Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorVarón Durán, Margarita
dc.contributor.advisorTriana Infante, Cristian Andrés
dc.contributor.authorOspina Mendivelso, Nicolas
dc.date.accessioned2023-07-31T21:39:13Z
dc.date.available2023-07-31T21:39:13Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84385
dc.descriptionilustraciones, diagramas, fotografías
dc.description.abstractEn este documento se presentan los resultados de la caracterización de la temperatura en esferoides de cáncer de mama expuestos a tratamientos de hipertermia (HT). La hipertermia es una alternativa a los tratamientos convencionales para el cáncer, como lo son la cirugía, la radioterapia (RT) y la quimioterapia (QT), que tienen potenciales repercusiones funcionales, estéticas, emocionales y psicológicas que impactan significativamente en la calidad de vida de los pacientes. Para conseguir las temperaturas requeridas en los tratamientos de hipertermia se hizo uso de dos sistemas de radiación por microondas. Un esquema de alta potencia basado en el uso de un magnetrón extraído de un horno microondas y otro de potencia moderada basado en el uso de amplificadores de estado sólido. El sujeto de prueba fueron esferoides de la línea celular MCF-7. Para la medición de la temperatura fue diseñada una placa de cultivo prototipo con sensores FBGs embebidos en sus pozos. Esta placa se construyó haciendo uso de modelado por deposición fundida y se caracterizó bajo condiciones controladas de laboratorio. Como resultado de las pruebas se obtuvieron curvas de caracterización de temperatura ante distintos esquemas de radiación. El desempeño de los sensores no se vio alterado al estar expuestos a un ambiente de fuerte interferencia electromagnética lo que permitió poder llevar a cabo mediciones en tiempo real. Basados en los resultados obtenidos con este sistema de caracterización, se proponen modificaciones para el mejoramiento de su desempeño. (Texto tomado de la fuente)
dc.description.abstractThe following document presents the results of temperature characterizations in breast cancer cell spheroids exposed to hyperthermia (HT) treatments. Hyperthermia is an alternative to conventional treatments of breast cancer; treatments such as surgery, radiotherapy (RT) and chemotherapy (QT), which have potential functional, esthetic, emotional and psychological repercussions that significantly impact the quality of life of patients. To achieve an increase in temperature for HT treatments, two microwave radiation systems were used. A high power setup based on the use of a magnetron extracted from a microwave oven and another of moderate power based on the use of solid state amplifiers. The test subject were spheroids from the MCF-7 cell line. For the temperature measurement, a prototype culture plate was designed with FBGs sensors embedded in its wells. This plate was constructed using fused deposition modeling and characterized under controlled laboratory conditions. As a result of the tests, temperature characterization curves were obtained under different radiation schemes. The performance of the sensors was not affected by being exposed to an environment of strong electromagnetic interference, which allowed measurements in realtime. Based on the results obtained with this characterization system, modifications are proposed to improve its performance.
dc.format.extentxv, 66 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleMedición de temperatura por medio de sensores FBG en esferoides 3D de cáncer de mama expuestos a radiación microondas
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrial
dc.description.notesThe following document presents the results of temperature characterizations in breast cancer cell spheroids exposed to hyperthermia (HT) treatments. Hyperthermia is an alternative to conventional treatments of breast cancer; treatments such as surgery, radiotherapy (RT) and chemotherapy (QT), which have potential functional, esthetic, emotional and psychological repercussions that significantly impact the quality of life of patients. To achieve an increase in temperature for HT treatments, two microwave radiation systems were used. A high power setup based on the use of a magnetron extracted from a microwave oven and another of moderate power based on the use of solid state amplifiers. The test subject were spheroids from the MCF-7 cell line. For the temperature measurement, a prototype culture plate was designed with FBGs sensors embedded in its wells. This plate was constructed using fused deposition modeling and characterized under controlled laboratory conditions. As a result of the tests, temperature characterization curves were obtained under different radiation schemes. The performance of the sensors was not affected by being exposed to an environment of strong electromagnetic interference, which allowed measurements in real-time. Based on the results obtained with this characterization system, modifications are proposed to improve its performance.
dc.contributor.researchgroupGrupo de Investigación en Electrónica de Alta Frecuencia y Telecomunicaciones (Cmun)
dc.description.degreelevelMaestría
dc.description.researchareaTecnologíıas Fotónicas
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá,Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesLam F Ferlay J, Ervik M. Global cancer observatory: Cancer today. lyon, france: International agency for research on cancer, 2020.
dc.relation.referencesNIH. Quimioterapia para tratar el cáncer, 2015. Instituto Nacional del Cáncer (NIH).
dc.relation.referencesNIH. Cirugía para tratar el cáncer, 2015. Instituto Nacional del Cáncer (NIH).
dc.relation.referencesNIH. Radioterapia para tratar el cáncer, 2019. Instituto Nacional del Cáncer (NIH).
dc.relation.referencesINC. Plan nacional para el control del cáncer en colombia 2012-2020, 2012. Instituto Nacional de Cancerología - ESE (INC).
dc.relation.referencesHelen HW Chen and Macus Tien Kuo. Improving radiotherapy in cancer treatment: promises and challenges. Oncotarget, 8(37):62742, 2017.
dc.relation.referencesCatherine M Clavel, Patrycja Nowak-Sliwinska, Emilia P˘aunescu, and Paul J Dyson. Thermoresponsive fluorinated small-molecule drugs: a new concept for efficient localized chemotherapy. MedChemComm, 6(12):2054–2062, 2015.
dc.relation.referencesS.K. Sharma, Navadeep Shrivastava, Francesco Rossi, Le Duc Tung, and Nguyen Thi Kim Thanh. Nanoparticles-based magnetic and photo induced hyperthermia for cancer treatment. Nano Today, 29:100795, 2019.
dc.relation.referencesCM Van Leeuwen, AL Oei, R Ten Cate, NAP Franken, A Bel, LJA Stalpers, J Crezee, and HP Kok. Measurement and analysis of the impact of time-interval, temperature and radiation dose on tumour cell survival and its application in thermoradiotherapy plan evaluation. International Journal of Hyperthermia, 34(1):30–38, 2018.
dc.relation.referencesSarah C Brüningk, Peter Ziegenhein, Ian Rivens, Uwe Oelfke, and Gail Ter Haar. A cellular automaton model for spheroid response to radiation and hyperthermia treatments. Scientific reports, 9(1):1–12, 2019.
dc.relation.referencesJE Chong, L Leija, CP Pennisi, and WH Fonseca. Optical fiber based thermometry system for a hyperthermia laboratory. In 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, volume 3, pages 3036–3039. IEEE, 2001.
dc.relation.referencesTomohiro Matta, Hideki Fukano, and Shuji Taue. Simultaneous operation of laser ablation and temperature monitor using single optical fiber for hyperthermia. In 2017 Conference on Lasers and Electro-Optics Pacific Rim, page s1661. Optica Publishing Group, 2017.
dc.relation.referencesNicolas Ospina Mendivelso, C. Camilo Cano, Juan Coronel-Rico, Hector Fabian Guarnizo, and Margarita Varón Duran. Fbg sensors for temperature measurements in microwave irradiated breast phantoms. In Optical Fiber Sensors Conference 2020 Special Edition, page Th4.50. Optical Society of America, 2020.
dc.relation.referencesSarah Catharina Br¨uningk, Jannat Ijaz, Ian Rivens, Simeon Nill, Gail Ter Haar, and Uwe Oelfke. A comprehensive model for heat-induced radio-sensitisation. International Journal of Hyperthermia, 34(4):392–402, 2018.
dc.relation.referencesH Petra Kok, Johannes Crezee, Nicolaas AP Franken, Lukas JA Stalpers, Gerrit W Barendsen, and Arjan Bel. Quantifying the combined effect of radiation therapy and hyperthermia in terms of equivalent dose distributions. International Journal of Radiation Oncology* Biology* Physics, 88(3):739–745, 2014.
dc.relation.referencesNeil T Wright. Comparison of models of post-hyperthermia cell survival. Journal of Biomechanical Engineering, 135(5), 2013.
dc.relation.referencesYusheng Feng, J Tinsley Oden, and Marissa Nichole Rylander. A two-state cell damage model under hyperthermic conditions: theory and in vitro experiments. 2008.
dc.relation.referencesMichael A Mackey and Joseph L Roti Roti. A model of heat-induced clonogenic cell death. Journal of theoretical biology, 156(2):133–146, 1992.
dc.relation.referencesR Gassino, A Vallan, G Perrone, M Konstantaki, and S Pissadakis. Characterization of fiber optic distributed temperature sensors for tissue laser ablation. In 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pages 1–5. IEEE, 2017.
dc.relation.referencesPablo Pérez, Juan Alfonso Serrano, and Alberto Olmo. 3d-printed sensors and actuators in cell culture and tissue engineering: framework and research challenges. Sensors, 20(19):5617, 2020.
dc.relation.referencesLuca Schenato, Qiangzhou Rong, Zhihua Shao, Xueguang Quiao, Alessandro Pasuto, Andrea Galtarossa, and Luca Palmieri. Highly sensitive fbg pressure sensor based on a 3d-printed transducer. J. Lightwave Technol., 37(18):4784–4790, Sep 2019.
dc.relation.referencesMatthew Mallory, Emile Gogineni, Guy C Jones, Lester Greer, and Charles B Simone II. Therapeutic hyperthermia: The old, the new, and the upcoming. Critical reviews in oncology/hematology, 97:56–64, 2016.
dc.relation.referencesHernan I Vargas, William C Dooley, Robert A Gardner, Katherine D Gonzalez, Rose Venegas, Sylvia H Heywang-Kobrunner, and Alan J Fenn. Focused microwave phased array thermotherapy for ablation of early-stage breast cancer results of thermal dose escalation. Annals of surgical oncology, 11(2):139–146, 2004.
dc.relation.referencesZhaleh Behrouzkia, Zahra Joveini, Behnaz Keshavarzi, Nazila Eyvazzadeh, and Reza Zohdi Aghdam. Hyperthermia: how can it be used? Oman medical journal, 31(2):89, 2016.
dc.relation.referencesEduardo Moros. Physics of thermal therapy : fundamentals and clinical applications. Imaging in medical diagnosis and therapy. CRC/Taylor and Francis, 2013.
dc.relation.referencesPhong Thanh Nguyen, Amin Abbosh, and Stuart Crozier. Microwave hyperthermia for breast cancer treatment using electromagnetic and thermal focusing tested on realistic breast models and antenna arrays. IEEE Transactions on antennas and propagation, 63(10):4426–4434, 2015.
dc.relation.referencesJohn Stang, Mark Haynes, Paul Carson, and Mahta Moghaddam. A preclinical system prototype for focused microwave thermal therapy of the breast. IEEE Transactions on Biomedical Engineering, 59(9):2431–2438, 2012.
dc.relation.referencesLifan Xu and Xiong Wang. Comparison of two optimization algorithms for focused microwave breast cancer hyperthermia. In 2018 International Applied Computational Electromagnetics Society Symposium-China (ACES), pages 1–2. IEEE, 2018.
dc.relation.referencesRafael Zamorano Ulloa, Ma Guadalupe Hernandez Santiago, and Veronica L Villegas Rueda. The interaction of microwaves with materials of different properties. In Electromagnetic Fields and Waves. InTech, 2019.
dc.relation.referencesByoungho Lee. Review of the present status of optical fiber sensors. Optical fiber technology, 9(2):57–79, 2003.
dc.relation.referencesYang Du, Qingbo Yang, and Jie Huang. Soft prosthetic forefinger tactile sensing via a string of intact single mode optical fiber. IEEE Sensors Journal, 17(22):7455–7459, 2017.
dc.relation.referencesVineet Kumar Rai. Temperature sensors and optical sensors. Applied Physics B, 88(2):297–303, 2007.
dc.relation.referencesDavide Polito, Michele Arturo Caponero, Andrea Polimadei, Paola Saccomandi, Carlo Massaroni, Sergio Silvestri, and Emiliano Schena. A needlelike probe for temperature monitoring during laser ablation based on fiber bragg grating: Manufacturing and characterization. Journal of Medical Devices, 9(4), 2015.
dc.relation.referencesD. Tosi, E.G. Macchi, G. Braschi, M. Gallati, A. Cigada, S. Poeggel, G. Leen, and E. Lewis. Monitoring of radiofrequency thermal ablation in liver tissue through fibre bragg grating sensors array. Electronics Letters, 50(14):981–983, 2014.
dc.relation.referencesGiovanna Palumbo, Agostino Iadicicco, Daniele Tosi, Paolo Verze, Nicola Carlomagno, Vincenzo Tammaro, Juliet Ippolito, and Stefania Campopiano. Temperature profile of ex-vivo organs during radio frequency thermal ablation by fiber bragg gratings. Journal of Biomedical Optics, 21:117003, 11 2016.
dc.relation.referencesEigil Samset, Tom Mala, Reinold Ellingsen, I Gladhaug, O Soreide, and Erik Fosse. Temperature measurement in soft tissue using a distributed fibre bragg-grating sensor system. Minimally Invasive Therapy & Allied Technologies, 10:89–93, 03 2001.
dc.relation.referencesIndu Fiesler Saxena, Kaleo Hui, and Melvin Astrahan. Polymer coated fiber bragg grating thermometry for microwave hyperthermia. Medical physics, 37(9):4615–4619, 2010.
dc.relation.referencesNicolas Ospina Mendivelso, C. Camilo Cano, Juan Coronel-Rico, Hector Fabian Guarnizo, and Margarita Varón Duran. Optical fiber bragg grating sensors for temperature measurements in the hyperthermia treatment. In Proceedings, Latin American Workshop on Optical Fiber Sensors, 2019.
dc.relation.referencesMariya Lazebnik, Ernest L Madsen, Gary R Frank, and Susan C Hagness. Tissuemimicking phantom materials for narrowband and ultrawideband microwave applications. Physics in Medicine & Biology, 50(18):4245, 2005.
dc.relation.referencesAlexis I Farrer, Henrik Od´een, Joshua de Bever, Brittany Coats, Dennis L Parker, Allison Payne, and Douglas A Christensen. Characterization and evaluation of tissuemimicking gelatin phantoms for use with mrgfus. Journal of therapeutic ultrasound, 3(1):9, 2015.
dc.relation.referencesJill Van der Zee. Heating the patient: a promising approach? Annals of oncology, 13(8):1173–1184, 2002.
dc.relation.referencesEmma MN Polman, Gert-Jan M Gruter, John R Parsons, and Albert Tietema. Comparison of the aerobic biodegradation of biopolymers and the corresponding bioplastics: A review. Science of the Total Environment, 753:141953, 2021.
dc.relation.referencesEvangelia Balla, Vasileios Daniilidis, Georgia Karlioti, Theocharis Kalamas, Myrika Stefanidou, Nikolaos D Bikiaris, Antonios Vlachopoulos, Ioanna Koumentakou, and Dimitrios N Bikiaris. Poly (lactic acid): A versatile biobased polymer for the future with multifunctional properties—from monomer synthesis, polymerization techniques and molecular weight increase to pla applications. Polymers, 13(11):1822, 2021.
dc.relation.referencesSithira H Ratnayaka, Taylor E Hillburn, Omid Forouzan, Sergey S Shevkoplyas, and Damir B Khismatullin. Pdms well platform for culturing millimeter-size tumor spheroids. Biotechnology progress, 29(5):1265–1269, 2013.
dc.relation.referencesJohn G Lock, Bernhard Wehrle-Haller, and Staffan Str¨omblad. Cell–matrix adhesion complexes: master control machinery of cell migration. In Seminars in cancer biology, volume 18, pages 65–76. Elsevier, 2008.
dc.relation.referencesS. Iannace, L. Sorrentino, and E. Di Maio. 6 - biodegradable biomedical foam scaffolds. In Paolo A. Netti, editor, Biomedical Foams for Tissue Engineering Applications, pages 163–187. Woodhead Publishing, 2014.
dc.relation.referencesYun-Jiang Rao. In-fibre bragg grating sensors. Measurement science and technology, 8(4):355, 1997.
dc.relation.referencesDavid A Krohn, Trevor MacDougall, and Alexis Mendez. In-fiber grating optic sensors. In Fiber optic sensors: fundamentals and applications, chapter 4, pages 110–154. Spie Press Bellingham, WA, 2014.
dc.relation.referencesShizhuo Yin and TS Francis. Wavelength-modulated sensors. In Fiber optic sensors, chapter 5, pages 63–77. CRC press, 2002.
dc.relation.referencesGünther Wehrle, Percy Nohama, Hypolito Jos´e Kalinowski, Pedro Ignácio Torres, and Luiz Carlos Guedes Valente. A fibre optic bragg grating strain sensor for monitoring ventilatory movements. Measurement Science and Technology, 12(7):805, 2001.
dc.relation.referencesGerman Alvarez-Botero, Fabian E. Baron, C. Camilo Cano, Oscar Sosa, and Margarita Varon. Optical sensing using fiber bragg gratings: Fundamentals and applications. IEEE Instrumentation & Measurement Magazine, 20(2):33–38, 2017.
dc.relation.referencesTechnica. FBGs array, 9 2021.
dc.relation.referencesRamon Pallas-Areny and John G Webster. Introduction to sensor-based measurement systems. In Sensors and signal conditioning, chapter 1, pages 1–73. John Wiley & Sons, 2 edition, 2012.
dc.relation.referencesJ Jacob. Radio frequency solid state amplifiers. arXiv preprint arXiv:1607.01570, 2016.
dc.relation.referencesJ Carlton Gallawa. The Complete Microwave Oven Service Handbook: Operation, Maintenance, Troubleshooting, and Repair. Prentice Hall, 1989.
dc.relation.referencesG. Mourier (Eds.). Crossed-field Microwave Device. Principal Elements of Crossed-Field Devices. Crossed-field microwave devices, v. 1. Academic Press, 1961.
dc.relation.referencesSally P Wheatley and Denys N Wheatley. Transporting cells over several days without dry-ice. Journal of Cell Science, 132(21):jcs238139, 2019.
dc.relation.referencesLynne S Garcia. Clinical microbiology procedures handbook, volume 1. American Society for Microbiology Press, 2010.
dc.relation.referencesClaudia Campos Liste et al. Aplicación de la técnica de citometría de flujo al control de un cultivo iniciador de lactobacillus casei en la industria láctea. 2012.
dc.relation.referencesJenna Bleloch. Cell culture basics: Equipment, fundamentals and protocols. Cell Science from Technology Networks, May 2021.
dc.relation.referencesMaria del Carmen Rodríguez-Salazar, Moises Armides Franco-Molina, Edgar Mendoza- Gamboa, Ana Carolina Martínez-Torres, Pablo Zapata-Benavides, Jose Sullivan López- González, Erika Evangelina Coronado-Cerda, Juan Manuel Alcocer-Gonz´alez, Reyes Silvestre Tamez-Guerra, and Cristina Rodríguez-Padilla. The novel immunomodulator immunepotent crp combined with chemotherapy agent increased the rate of immunogenic cell death and prevented melanoma growth. Oncology letters, 14(1):844–852, 2017.
dc.relation.referencesLili Ma. 3D computer modeling of magnetrons. PhD thesis, 2005.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembTemperatura corporal
dc.subject.lembCancer-treatment
dc.subject.lembCáncer-tratamiento
dc.subject.lembBody temperature
dc.subject.proposalHipertermia
dc.subject.proposalHyperthermia
dc.subject.proposalSensores FBG
dc.subject.proposalFBG sensors
dc.subject.proposalCáncer
dc.subject.proposalCancer
dc.subject.proposalTemperatura
dc.subject.proposalTemperature
dc.subject.proposalMicroondas
dc.subject.proposalMicrowaves
dc.subject.proposalCultivos celulares
dc.subject.proposalCell cultures
dc.subject.proposalEsferoides celulares
dc.subject.proposalCellular spheroids
dc.title.translatedTemperature Measurement via FBG Sensors in 3D Breast Cancer Spheroids Exposed to Microwave Radiation
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito