Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorOspina Giraldo, Luis Fernando
dc.contributor.authorUmaña Bautista, Stefany Rocio
dc.date.accessioned2023-07-31T20:41:56Z
dc.date.available2023-07-31T20:41:56Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84382
dc.descriptionilustraciones, diagramas, fotografías
dc.description.abstractLa medicina tradicional se ha enfocado en estudiar los beneficios terapéuticos de plantas de la familia solanácea. En el caso de la planta Physalis peruviana L. se han descrito sus propiedades antiinflamatorias, antioxidantes e inmunomoduladoras. Sin embargo, en la actualidad no se ha reportado su uso en modelos murinos de inflamación crónica en artritis. Objetivo: Evaluar el posible efecto antiartrítico de la fracción butanólica de los cálices de Physalis peruviana L. en ratas Wistar hembras con artritis inducida por adyuvante completo de Freund (ACF) y colágeno. Método: La fracción butanólica de los cálices de Physalis peruviana L. se obtuvo a partir de la percolación con etanol de material seco, al cual se le hizo fraccionamiento con diferentes solventes hasta obtener la fracción butanólica. Se utilizó un modelo de inducción de artritis por adyuvante de Freund (ACF) y colágeno en ratas Wistar, evidenciando un pico de máxima inflamación el día 21. Los individuos fueron tratados desde el día 21 hasta el día 36 con dexametasona como medicamento patrón (1 mg/Kg/día) y la fracción butanólica (100, 50, 25 mg/Kg). La artritis fue evaluada a través de medición volumétrica de miembros posteriores (articulación del maléolo, zona plantar e interfalángica), evaluación radiográfica y análisis histopatológico. El efecto de la fracción butanólica sobre la inflamación se evaluó midiendo los niveles de interleucina 1 beta (IL-1β) y factor de necrosis tumoral alfa (TNFα); mientras que TBARs, la capacidad antioxidante (FRAP) y superóxido dismutasa (SOD) fueron medidos para evaluar el efecto de la fracción butanólica sobre el estrés oxidativo. Resultados: La fracción butanólica de cálices de Physalis peruviana L. no presentó diferencias significativas en la disminución de inflamación en comparación con el grupo patrón. Ninguno de los parámetros bioquímicos presentó diferencias significativas entre los grupos de investigación. La artritis inducida por ACF y colágeno no presentó involución de acuerdo con el análisis histopatológico y radiográfico. Conclusión: La fracción butanólica de cálices de Physalis peruviana L. (100, 50, 25 mg/Kg/día/VO) no presentó actividad inmunomoduladora ni antioxidante. Palabras clave: Physalis peruviana L., artritis, antioxidante, inmunomodulador, antiartrítico, erosión ósea y pannus. (Texto tomado de la fuente)
dc.description.abstractTraditional medicine has focused on studying the therapeutic benefits of plants from the Solanaceae family. In the case of the Physalis peruviana L plant, its anti-inflammatory, antioxidant and immunomodulation properties have been described. However, its use in models of chronic inflammation in induced arthritis in murine models has not been reported to date. Objective: To evaluate the possible antiarthritic effect of the butanolic fraction of the calyces of Physalis peruviana L. in female Wistar rats with arthritis induced by complete Freund's adjuvant (CFA) and collagen. Method: The butanolic fraction of the calyces of Physalis peruviana L. was obtained from the percolation with ethanol of dry material, which was fractionated with different solvents until obtaining the butanolic fraction. A Freund's adjuvant (FCA) and collagen induction model of arthritis was used in Wistar rats, evidencing a peak of maximum inflammation on day 21. Individuals were treated with dexamethasone as standard drug (1 mg/Kg/day) and the butanolic fraction. (100, 50, 25 mg/Kg) from day 21 to day 36. Arthritis was evaluated through volumetric measurement of hind limbs (malleolar joint, plantar and interphalangeal area), radiographic evaluation, and histopathological analysis. The effect of the butanolic fraction on inflammation was evaluated by measuring the levels of interleukin (IL-1β) and tumor necrosis factor (TNFα) while TBARs, antioxidant capacity (FRAP) and superoxide dismutase (SOD) were measured to assess the effect of the butanolic fraction on oxidative stress. Results: The butanolic fraction of calyces of Physalis peruviana L. does not present significant differences in the reduction of inflammation compared to the standard group. None of the biochemical parameters presented significant differences between the research groups. The arthritis induced by CFA and collagen does not present involution according to the histopathological and radiographic analysis. Conclusion: The butanolic fraction of calyces of Physalis peruviana L. (100, 50, 25 mg/Kg/day/VO) did not present immunomodulatory and antioxidant activity. Keywords: Physalis peruviana L., arthritis, antioxidant, immunomodulator, antiarthritic, bone erosion, pannus.
dc.format.extent130 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéutica
dc.subject.ddc610 - Medicina y salud::616 - Enfermedades
dc.titleEvaluación preclínica de la fracción butanólica de cálices de Physalis peruviana L. en modelo murino de artritis reumatoide
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Farmacología
dc.contributor.researchgroupPrincipios Bioactivos en Plantas Medicinales
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Farmacología
dc.description.methodsLa fracción butanólica de los cálices de Physalis peruviana L. se obtuvo a partir de la percolación con etanol de material seco, al cual se le hizo fraccionamiento con diferentes solventes hasta obtener la fracción butanólica. Se utilizó un modelo de inducción de artritis por adyuvante de Freund (ACF) y colágeno en ratas Wistar, evidenciando un pico de máxima inflamación el día 21. Los individuos fueron tratados desde el día 21 hasta el día 36 con dexametasona como medicamento patrón (1 mg/Kg/día) y la fracción butanólica (100, 50, 25 mg/Kg). La artritis fue evaluada a través de medición volumétrica de miembros posteriores (articulación del maléolo, zona plantar e interfalángica), evaluación radiográfica y análisis histopatológico. El efecto de la fracción butanólica sobre la inflamación se evaluó midiendo los niveles de interleucina 1 beta (IL-1β) y factor de necrosis tumoral alfa (TNFα); mientras que TBARs, la capacidad antioxidante (FRAP) y superóxido dismutasa (SOD) fueron medidos para evaluar el efecto de la fracción butanólica sobre el estrés oxidativo.
dc.description.researchareaPlantas con actividad antiinflamatoria
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá,Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAfonso, V., Champy, R., Mitrovic, D., Collin, P., & Lomri, A. (2007). Reactive oxygen species and superoxide dismutases: Role in joint diseases. Joint Bone Spine, 74(4), 324–329. Retrieved from https://doi.org/10.1016/J.JBSPIN.2007.02.002.
dc.relation.referencesAlañón, M., Áreas, V., Cuadra, J., Paulino, M., Ariza, A., Rodríguez, M. (2018). Utilización de fármacos biológicos en artritis reumatoide: monoterapia y terapia combinada. Rev. OFIL ILAPHAR, 28(2), 129–136.
dc.relation.referencesAli, E. A. I., Barakat, B. M., & Hassan, R. (2015). Antioxidant and angiostatic effect of spirulina platensis suspension in complete Freund’s adjuvant-induced arthritis in rats. PloS One, 10(4). Retrieved from https://doi.org/10.1371/JOURNAL.PONE.0121523.
dc.relation.referencesBen, I. O., Woode, E., Koffuor, G. A., Boakye-Gyasi, E., & Titiloye, N. (2017). Effect of Trichilia monadelpha (Meliaceae) extracts on bone histomorphology in complete Freund’s adjuvant-induced arthritis. Journal of Intercultural Ethnopharmacology, 6(2), 177. Retrieved from https://doi.org/10.5455/JICE.20170218092913.
dc.relation.referencesBurrage, P., Mix, K., & Brinckerhoff, C. (2006). Matrix metalloproteinases role in arthritis. Frontiers in Bioscience, 11, 529–543. Retrieved from https://doi.org/10.1046/j.1537-2995.2003.00402.x.
dc.relation.referencesCampos, L., Hideo G., Fernandes R., Rizato M., Ishii L., & Salgueiro L. (2020). Superoxide dismutase: a review and a modified protocol for activities measurements in rat livers. Archives of Physiology and Biochemistry, 126(4), 292–299. Retrieved from https://doi.org/10.1080/13813455.2018.1520891.
dc.relation.referencesCantagrel, A., Degboé, Y., Constantin, A., & Davignon, J. L. (2017). Le TNF-α, l’interleukine-6 et l’interleukine-1: trois cytokines centrales de la polyarthrite rhumatoïde. Revue Du Rhumatisme Monographies, 84(4), 325–330. Retrieved from https://doi.org/10.1016/j.monrhu.2017.08.005.
dc.relation.referencesCarreño, M. (2015). Terapia médica actual en reumatología. Rev. Med Clin Condes, 23(4), 413–422. Retrieved from https://doi.org/10.1016/s0716-8640(12)70332-2.
dc.relation.referencesCastro, J. (2013). Evaluación in vivo e in vitro del efecto del extracto total etéreo de los cálices de Physalis peruviana L., en un modelo de colitis en rata (Tesis de Maestría). Universidad de Cartagena.
dc.relation.referencesChirino, Y., Orozco, M., & Pedraza, J. (2006). Evidencias de la participación del peroxinitrito en diversas enfermedades. Rev. Invest Clin, 58(4), 350–358.
dc.relation.referencesCho, Y., Cho, M., Min, S., & Kim, H. (2007). Type II collagen autoimmunity in a mouse model of human rheumatoid arthritis. Autoimmunity Reviews, 7(1), 65–70. Retrieved from https://doi.org/10.1016/j.autrev.2007.08.001.
dc.relation.referencesChoudhary, N., Bhatt, L., & Prabhavalkar, K. (2018). Experimental animal models for rheumatoid arthritis. Inmunopharmacology and Immunotoxicology, 40(3), 193-200 Retrieved from https://doi.org/10.1080/08923973.2018.1434793.
dc.relation.referencesCutolo, M., Paolino, S., & Gotelli, E. (2021). Glucocorticoids in rheumatoid arthritis still on first line: the reasons. Expert Review of Clinical Immunology, 17:5, 417-420 Retrieved from Https://Doi.Org/10.1080/1744666X.2021.1903319.
dc.relation.referencesBallester J. (2016). Hidrólisis de proteínas sarcoplásmicas y generación de péptidos bioactivos durante la elaboración de jamón curado de proteínas sarcoplásmicas (Tesis de Maestría) Universitat Politècnica de València.
dc.relation.referencesDomínguez, G., Cardona, M., Sepúlveda, M., Echeverry, M., Oliveira, M., & Aragón, M. (2021). Matrix effects of the hydroethanolic extract of calyces of Physalis peruviana L. On rutin pharmacokinetics in Wistar rats using population modeling. Pharmaceutics, 13(4). Retrieved from https://doi.org/10.3390/PHARMACEUTICS13040535/S1.
dc.relation.referencesDurán, E., González, E., Herranz, A., & Pernía, S. (2002). Farmacia Hospitalaria. Editorial SEFH. Retrieved from http://www.sld.cu/galerias/pdf/sitios/reumatologia/tomo2_cap20.pdf.
dc.relation.referencesEdilova, M., Akram, A., & Abdul, A. (2021). Innate immunity drives pathogenesis of rheumatoid arthritis. Biomedical Journal, 44(2), 172. Retrieved from https://doi.org/10.1016/J.BJ.2020.06.010.
dc.relation.referencesEspinoza, R., & García, I. (2013). Microbios y articulaciones: la relación entre infección y articulaciones. Reumatología Clínica, 9(4), 229–238. Retrieved from https://doi.org/10.1016/J.REUMA.2012.06.008.
dc.relation.referencesFeldmann, M., Brennan, M., Foxwell, J., & Maini, N. (2001). The role of TNF and IL-1 in rheumatoid arthritis. Curr Dir Autoimmun, 3, 188–199. Retrieved from http://files/594/Feldmann et al. - The Role of TNF and IL-1 in Rheumatoid Arthritis.pdf.
dc.relation.referencesFerreira, B., Melo, T., Paiva, A., & Dominguez, R. (2021). Insights in the role of lipids, oxidative stress and inflammation in rheumatoid arthritis unveiled by new trends in lipidomic investigations. Antioxidants, 10(1), 1–21. Retrieved from https://doi.org/10.3390/ANTIOX10010045.
dc.relation.referencesFondo Colombiano de Enfermedades de Alto Costo (2016). Situación de la artritis reumatoide en Colombia 2016. Retrieved from https://cuentadealtocosto.org/site/images/Publicaciones/boletines/2017/SITUACIÓN_DE_LA_ARTRITIS_REUMATOIDE_EN_COLOMBIA_2016.pdf.pdf.
dc.relation.referencesFranco, A., Matiz, E., Calle, J., Pinzón, R., & Ospina, L. (2007). Actividad antiinflamatoria de extractos y fracciones obtenidas de cálices de Physalis peruviana L . Biomédica [online], 27, 110–115. Retrieved from https://doi.org/10.1016/S1028-4559(08)60099-6.
dc.relation.referencesGan, R., Shah, N., Wang, F., Lui, W., & Corke, H. (2017). Lactobacillus plantarum WCFS1 fermentation differentially affects antioxidant capacity and polyphenol content in mung bean (Vigna radiata) and soya bean (Glycine max) milks. Journal of Food Processing and Preservation, 41(1). Retrieved from https://doi.org/10.1111/JFPP.12944.
dc.relation.referencesGiannini, D., Antonucci, M., Petrelli, F., Bilia, S., Alunno, A., & Puxeddu, I. (2020). One year in review 2020: Pathogenesis of rheumatoid arthritis. Clinical and Experimental Rheumatology, 38(3), 387–397. Retrieved from https://www.clinexprheumatol.org/abstract.asp?a=15504.
dc.relation.referencesGonçalves, G., Soares, A., Correa, R., Barros, L., Haminiuk, C., Peralta, R., Ferreira, R., & Bracht, A. (2017). Merlot grape pomace hydroalcoholic extract improves the oxidative and inflammatory states of rats with adjuvant-induced arthritis. Journal of Functional Foods, 33, 408–418. Retrieved from https://doi.org/10.1016/J.JFF.2017.04.009.
dc.relation.referencesGrant, C. (1997). Methotrexate pulmonary toxicity. Rheumatic Disease Clinics of North America, 23(4), 917–937. Retrieved from https://doi.org/10.1016/S0889-857X(05)70366-5.
dc.relation.referencesGrassi, W., de Angelis, R., Lamanna, G., & Cervini, C. (1998). The clinical features of rheumatoid arthritis. European Journal of Radiology, 27(SUPPL. 1). Retrieved from https://doi.org/10.1016/S0720-048X(98)00038-2.
dc.relation.referencesGul, A., Kunwar, B., Mazhar, M., Faizi, S., Ahmed, D., Shah, M., & Simjee, S. (2018). Rutin and rutin-conjugated gold nanoparticles ameliorate collagen-induced arthritis in rats through inhibition of NF-κB and iNOS activation. International Immunopharmacology, 59, 310–317. Retrieved from https://doi.org/10.1016/J.INTIMP.2018.04.017.
dc.relation.referencesGupta, A., & Singh, S. (2014). Evaluation of anti-inflammatory effect of Withania somnifera root on collagen-induced arthritis in rats. Pharmaceutical Biology, 52:3, 308-320. Retrieved from Https://Doi.Org/10.3109/13880209.2013.835325.
dc.relation.referencesHazes, J., Coulie, P., Geenen, V., Vermeire, S., Carbonnel, F., Louis, E., Masson, P., & De Keyser, F. (2011). Rheumatoid arthritis and pregnancy: evolution of disease activity and pathophysiological considerations for drug use. Rheumatology, 50(11), 1955–1968. Retrieved from https://doi.org/10.1093/rheumatology/ker302.
dc.relation.referencesHe, P., Hu, Y., Huang, C., Wang, X., Zhang, H., Zhang, X., Dai, H., Wang, R., & Gao, Y. (2020). N-butanol extract of Gastrodia elata suppresses inflammatory responses in lipopolysaccharide-stimulated macrophages and complete freund’s adjuvant- (CFA-) induced arthritis rats via inhibition of MAPK signaling pathway. Evidence-Based Complementary and Alternative Medicine: vol. 2020, article ID 1658618, 11 pages. Retrieved from https://doi.org/10.1155/2020/1658618.
dc.relation.referencesHernández, C., & Martinez, C. (2009). Uso de fármacos modificadores de la enfermedad en artritis reumatoide. Revista Terapeutica de Sistema Nacional de Salud, 33(4), 99–109.
dc.relation.referencesHitchon, C., & El-Gabalawy, H. (2004). Oxidation in rheumatoid arthritis. Arthritis Research & Therapy, 6(6), 265. Retrieved from https://doi.org/10.1186/AR1447.
dc.relation.referencesHussain, A., Aslam, B., Muhammad, F., Faisal, M., Kousar, S., Mushtaq, A., & Bari, M. (2021). Anti-arthritic activity of Ricinus communis L. and Withania somnifera L. extracts in adjuvant-induced arthritic rats via modulating inflammatory mediators and subsiding oxidative stress. Iranian Journal of Basic Medical Sciences, 24(7), 951. Retrieved from https://doi.org/10.22038/IJBMS.2021.55145.12355.
dc.relation.referencesInzunza, F., Araya, I. & Letelier, M. (2016). Activación oxidativa de udp-glucuroniltransferasa: efecto de agentes reductores sintéticos y extractos herbales (Tesis de pregrado). Universidad de Chile.
dc.relation.referencesKamal, P., Pal, R., Nath, R., Sachan, A., Kamal, P., Pal, R., Nath, R., & Sachan, A. (2022). Protective effects of the ethanolic fenugreek seeds extract and its potentiation with nitric oxide modulators in adjuvant induced changes in arthritic index, proinflammatory/anti-inflammatory cytokines imbalance and oxidative stress markers in rats. Indian Journal of Physiology and Pharmacology, 66(1), 45–54. Retrieved from https://doi.org/10.25259/IJPP_11_2022.
dc.relation.referencesKaur, B., Kumar, N., Patel, M., Chopra, K., & Saxena, S. (2023). Validation of traditional claims of anti-arthritic efficacy of trans-Himalayan snow mountain garlic (Allium ampeloprasum L.) extract using adjuvant-induced arthritis rat model: A comparative evaluation with normal garlic (Allium sativum L.) and dexamethasone. Journal of Ethnopharmacology, 303, 115939. Retrieved from https://doi.org/10.1016/J.JEP.2022.115939.
dc.relation.referencesKhan, M., Subramaneyaan, M., Arora, V., Banerjee, B., & Ahmed, R. (2015). Effect of Withania somnifera (Ashwagandha) root extract on amelioration of oxidative stress and autoantibodies production in collagen-induced arthritic rats. Journal of Complementary & Integrative Medicine, 12(2), 117–125. Retrieved from https://doi.org/10.1515/JCIM-2014-0075.
dc.relation.referencesKlinkhoff, A., & Teufel, A. (1995). How low can you go? Use of very low dosage of gold in patients with mucocutaneous reactions. Journal of Rheumatology, 22(9), 1657–1659. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8523340.
dc.relation.referencesKour, G., Haq, S., Bajaj, B., Gupta, P., & Ahmed, Z. (2021). Phytochemical add-on therapy to DMARDs therapy in rheumatoid arthritis: In vitro and in vivo bases, clinical evidence and future trends. Pharmacological Research, 169, 105618. Retrieved from https://doi.org/10.1016/J.PHRS.2021.105618.
dc.relation.referencesKumar, N., Naz, S., Quinn, M., Ryan, J., Kumke, T., & Sheeran, T. (2018). Treatment of rheumatoid arthritis with certolizumab pegol: Results from proactive, a non-Interventional study in the UK and Ireland. Advances in Therapy, 35(9), 1426–1437. Retrieved from https://doi.org/10.1007/s12325-018-0758-1.
dc.relation.referencesKunsch C., Sikorski, J., & Sundell C. (2005). Oxidative stress and the use of antioxidants for the treatment of rheumatoid arthritis. Curr. Med. Chem. – Immun., Endoc. & Metab. Agents, 5(3), 249–258. Retrieved from https://doi.org/10.2174/1568013054022490.
dc.relation.referencesLee, Y. C., Agnew, J., Malspeis, S., Keyes, K., Costenbader, K., Kubzansky, L., Roberts, A., Koenen, K., & Karlson, E. (2016). Post-Traumatic Stress Disorder and Risk for Incident Rheumatoid Arthritis. Arthritis Care & Research, 68(3), 292–298. Retrieved from https://doi.org/10.1002/acr.22683.
dc.relation.referencesLin, Y., Anzaghe, M., & Schülke, S. (2020). Update on the pathomechanism, diagnosis, and treatment options for rheumatoid arthritis. Cells 2020, Vol. 9, Page 880, 9(4), 880. Retrieved from https://doi.org/10.3390/CELLS9040880.
dc.relation.referencesLiu, C., Chu, D., Kalantar, K., George, J., Young, H., & Liu, G. (2021). Cytokines: from clinical significance to quantification. Advanced Science, 8(15), 2004433. Retrieved from https://doi.org/10.1002/ADVS.202004433.
dc.relation.referencesMedina, S., Collado, J., Ferreres, F., Londoño, J., Jiménez, C., Guy, A., Durand, T., Galano, J., & Gil, Á. (2018). Potential of Physalis peruviana L. calyces as a low-cost valuable resource of phytoprostanes and phenolic compounds. Journal of the Science of Food and Agriculture. Retrieved from https://doi.org/10.1002/jsfa.9413.
dc.relation.referencesMorel, J. (2014a). Inmunopatología de la artritis reumatoide. EMC - Aparato Locomotor, 47(4), 1–10. Retrieved from https://doi.org/10.1016/S1286-935X(14)69312-6.
dc.relation.referencesNarvaez, J. (2016). Tratamiento de la artritis reumatoide. Med Clin, 28, 1–5. Retrieved from https://doi.org/10.1016/j.med.2017.02.011.
dc.relation.referencesNilles, J., Weiss, J., & Theile, D. (2022). Crystal violet staining is a reliable alternative to bicinchoninic acid assay-based normalization. BioTechniques, 73(3), 131–135. Retrieved from https://doi.org/10.2144/BTN-2022-0064/ASSET/IMAGES/LARGE/FIGURE2.JPEG.
dc.relation.referencesOlivares, E., Hernández, D., Núñez, C., & Cabiedes, J. (2011). Proteínas citrulinadas en artritis reumatoide. Reumatol Clin, 7(1), 68–71. Retrieved from https://doi.org/10.1016/j.reuma.2009.09.010.
dc.relation.referencesOyenihi, B., Ollewagen, T., Myburgh, K., Powrie, Y., & Smith, C. (2019). Redox status and muscle pathology in rheumatoid arthritis: Insights from various rat hindlimb muscles. Oxidative Medicine and Cellular Longevity, vol. 2019, Article ID 2484678, 11 pages Retrieved from https://doi.org/10.1155/2019/2484678.
dc.relation.referencesPhull, A., Nasir, B., Haq, I., & Kim, S. (2018). Oxidative stress, consequences and EOR mediated cellular signaling in rheumatoid arthritis. Chemico-Biological Interactions, 281, 121–136. Retrieved from https://doi.org/10.1016/J.CBI.2017.12.024.
dc.relation.referencesRojas A. (2019). Implementación de un modelo de artritis en pequeños roedores de laboratorio para el estudio de sustancias con actividad antiinflamatoria. (Tesis de maestría). Universidad Nacional de Colombia. Retrieved from https://repositorio.unal.edu.co/bitstream/handle/unal/76819/21047279.2019.pdf?sequence=1&isAllowed=y.
dc.relation.referencesSánchez, D., Hernández, R., Fernández, M., Valdés, R., Martínez, C., León, J., Martínez, S., & Villanueva, G. (2005). Producción de iNOS y nitración de proteínas en la aorta de ratas expuestas a ozono. Rev Sanid Milit, 59(4), 223–240. Retrieved from http://new.medigraphic.com/cgi-bin/resumen.cgi?IDREVISTA=88&IDARTICULO=7220&IDPUBLICACION=831.
dc.relation.referencesSilpavathi, L., Das, M., & Das, D. (2021). Anti-arthritic potentials of aqueous and methanolic leaf extracts of Ardisia solanacea on complete Freund’s adjuvant induced rheumatoid arthritis in rats. Advances in Traditional Medicine, 1–9. Retrieved from https://doi.org/10.1007/S13596-021-00591-6/METRICS.
dc.relation.referencesSiouti, E., & Andreakos, E. (2019). The many facets of macrophages in rheumatoid arthritis. Biochemical Pharmacology, 165, 152–169. Retrieved from https://doi.org/10.1016/J.BCP.2019.03.029
dc.relation.referencesSnekhalatha, U., Anburajan, M., Venkatraman, B. et al. (2013). Evaluación de la artritis completa inducida por adyuvante de Freund en un modelo de rata Wistar. Z. Reumatol. 72 , 375–382 Retrieved from https://doi.org/10.1007/s00393-012-1083-8.
dc.relation.referencesSmolen, J., Aletaha, D., Barton, A., Gerd, B., Emery, P., Gary, F., Kavanaugh, A., McInnes, I., Solomon, D., Strand, V., & Yamamoto, K. (2018). Rheumatoid arthritis. Nature Reviews Disease Primers, 4, 18–20. Retrieved from https://doi.org/10.1038/nrdp.2018.2.
dc.relation.referencesToro, R., Aragón, D., Ospina, L., Ramos, F., & Castellanos, L. (2014). Phytochemical analysis, antioxidant and anti-inflammatory activity of calyces from Physalis peruviana. Natural Product Communications, 9(11), 1573–1575. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25532284.
dc.relation.referencesVan Delft, M., & Huizinga, T. (2020). An overview of autoantibodies in rheumatoid arthritis. Journal of Autoimmunity, 110, 102392. Retrieved from https://doi.org/10.1016/J.JAUT.2019.102392.
dc.relation.referencesVan den Berg, W., Joosten, L., Kollias, G., & van de Loo, F. (1999). Role of tumour necrosis factor α in experimental arthritis: separate activity of interleukin 1β in chronicity and cartilage destruction. Ann Rheum Dis, 58(1), I40–I48. Retrieved from https://doi.org/10.1136/ard.58.2008.i40.
dc.relation.referencesVan den Berg, W, Joosten, L, & van de Loo, F. (1999). TNF and IL-1β are separate targets in chronic arthritis. Clin Exp Rheumatol, 17 (18), S105–S114. Retrieved from https://www.clinexprheumatol.org/article.asp?a=1997.
dc.relation.referencesVan Riel, P., Smolen, J., Emery, P., Kalden, J., Dougados, M., Strand, C., & Breedveld, F. (2004). Leflunomide: a manageable safety profile. Journal of Rheumatology Supplement, 71, 21–24.
dc.relation.referencesWorld Health Organization. (2004). The global burden of disease 2004 (Vol. 1). Retrieved from https://doi.org/10.1038/npp.2011.85.
dc.relation.referencesXie, X., Li, H., Wang, Y., Wan, Z., Luo, S., Zhao, Z., Liu, J., Wu, X., Li, X., & Li, X. (2019). Therapeutic effects of gentiopicroside on adjuvant-induced arthritis by inhibiting inflammation and oxidative stress in rats. International Immunopharmacology, 76, 105840. Retrieved from https://doi.org/10.1016/J.INTIMP.2019.105840.
dc.relation.referencesYalamati, P., Bhongir, A., Karra, M., & Beedu, S. (2015). Comparative analysis of urinary total proteins by bicinchoninic acid and pyrogallol red molybdate methods. Journal of Clinical and Diagnostic Research: JCDR, 9(8), BC01-4. Retrieved from https://doi.org/10.7860/JCDR/2015/13543.6313.
dc.relation.referencesYu, R., Song, D., DuBois, D., Almon, R., & Jusko, W. (2020). Modeling combined anti-inflammatory effects of dexamethasone and tofacitinib in arthritic rats HHS public access. AAPS J, 21(5), 93. Retrieved from https://doi.org/10.1208/s12248-019-0362-6.
dc.relation.referencesZhao, J., Liu, T., Xu, F., You, S., Li, C., & Gu, Z. (2016). Anti-arthritic effects of total flavonoids from Juniperus sabina on complete Freund’s adjuvant induced arthritis in rats. Pharmacognosy Magazine, 12(47), 178. Retrieved from https://doi.org/10.4103/0973-1296.186346.
dc.relation.referencesZhao, T., Xie, Z., Xi, Y., Liu, L., Li, Z., & Qin, D. (2022). How to model rheumatoid arthritis in animals: from rodents to non-human primates. Frontiers in Immunology, 13, 2487. Retrieved from https://doi.org/10.3389/FIMMU.2022.887460/BIBTEX.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembBotánica médica
dc.subject.lembMedicine, botanic
dc.subject.lembMateria médica, vegetable
dc.subject.lembMateria medica, Vegetable
dc.subject.lembPlantas medicinales
dc.subject.lembMedicinal plant
dc.subject.proposalPhysalis peruviana L.
dc.subject.proposalArtritis
dc.subject.proposalAntioxidante
dc.subject.proposalInmunomodulador
dc.subject.proposalAntiartrítico
dc.subject.proposalErosión ósea
dc.subject.proposalPannus
dc.subject.proposalModelo murino de artritis
dc.subject.proposalArthritis
dc.subject.proposalAntioxidant
dc.subject.proposalImmunomodulator
dc.subject.proposalAntiarthritic
dc.subject.proposalBone erosion
dc.title.translatedPreclinical evaluation of the butanolic fraction of calyces of Physalis peruviana L. in a murine model of rheumatoid arthritis
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleEvaluación preclínica de la fracción butanólica de cálices de Physalis peruviana L. en modelo murino de artritis reumatoide
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPadres y familias
dcterms.audience.professionaldevelopmentPersonal de apoyo escolar
dcterms.audience.professionaldevelopmentPúblico general
dc.contributor.orcidUmaña Bautista, Stefany
dc.contributor.cvlacUmaña Bautista, Stefany
dc.contributor.scopusUmaña Bautista, Stefany
dc.contributor.researchgateUmaña Bautista, Stefany
dc.contributor.googlescholarUmaña Bautista, Stefany


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito