Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorDuque Daza, Carlos Alberto
dc.contributor.authorSierra Vargas, Germán David
dc.date.accessioned2023-08-04T17:34:02Z
dc.date.available2023-08-04T17:34:02Z
dc.date.issued2023-05-09
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84460
dc.descriptionilustraciones, diagramas
dc.description.abstractLas turbinas de gas operan por encima de la temperatura permisible de los materiales. Por este motivo, una porción de aire se extrae desde el compresor para refrigerar los álabes externamente con un método conocido como refrigeración por película. El aire es expulsado a través de una serie de agujeros formando una capa protectora que reduce la temperatura de la superficie. En este estudio, el desempeño de la película refrigerante es evaluado numéricamente para tres números de Reynolds del flujo principal y cuatro relaciones de velocidad (blowing ratio o BR). Un modelo computacional basado en la discretización por volúmenes finitos fue utilizado para resolver un flujo incompresible y transitorio sobre un perfil NACA 4412 en cascada. En el modelo se incluyeron varios escalares pasivos para evaluar las condiciones de temperatura adiabática y temperatura constante en la pared del álabe. Los análisis muestran una discrepancia entre estos dos enfoques. Para la condición de temperatura adiabática, la efectividad de película depende principalmente de la trayectoria del chorro y las zonas de recirculación. Para la condición de temperatura constante, la reducción neta del flujo de calor (net heat flux reduction o NHFR) varía en función de la separación y reenganche de la capa límite. (Texto tomado de la fuente)
dc.description.abstractGas turbines operate above the permissible temperature of the materials. For this reason, air is drawn from the compressor to cool the vanes externally with a method known as film cooling. The air is expelled through a set of holes forming a protective layer that reduces the surface temperature. In this study, the film cooling performance was evaluated numerically for three mainstream Reynolds numbers and four blowing ratios (BR). A computational model based on finite volume discretization was used to solve an incompressible and transient flow over a NACA 4412 cascade vane. Several passive scalars were included in the model to evaluate the conditions of adiabatic temperature and constant temperature for the surface vane. Analysis showed a discrepancy between these two approaches. For adiabatic temperature condition, the film effectiveness mainly depends on the jet trajectory and recirculation zones. For the constant temperature condition, the net heat flux reduction (NHFR) varies according to the boundary layer separation and reattachment.
dc.format.extentxxi, 86 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.subject.ddc530 - Física
dc.titleEstudio de la interacción de los gases de combustión sobre la película de refrigerante en una turbina de gas
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica
dc.contributor.researchgroupGnum Grupo de Modelado y Métodos Numericos en Ingeniería
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería Mecánica
dc.description.researchareaIngeniería Térmica y Fluidos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesBaagherzadeh Hushmandi, Narmin. 2018. "Large Eddy simulation of flat plate film cooling at high blowing ratio using OpenFOAM." Heat and Mass Transfer 54 (6): 1603–1611.
dc.relation.referencesBanihabib, Reyhaneh y Mohsen Assadi. 2022. "The Role of Micro Gas Turbines in Energy Transition." Energies 15 (21): 8084.
dc.relation.referencesBogard, David G. 2006. Capı́tulo 4.2.2.1 de Airfoil Film Cooling. U.S. Department of Energy's National Energy Technology Laboratory (NETL).
dc.relation.referencesBoyce, Meherwan P. 2006. Capı́tulo 1 de An Overview of Gas Turbines. Butterworth-Heinemann.
dc.relation.referencesCaretto, L. S., A. D. Gosman, S. V. Patankar y D. B. Spalding. 1973, Jul 3-7. "Two calculation procedures for steady, three-dimensional flows with recirculation." Third International Conference on Numerical Methods in Fluid Mechanics. Springer Berlin Heidelberg.
dc.relation.referencesChang, Jianlong, Yang Du, Xudong Shao, Yongjuan Zhao y Shizhen Zheng. 2019. "Investigation and analysis of vortex and application of jet in crossflow." Case Studies in Thermal Engineering 14 (1): 100459.
dc.relation.referencesCohen, Henry. 1982. Teorı́a de las turbinas de gas. Marcombo.
dc.relation.referencesEl-Damaty, Waleed y Mohamed Gadalla. 2018a, Jun 24-28. "Assessment of Gas Turbine's Cooling Systems Integrated With Bottoming Cycle." ASME 2018 Power Conference. ASME.
dc.relation.referencesEl-Damaty, Waleed y Mohamed Gadalla. 2018b, Nov 9-15. "Exergoeconomic Analysis of Intercooled, Reheated and Recuperated Gas Turbine Cycles With Air Film Blade Cooling." ASME 2018 International Mechanical Engineering Congress and Exposition. ASME.
dc.relation.referencesFaqih, Mochammad, Madiah Binti Omar, Rosdiazli Ibrahim y Bahaswan A. A. Omar. 2022. "Dry-Low Emission Gas Turbine Technology: Recent Trends and Challenges." Applied Sciences 12 (21): 10922.
dc.relation.referencesFarhat, Hiyam y Coriolano Salvini. 2022. "Novel Gas Turbine Challenges to Support the Clean Energy Transition." Energies 15 (15): 5474.
dc.relation.referencesFathyunes, Leila y M. A. Mohtadi-Bonab. 2023. "A Review on the Corrosion and Fatigue Failure of Gas Turbines." Metals 13 (4): 701.
dc.relation.referencesFerziger, Joel H. y Milovan Perić. 2012. Computational Methods for Fluid Dynamics. Springer Berlin Heidelberg.
dc.relation.referencesFilinov, E. P., V. S. Kuz'michev, A. Yu Tkachenko, Ya A. Ostapyuk y I. N. Krupenich. 2021. "Estimation of cooling flow rate for conceptual design stage of a gas turbine engine." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 235 (8): 2014–2021.
dc.relation.referencesGil Garcı́a, Gregorio. 2013. Turbinas y compresores de gas. Los motores del siglo XXI. Alfaomega.
dc.relation.referencesGreenshields, Christopher y Henry Weller. 2022. Notes on Computational Fluid Dynamics: General Principles. CFD Direct.
dc.relation.referencesHan, Je-Chin, Sandip Dutta y Srinath Ekkad. 2013. Gas Turbine Heat Transfer and Cooling Technology. CRC Press.
dc.relation.referencesHe, Juan, Qinghua Deng y Zhenping Feng. 2021. "Film Cooling Performance Enhancement by Upstream V-shaped Protrusion/Dimple Vortex Generator." International Journal of Heat and Mass Transfer 180 (1): 121784.
dc.relation.referencesHolzmann, Tobias. 2019. Mathematics, Numerics, Derivations and OpenFOAM (R). Holzmann CFD.
dc.relation.referencesHou, Rui, Fengbo Wen, Yuxi Luo, Xiaolei Tang y Songtao Wang. 2019. "Large eddy simulation of film cooling flow from round and trenched holes." International Journal of Heat and Mass Transfer 144 (1): 118631.
dc.relation.referencesIshikawa, Masao, Masashi Terauchi, Toyoaki Komori y Jun Yasuraoka. 2008, Mar 1. "Development of high efficiency gas turbine combined cycle power plant." Technical review (tr) 2008-451015, Mitsubishi Heavy Industries, Ltd., Chiyoda, Tokyo, Japan.
dc.relation.referencesIssa, R. I. 1986. "Solution of the implicitly discretised fluid flow equations by operator-splitting." Journal of Computational Physics 62 (1): 40–65.
dc.relation.referencesKhalatov, Artem, E Shi-Ju, Dongyun Wang y Igor Borisov. 2020. "Film cooling evaluation of a single array of triangular craters." International Journal of Heat and Mass Transfer 159 (1): 120055.
dc.relation.referencesKrishna Anand, V. G. y K. M. Parammasivam. 2021. "Thermal barrier coated surface modifications for gas turbine film cooling: a review." Journal of Thermal Analysis and Calorimetry 146 (2): 545–580.
dc.relation.referencesLi, Weihong, Xueying Li, Jing Ren y Hongde Jiang. 2018a. "Length to diameter ratio effect on heat transfer performance of simple and compound angle holes in thin-wall airfoil cooling." International Journal of Heat and Mass Transfer 127 (1): 867–879.
dc.relation.referencesLi, Weihong, Xunfeng Lu, Xueying Li, Jing Ren y Hongde Jiang. 2018b. "High resolution measurements of film cooling performance of simple and compound angle cylindrical holes with varying hole length-to-diameter ratio–Part I: Adiabatic film effectiveness." International Journal of Thermal Sciences 124 (1): 146–161.
dc.relation.referencesLv, Bowen, Xiaochao Jin, Jie Cao, Baosheng Xu, Yiguang Wang y Daining Fang. 2020. "Advances in numerical modeling of environmental barrier coating systems for gas turbines." Journal of the European Ceramic Society 40 (9): 3363–3379.
dc.relation.referencesMahesh, Krishnan. 2013. "The interaction of jets with crossflow." Annual Review of Fluid Mechanics 45 (1): 379–407.
dc.relation.referencesMarić, Tomislav, Jens Höpken y Kyle G. Mooney. 2021. The OpenFOAM (R) Technology Primer. Zenodo.
dc.relation.referencesMin Kwon, Hyun, Seong Won Moon, Tong Seop Kim y Do Won Kang. 2020. "Performance enhancement of the gas turbine combined cycle by simultaneous reheating, recuperation, and coolant inter-cooling." Energy 207 (1): 118271.
dc.relation.referencesMoukalled, F., L. Mangani y M. Darwish. 2016. The Finite Volume Method in Computational Fluid Dynamics. Springer Cham.
dc.relation.referencesMuppidi, Suman y Krishnan Mahesh. 2007. "Direct numerical simulation of round turbulent jets in crossflow." Journal of Fluid Mechanics 574 (1): 59–84.
dc.relation.referencesNational Academies of Sciences, Engineering, and Medicine (NASEM). 2020a. Capı́tulo 2.2 de Aggressive goals for gas turbine development: Aviation. The National Academies Press.
dc.relation.referencesNational Academies of Sciences, Engineering, and Medicine (NASEM). 2020b. Capı́tulo 2.1 de Aggressive goals for gas turbine development: Power Generation. The National Academies Press.
dc.relation.referencesNicoud, F. y F. Ducros. 1999. "Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor." Flow, Turbulence and Combustion 62 (1): 183–200.
dc.relation.referencesPuspitasari, Poppy, Andoko Andoko y Pradhana Kurniawan. 2021. "Failure analysis of a gas turbine blade: A review." IOP Conference Series: Materials Science and Engineering 1034 (1): 12156.
dc.relation.referencesSoares, Claire. 2015. Capı́tulo 1 de Gas Turbines: An Introduction and Applications. Butterworth-Heinemann.
dc.relation.referencesThurman, Douglas R., Lamyaa A. El-Gabry, Philip E. Poinsatte y James D. Heidmann. 2011, Jun 6-10. "Turbulence and Heat Transfer Measurements in an Inclined Large Scale Film Cooling Array: Part II–Temperature and Heat Transfer Measurements." ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASME.
dc.relation.referencesWang, Jin, Zhanming Zhao, Liang Tian, Xiaodong Ren y Bengt Sundén. 2021. "Effects of hole configuration on film cooling effectiveness and particle deposition on curved surfaces in gas turbines." Applied Thermal Engineering 190 (1): 116861.
dc.relation.referencesWee, Sunguk, Jeonghyeon Do, Kyomin Kim, Changho Lee, Changsung Seok, Baig-Gyu Choi, Yoonsuk Choi y Woochul Kim. 2020. "Review on Mechanical Thermal Properties of Superalloys and Thermal Barrier Coating Used in Gas Turbines." Applied Sciences 10 (16): 5476.
dc.relation.referencesZhang, Jingzhou, Shengchang Zhang, Chunhua Wang y Xiaoming Tan. 2020. "Recent advances in film cooling enhancement: A review." Chinese Journal of Aeronautics 33 (4): 1119–1136.
dc.relation.referencesZhou, Wenwu, Di Peng, Xin Wen, Yingzheng Liu y Hui Hu. 2018. "Unsteady analysis of adiabatic film cooling effectiveness behind circular, shaped, and sand-dune-inspired film cooling holes: Measurement using fast-response pressure-sensitive paint." International Journal of Heat and Mass Transfer 125 (1): 1003–1016.
dc.relation.referencesZhu, Dongming. 2018, May 1. "Aerospace Ceramic Materials: Thermal, Environmental Barrier Coatings and SiC/SiC Ceramic Matrix Composites for Turbine Engine Applications." Technical memorandum (tm) 2018-219884, NASA, NASA Glenn Research Center Cleveland, OH, United States.
dc.relation.referencesZhu, Rui, Gongnan Xie y Terrence W. Simon. 2018, Jun 11-15. "New Designs of Novel Holes Based on Cylindrical Configurations for Improving Film Cooling Effectiveness." ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. ASME.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.armarcFluid mechanics
dc.subject.armarcMechanical engineering
dc.subject.lembDINAMICA DE FLUIDOS
dc.subject.lembFluid dynamics
dc.subject.lembMECANICA DE FLUIDOS
dc.subject.lembINGENIERIA MECANICA
dc.subject.lembMechanical engineering
dc.subject.lembFluid mechanics
dc.subject.proposalCoeficiente convectivo
dc.subject.proposalCoeficiente de fricción
dc.subject.proposalConvective coefficient
dc.subject.proposalEfectividad de película
dc.subject.proposalFilm cooling
dc.subject.proposalFilm effectiveness
dc.subject.proposalJet trajectory
dc.subject.proposalNet heat flux reduction
dc.subject.proposalReducción neta del flujo de calor
dc.subject.proposalRefrigeración por película
dc.subject.proposalSkin friction coefficient
dc.subject.proposalTrayectoria del chorro
dc.title.translatedStudy of the interaction of combustion gases on the film cooling in a gas turbine
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
dc.contributor.orcidSierra-Vargas, Germán [0000-0003-4766-7761]
dc.contributor.cvlacSierra Vargas, Germán David [0001620035]
dc.contributor.scopusSierra-Vargas, Germán [57767476700]
dc.contributor.researchgateSierra-Vargas, Germán [German-Sierra-Vargas]
dc.contributor.googlescholarSierra-Vargas, Germán [mnAHAb0AAAAJ]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito