 2018; 344: 65-72.
dc.relation.references47. Yeshurun S., Corto A., Bredy T., Pang T., & Hannan A. Paternal environmental enrichment transgenerationally altersaffective behavioral and neuroendocrine phenotypes. Psychoneuroendocrinology. 2017; 77: 225-35.
dc.relation.references48. Rosenzweig M., Bennett E. Psychobiology of plasticity: effects of training and experience on brain and behavior. Behav. Brain Res. 1966; 78: 57-65.
dc.relation.references49. Rosenzweig M., Bennett E., Hebert M., Morimoto H. Social grouping cannot account for cerebral effects of enriched environments. Brain Res. 1978;153: 563-76.
dc.relation.references50. Cutuli D., Berretta E., Caporali P., Sampedro-Piquero P., De Bartolo P., Laricchiuta, et al. Effects of pre-reproductive maternal enrichment on maternal care, offspring's play behavior and oxytocinergic neurons. Neuropharmacology, 2018: 1-15. https://doi.org/10.1016/j.neuropharm.2018.02.015
dc.relation.references51. Petrosini, et al. On whether the environmental enrichment may provide cognitive and brain reserves. Brain Research Reviws, 2009;61(2): 221-39
dc.relation.references52. Simpson J. & Kelly J. The impact of environmental enrichment in laboratory rats Behavioural and neurochemical aspects. Behavioural Brain Research, 2011;222 (1), 246-64.
dc.relation.references53. Rosenzweig M, Krech D, Bennett E, Diamond M. Effects of environmental complexity and training on brain chemistry and anatomy: A replication and extension. J Comp Physiol Psychol 1962; 55:429-37.
dc.relation.references54. Walsh EG Sense of Visual Direction in Normal Subjects and Neurological Patients. Developmental Medicine & Child Neurology. 1969;11(3): 333-45. doi:10.1111/j.1469-8749.1969.tb01440.
dc.relation.references55. Greenough W., Volkmar F. & Juraska J. Effects of rearing complexity on dendritic branching in frontolateral and temporal cortex of the rat. Experimental Neurology. 1973; 41(2): 371- 78. doi:10.1016/0014-4886(73)90278-1
dc.relation.references56. Floeter M. & Greenough W. Cerebellar plasticity: modification of Purkinje cell structure by differential rearing in monkeys. Science. 1979; 206(4415): 227-29. doi:10.1126/science.113873
dc.relation.references57. Volkmar F. & Greenough W. Rearing Complexity Affects Branching of Dendrites in the Visual Cortex of the Rat. Science, 1972; 176(4042): 1445 -47.doi:10.1126/science.176.4042.1445
dc.relation.references58. Pascual R. & Figueroa H. Effects of Preweaning Sensorimotor Stimulation on Behavioral and Neuronal Development in Motor and Visual Cortex of the Rat. Neonatology. 1996; 69(6): 399–404.doi:10.1159/000244337
dc.relation.references59. Rampon C., Jiang C., Dong H., Tang Y., Lockhart D., Schultz P. et al. Effects of environmental enrichment on gene expression in the brain. Proceedings of the National Academy of Sciences. 2000; 97(23): 12880–84.doi:10.1073/pnas.97.23.12880
dc.relation.references60. Comery T., Shah R. & Greenough W. Differential Rearing Alters Spine Density on Medium-Sized Spiny Neurons in the Rat Corpus Striatum: Evidence for Association of Morphological Plasticity with Early Response Gene Expression. Neurobiology of Learning and Memory. 1995; 63(3): 217–19.doi:10.1006/nlme.1995.1025
dc.relation.references61. Ferchmin P., Eterovic V. & Caputto R. Studies of brain weight and RNA content after short periods of exposure to environmental complexity. Brain Research. 1970; 20(1): 49–57.doi:10.1016/0006-8993(70)90153-8
dc.relation.references62. Rampon C, Tang Y, Goodhouse J, Shimizu E, Kyin M, Tsien J. Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice.Nat Neurosciences. 2000; 3(3): 238-44.
dc.relation.references63. Meaney M. Epigenetics and the Biological Definition of Gene × Environment Interactions. Child Development. 2010; 81(1): 41–79.doi:10.1111/j.1467-8624.2009.01381.
dc.relation.references64. Yeshurun S., Short A., Bredy T., Pang T. & Hannan, A. J.Paternal environmental enrichment transgenerationally alters affective behavioral and neuroendocrine phenotypes. Psychoneuroendocrinology. 2017; 77: 225–35.doi:10.1016/j.psyneuen.2016.11.013
dc.relation.references65. Kimura L., Mattaraia V. de M. & Picolo G. Distinct environmental enrichment protocols reduce anxiety but differentially modulate pain sensitivity in rats. Behavioural Brain Research. 2017. doi:10.1016/j.bbr.2017.11.012
dc.relation.references66. Lehmann M. & Herkenham M. Environmental Enrichment Confers Stress Resiliency to Social Defeat through an Infralimbic Cortex-Dependent Neuroanatomical Pathway. Journal of Neuroscience. 2011; 31(16): 6159–73.doi:10.1523/jneurosci.0577-11.2011
dc.relation.references67. Smith B., Lyons C., Correa F., Benoit S., Myers B., Solomon M., et al. Behavioral and physiological consequences of enrichment loss in rats. Psychoneuroendocrinology. 2017; 77: 37–46. doi:10.1016/j.psyneuen.2016.11.040
dc.relation.references68. Ginhoux F., Greter M., Leboeuf M., Nandi S., See P., Gokhan, S, et al. Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages. Science. 2010; 330(6005): 841–45. doi:10.1126/science.119463
dc.relation.references69. Matcovitch-Natan O., Winter DR., Giladi A., Vargas Aguilar S., Spinrad A., Sarrazin S., et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science. 2016; 353(6301), aad8670–aad8670.doi:10.1126/science.aad8670
dc.relation.references70. Nimmerjahn A. Resting Microglial Cells Are Highly Dynamic Surveillants of Brain Parenchyma in Vivo. Science. 2005; 308(5726): 1314–18. doi:10.1126/science.1110647
dc.relation.references71. Prinz, M., Jung, S., & Priller, J. (2019). Microglia Biology: One Century of Evolving Concepts. Cell, 179(2), 292–311.doi:10.1016/j.cell.2019.08.053
dc.relation.references72. Grutzendler J., Yang G., Kim J., Zuo Y., Jung S. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nature Neuroscience. 2005; 8(6): 752–58.doi:10.1038/nn1472
dc.relation.references73. Loane D., Kumar A., Stoica BA., Cabatbat R. & Faden A. Progressive Neurodegeneration After Experimental Brain Trauma. Journal of Neuropathology & Experimental Neurology. 2014; 73(1): 14–29.doi:10.1097/nen.0000000000000021
dc.relation.references74. Paolicelli R., Bolasco G., Pagani F., Maggi L., Scianni M., Panzanelli P., et al. Synaptic Pruning by Microglia Is Necessary for Normal Brain Development. Science. 2011; 333(6048): 1456–58.doi:10.1126/science.1202529
dc.relation.references75. Parkhurst C., Yang G., Ninan I., Savas J., Yates J., Lafaille J., et al. Microglia Promote Learning-Dependent Synapse Formation through Brain-Derived Neurotrophic Factor. Cell.2013; 155(7): 1596–609.doi:10.1016/j.cell.2013.11.030
dc.relation.references76. Lawson L., Perry V., Dri, P., & Gordon S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience. 1990; 39(1): 151–70. doi:10.1016/0306-4522(90)90229-w
dc.relation.references77. Brown, G., & Neher, J. Microglial phagocytosis of live neurons. Nature Reviews Neuroscience. 2014 15(4), 209–216.doi:10.1038/nrn3710
dc.relation.references79. Beumer W., Gibney S., Drexhage RC., Pont-Lezica L., Doorduin J., Klein H., et al. The immune theory of psychiatric diseases: a key role for activated microglia and circulating monocytes. Journal of Leukocyte Biology. 2012; 92(5): 959 75. doi:10.1189/jlb.0212100
dc.relation.references80. Nelson L., & Lenz K. Microglia depletion in early life programs persistent changes in social, mood-related, and locomotor behavior in male and female rats. Behavioural Brain Research. 2017; 316: 279-93.doi:10.1016/j.bbr.2016.09.006
dc.relation.references81. Baudin A., Blot K., Verney C., Estevez L., Santamaria J., Gressens P., et al. Maternal deprivation induces deficits intemporal memory and cognitive flexibility and exaggerates synaptic plasticity in the rat medial prefrontal cortex. Neurobiology of Learning and Memory. 2012; 98(3): 207-14.doi:10.1016/j.nlm.2012.08.004
dc.relation.references82. Francis D., Dioro J., Plotsky P., Meaney M. Environmental enrichment reverses the effects of maternal separation on stress reactivity. Journal of Neuroscience, 2002; 22(18): 7840-43.
dc.relation.references83. Do Prado C., Narahari T., Lee H., Murthy S., & Brenhouse H. Effects of Early Adolescent Environmental Enrichment on Cognitive Dysfunction, Prefrontal Cortex Development, and Inflammatory Cytokines After Early Life Stress. Developmental Psychobiologia. 2015; (4): 482-91.
dc.relation.references84. Eklund M., & Arborelius L. Twice daily long maternal separations in Wistar rats decreases anxiety-like behaviour in females but does not affect males. Behavioural Brain Research. 2016; 172(2): 278–85.doi:10.1016/j.bbr.2006.05.015
dc.relation.references85. Moreno L., Lamprea M. & Dueñaz Z. Diferencias en los comportamientos asociados con la ansiedad de ratas macho y hembra expuestas a un protocolo de estrés crónico por separación maternal temprana. Suma Psicológica. 2009; (16): 31-43.
dc.relation.references86. Cerón J., & Troncoso J. Alteraciones de las células de la microglía del sistema nervioso central provocadas por lesiones del nervio facial. Biomédica. 2016; 36: 619-
dc.relation.references87. Paxinos G., & Watson C. The Rat Brain in stereotaxic coordinates. Cuarta edición, Academic Press, 1998.
dc.relation.references88. George, E. D. (2010). Maternal Separation With Early Weaning: A Novel Mouse Model Of Early Life Neglect. BMC Neurosciences, 11:123.
dc.relation.references89. Hofer MA¿. The role of nutrition in the physiological and behav-ioral effects of early maternal separation on infant rats. Psychosom Med. 1973 Jul-Aug;35(4):350-9
dc.relation.references90. León Rodríguez D, Dueñas Z. Maternal Separation during Breastfeeding Induces Gender-Dependent Changes in Anxiety and the GABA-A Receptor Alpha-Subunit in Adult Wistar Rats. 2013 PLoS ONE 8(6): e68010
dc.relation.references91. Milligan M. & Yates. Experimental Techniques and Anaesthesia in the Rat and Mouse. (1994) Anzccart Facts Sheet, pp 1-4.
dc.relation.references92. Noonan D. The Guinea Pig. (1994). Anzccart Facts Sheet, pp 1-8.
dc.relation.references93. Bates R., Militello L., Barker E., Gonzalez H., and Schmeer K. Early childhood stress responses to psychosocial stressors: The state of the science. Dev Psychobiol. 2022 Nov; 64(7). doi: 10.1002/dev.22320
dc.relation.references94. Condon E. Chronic Stress in Children and Adolescents: A Review of Biomarkers for Use in Pediatric Research. Biological Research For Nursing,. 2018. 109980041877921. doi:10.1177/1099800418779214
dc.relation.references95. Pollak, S. (2015). Multilevel developmental approaches to understanding the effects of child maltreatment: Recent advances and future challenges. Development and Psychopathology, 27(4pt2), 1387–1397.doi:10.1017/s0954579415000826,
dc.relation.references96. Rizvi, S., Pizzagalli, D., Sproule, B., & Kennedy, S. (2016). Assessing anhedonia in depression: Potentials and pitfalls. Neuroscience & Biobehavioral Reviews, 65, 21–35.doi:10.1016/j.neubiorev.2016.0
dc.relation.references97. Baik, J. Stress and the dopaminergic reward system. Experimental & Molecular Medicine. 2020. 52(12), 1879–1890. doi:10.1038/s12276-020-00532-4
dc.relation.references98. Bromberg-Martin, E., Matsumoto, M., & Hikosaka, O. (2010). Dopamine in Motivational Control: Rewarding, Aversive, and Alerting. Neuron, 68(5), 815–834.doi:10.1016/j.neuron.2010.11.0)
dc.relation.references99. Basar, K., Sesia, T., Groenewegen, H., Steinbusch, H., Visser-Vandewalle, V., & Temel, Y. Nucleus accumbens and impulsivity. Progress in Neurobiology. 2010. 92(4), 533–557.doi:10.1016/j.pneurobio.2010)
dc.relation.references100. Kelley A. Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neuroscience & Biobehavioral Reviews. 2004. 27(8), 765–776.doi:10.1016/j.neubiorev.2003.1
dc.relation.references101. Kupchik Y, Brown R., Heinsbroek J., Lobo M, Schwartz D & Kalivas P. Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections. Nature Neuroscience. 2015.18(9), 1230–1232. doi:10.1038/nn.4068
dc.relation.references102. Monk C, McClure E, Nelson E, Zarahn E, Bilder RM, Leibenluft E, et al. Inmadurezadolescente en el compromiso cerebral relacionado con la atención con las expresiones faciales emocionales. Neuroimage. 2003. 20:420–428
dc.relation.references103. LeDoux J. Redes emocionales y control motor: una visión temerosa. Prog Brain Res. 1996. 107:437-446.
dc.relation.references104. Fobbs W & Mizumori S. Cost–Benefit Decision Circuitry. Molecular Basis of Memory. 2014. 233–261.doi:10.1016/b978-0-12-420170-5.00009-x
dc.relation.references105. Paquola C., Bennett M, & Lagopoulos, J. Understanding heterogeneity in grey matter research of adults with childhood maltreatment—A meta-analysis and review. Neuroscience & Biobehavioral Reviews. 2016. 69, 299–312.doi:10.1016/j.neubiorev.2016.0
dc.relation.references106. Rolls E. The cingulate cortex and limbic systems for emotion, action, and memory. Brain Structure and Function 2019. doi:10.1007/s00429-019-01945-2
dc.relation.references106. Rolls E. The cingulate cortex and limbic systems for emotion, action, and memory. Brain Structure and Function 2019. doi:10.1007/s00429-019-01945-2
dc.relation.references108. Evans G, Swain J., King A., Wang X. Javanbakht A., Ho S. et al. Childhood Cumulative Risk Exposure and Adult Amygdala Volume and Function. Journal of Neuroscience Research. 2015. 94(6), 535–543.doi:10.1002/jnr.23681.
dc.relation.references109. McEwen B., Bowles N., Gray J., Hill M. Hunter R. Karatsoreos I & Nasca C. . Mechanisms of stress in the brain. Nature Neuroscience. 2015. 18(10), 1353–1363.doi:10.1038/nn.4086
dc.relation.references110. Gee D, Gabard-Durnam L, Flannery J, Goff G, Humphreys K, Telzer E, Hare T, Bookheimer S, Tottenham N. A aparición temprana en el desarrollo de la conectividad amígdala humana-prefrontal después de la privación materna. Proc Nat Acad Sci. 2013;110:15638–15643.
dc.relation.references111. Dutcher J., & Creswell J. The role of brain reward pathways in stress resilience and health. Neuroscience & Biobehavioral Reviews. 2018. 95, 559–567.doi:10.1016/j.neubiorev.2018.1;
dc.relation.references112. Hanson J., Nacewicz B, Sutterer M., Cayo A., Schaefer, S., Rudolph K., et al. Behavioral Problems After Early Life Stress: Contributions of the Hippocampus and Amygdala. Biological Psychiatry. 2015. 77(4), 314–323.doi:10.1016/j.biopsych.2014.
dc.relation.references113. Stratoulias V., Venero J, Tremblay M., Joseph B. Subtipos microgliales: Diversidad dentro de la comunidad microglial. EMBO J.2019;38:e101997. doi: 10.15252/embj.2019101997
dc.relation.references114. McCormick C., & Hodges T. Stress, Glucocorticoids, and Brain Development in Rodent Models. Stress: Neuroendocrinology and Neurobiology. 2017. 197–206.doi:10.1016/b978-0-12-802175-0.00019-x
dc.relation.references115. Chocyk A., Dudys D., Przyborowska A., Majcher I., Maćkowiak M., & Wędzony K. Maternal separation affects the number, proliferation and apoptosis of glia cells in the substantia nigra and ventral tegmental area of juvenile rats. Neuroscience. 2011. 173, 1–18.doi:10.1016/j.neuroscience.20
dc.relation.references116. Saavedra L., Fenton Navarro B., Torner L. Early Life Stress Activates Glial Cells in the Hippocampus but Attenuates Cytokine Secretion in Response to an Immune Challenge in Rat Pups. Neuroimmunomodulation. 2017;24:242–255. doi: 10.1159/000485383.
dc.relation.references117. Roque A., Ochoa-Zarzosa A., & Torner L. Maternal separation activates microglial cells and induces an inflammatory response in the hippocampus of male rat pups, independently of hypothalamic and peripheral cytokine levels. Brain, Behavior, and Immunity. 2017. 55, 39–48. doi:10.1016/j.bbi.2015.09.017
dc.relation.references118. Bellavance M, Rivest S. The HPA - immune axis and the immunomodulatory actions of glucocorticoids in the brain. Front. Immunol. 2014;5:136.
dc.relation.references119. Chao W., A., & Bilbo, S. Environmental enrichment alters glial antigen expression and neuroimmune function in the adult rat hippocampus. Brain, Behavior, and Immunity. 2012. 26(3), 500–510.doi:10.1016/j.bbi.2012.01.003
dc.relation.references120. Van Steenbergen H., de Bruijn E., van Duijvenvoorde A , & van Harmelen A L. How positive affect buffers stress responses. 2021. Current Opinion in Behavioral Sciences, 39, 153–160.doi:10.1016/j.cobeha.2021.03.0
dc.relation.references121. Douma E, & de Kloet E. Stress-Induced Plasticity and Functioning of Ventral Tegmental Dopamine Neurons. 2019. Neuroscience & Biobehavioral Reviews.doi:10.1016/j.neubiorev.2019.1
dc.relation.references122. Cabib S., Puglisi-Allegra S. The mesoaccumbens dopamine in coping with stress. Neurosci. Biobehav. Rev. 2012;36:79–89. doi: 10.1016/j.neubiorev.2011.04.012
dc.relation.references123. Ironside M., Kumar P., Kang M.-S., & Pizzagalli D. A. Brain mechanisms mediating effects of stress on reward sensitivity. 2018. Current Opinion in Behavioral Sciences, 22, 106–113.doi:10.1016/j.cobeha.2018.01.0
dc.relation.references124. Nephew C., Huang W., Poirier L., Payne L., & King A. Altered neural connectivity in adult female rats exposed to early life social stress. 2017. Behavioural Brain Research, 316, 225–233.doi:10.1016/j.bbr.2016.08.051
dc.relation.references125. Javanbakht A., Kim P., Swain J., Evans G., Phan K., & Liberzon, I.. Sex-Specific Effects of Childhood Poverty on Neurocircuitry of Processing of Emotional Cues: A Neuroimaging Study. 2016. Behavioral Sciences, 6(4), 28.doi:10.3390/bs6040028
dc.relation.references126. Benaroya-Milshtein N., Hollander N., Apter A., Kukulansky T., Raz, N., Wilf A. Pick, C. G. Environmental enrichment in mice decreases anxiety, attenuates stress responses and enhances natural killer cell activity. 2004. European Journal of Neuroscience, 20(5), 1341–1347.doi:10.1111/j.1460-9568.2004.03587.x
dc.relation.references127. Boletín de prensa No 473 de 2021. 2021, Tomado de https:// www.minsalud.gov.co/Paginas/ Mas-de-18-mil-atenciones-en- salud-mental-en-opcion-4-de- Linea-192.aspx
dc.relation.references128. Eslava J, Mejía de Eslava L, Ramos-Rodríguez M, Uscategui A, Eslava Mejía J, Natalia MF, et al. Emergencia Sanitaria y su Impacto Sobre Nuestros Niños [Internet]. Vol. Especiales. Bogotá D.C.; 2020. Available from: https://www.neurociencias.org. co/especiales/2020/emergencia- sanitaria-y-su-impacto-sobre- nuestros-ninos/
dc.relation.references129. Paxinos G. & Watson C. The Rat Brain in Stereotaxic Coordinates. Hard Cover Edition, 2006, 6th Edition.
dc.relation.references130. Montoya, R., Bos, A., Terburg, D., Rosenberger, A., & van Honk, J. Cortisol administration induces global down-regulation of the brain’s reward circuitry. 2014 Psychoneuroendocrinology, 47, 31–42.doi:10.1016/j.psyneuen.2014.
dc.relation.references131. Levine S. Primary social relationships influence the development of the hypothalamic–pituitary–adrenal axis in the rat. 2001. Physiology & Behavior. Volume 73, Issue 3, June 2001, Pages 255-260
dc.relation.references132. Levine S. Regulation of the hypothalamic-pituitary-adrenal axis in the neonatal rat: The role of maternal behavior. 2002. Neurotoxicity Research, 4(5-6), 557–564.doi:10.1080/10298420290030569
dc.relation.references133. Paolicelli R, et al. Microglia states and nomenclature: A field at its crossroads. 2022. Neuron. Nov 2; 110(21): 3458–3483. doi: 10.1016/j.neuron.2022.10.020
dc.relation.references134. Kierdorf K., et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. 2013. Nature Neuroscience, 16(3), 273–280. doi:10.1038/nn.3318
dc.relation.references135. Grabert K, et al. A Transgenic Line That Reports CSF1R Protein Expression Provides a Definitive Marker for the Mouse Mononuclear Phagocyte System. 2020. J. Immunol 205, 3154–3166. 10.4049/jimmunol.2000835.
dc.relation.references136. Oyola M., & Handa R. Hypothalamic–pituitary–adrenal and hypothalamic–pituitary–gonadal axes: sex differences in regulation of stress responsivity. 2017. Stress, 20(5), 476–494.doi:10.1080/10253890.2017.136
dc.relation.references137. Gildawie K, Orso R., Peterzell S., Thompson V., & Brenhouse H. Sex differences in prefrontal cortex microglia morphology: Impact of a two-hit model of adversity throughout development. 2020. Neuroscience Letters, 135381.doi:10.1016/j.neulet.2020.135381
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsSistemas Neurosecretores
dc.subject.decsNeurosecretory Systems
dc.subject.decsGlucocorticoides
dc.subject.decsGlucocorticoids
dc.subject.decsCorticosterona
dc.subject.decsCorticosterone
dc.subject.proposalSeparación materna
dc.subject.proposalAmbiente enriquecido
dc.subject.proposalCorticosterona
dc.subject.proposalRatas Wistar
dc.subject.proposalSistema de recompensa
dc.subject.proposalMaternal separation
dc.subject.proposalEnriched environment
dc.subject.proposalCorticosterone
dc.subject.proposalWistar rats
dc.subject.proposalReward system
dc.title.translatedEffect of the enriched environment, after maternal separation, on microglial morphology and corticosterone concentration, in adolescent Wistar rats
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentInvestigadores


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito