Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorAmaya Gómez, Carol Viviana
dc.contributor.advisorGonzalez Almario, Adriana
dc.contributor.authorPisco Ortiz, Yeinny Carolina
dc.date.accessioned2023-08-09T14:07:57Z
dc.date.available2023-08-09T14:07:57Z
dc.date.issued2022-10-10
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84504
dc.descriptionIlustraciones
dc.description.abstractEl marchitamiento vascular del tomate causado por Fusarium oxysporum f. sp. lycopersici (Fol) es una de las enfermedades más limitantes del cultivo. El uso de fungicidas sistémicos y variedades resistentes a ciertas razas del patógeno no ha sido suficiente para su manejo. En este estudio se aislaron microrganismos productores de sideróforos con potencial biocontrolador sobre la cepa Fol59. Los aislamientos fueron obtenidos de muestras provenientes de la rizósfera y filósfera de árboles de cacao silvestre de cinco zonas de la Amazonía Colombiana. Los quince aislamientos seleccionados por su eficiencia en la síntesis de sideróforos, fueron clasificados dentro de los géneros Acinetobacter sp. (9), Bacillus sp. (2), Delftia sp. (1), Serratia sp. (1), Pseudomonas sp. (1) y Herbaspirillum sp. (1). La aplicación previa a la infección con Fol59 de los sobrenadantes con alto contenido de sideróforos (SodSid), de cinco de los aislamientos de Acinetobacter sp., logró disminuir el AUDPC de la severidad de la enfermedad hasta en un 45 %, siendo el aislamiento CBIO117 el que mayor actividad biocontroladora generó. Finalmente, se observó que los SodSid de Acinetobacter CBIO117 indujeron la expresión de los genes PR1 y ERF1 marcadores de las vías hormonales del Ácido Salicílico y Etileno en la planta respectivamente, pero no del gen (MYC2), factor de transcripción de los genes de defensa dependientes del Ácido Jasmónico. Sin embargo, en las plantas estimuladas con los SodSid CBIO117 e infectadas con Fol59 se indujo la expresión de manera diferencial del gen MYC2, destacando la activación de la defensa dependiente del ácido Jasmónico. Estos resultados demuestran el potencial biocontrolador que tienen los sobrenadantes con sideróforos secretados por aislamientos del género Acinetobacter sp. en la disminución del marchitamiento vascular del tomate, actuando como posibles elicitores de la respuesta de defensa de la planta. (texto tomado de la fuente)
dc.description.abstractThe vascular wilt disease of tomato caused by Fusarium oxysporum f. sp. lycopersici (Fol) is one of the most limiting diseases of this crop. The use of systemic fungicides and varieties resistant to certain races of the pathogen have not provided an adequate control. In this study, siderophore-producing microorganisms with biocontrol potential against Fol were isolated from rhizosphere and phyllosphere samples taken from wild cocoa trees in five different locations of the Colombian Amazon. The fifteen isolates selected for being representative of the sampling zones and showing greater production of siderophores were classified within the genera Acinetobacter sp. (9), Bacillus sp. (2), Delftia sp. (1), Serratia sp. (1), Pseudomonas sp. (1) y Herbaspirillum sp. (1). The application before infection with Fol59 of supernatants with a high content of siderophores (SodSid) from five Acinetobacter sp. isolates caused a reduction in the AUDPC of the disease severity of up to 45%, being CBIO117 the isolate which showed greater biocontrol activity. Finally, it was confirmed that SodSid Acinetobacter CBIO117 generated an induction in the expression of PR1 and ERF1 genes, markers of the Salicylic Acid and Ethylene hormonal pathways in the plant, respectively. In contrast the gene (MYC2), a transcription factor of the Jasmonic Acid-dependent defense genes was not expressed. However, in plants stimulated with SodSid CBIO117 and infected with Fol59, MYC2 gene expression was differentially induced, highlighting the activation of the Jasmonic acid-dependent defense that possibly led to counteracting the infection process of the pathogen and reducing the severity of the disease. Our results demonstrate the biotechnological potential of siderophore-producing isolates of the genus Acinetobacter sp. for the control of plant pathogens, eliciting the defensive response in the plant.
dc.format.extent117 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc630 - Agricultura y tecnologías relacionadas
dc.titleControl de la marchitez vascular del tomate causada por Fusarium oxysporum f.sp. lycopersici por cepas de Acinetobacter sp. productoras de sideróforos
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias Agrarias
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAgrios, G. N. (2005). Plant Pathology. Elsevier.
dc.relation.referencesAguado-Santacruz, G., Moreno-Gómez, B., Jimenez, B., & Moya, E. (2012). Impacto de los sideróforos microbianos y fitosideróforos en la asimilación del hierro por las plantas: Una Síntesis. Revista Fitotecnia Mexicana, 35, 9-21. https://doi.org/10.35196/rfm.2012.1.9
dc.relation.referencesAguilar, M. O., Álvarez, F., Medeot, D., Jofré, E., Semorile, L., & Pistorio, M. (2021). Screening of epiphytic rhizosphere-associated bacteria in Argentinian Malbec and Cabernet-Sauvignon vineyards for potential use as biological fertilisers and pathogen-control agents. OENO One, 55(4), 145-157. https://doi.org/10.20870/oeno-one.2021.55.4.4655
dc.relation.referencesAl Atrouni, A., Joly-Guillou, M.-L., Hamze, M., & Kempf, M. (2016). Reservoirs of Non-baumannii Acinetobacter Species. Frontiers in Microbiology, 7. https://www.frontiersin.org/article/10.3389/fmicb.2016.00049
dc.relation.referencesAl-Askar, A. A., Saber, W. I. A., Ghoneem, K. M., Hafez, E. E., & Ibrahim, A. A. (2021). Crude Citric Acid of Trichoderma asperellum: Tomato Growth Promotor and Suppressor of Fusarium oxysporum f. sp. lycopersici. Plants, 10(2), 222. https://doi.org/10.3390/plants10020222
dc.relation.referencesAleaghaee, S., Rezaee, S., Ebadi, M., & Zamanizadeh, H. (2019). Biological control of Fusarium oxysporum f. Sp. Lycopersici and induction of defensive enzyme of phenylalanine ammonialyse in tomato by Trichoderma and Bacillus antagonist isolates. Journal of Microbial World, 12(2), 125-138.
dc.relation.referencesAlvarez-Carvajal, F., Gonzalez-Soto, T., Armenta-Calderón, A. D., Méndez Ibarra, R., Esquer-Miranda, E., Juarez, J., Encinas-Basurto, D., Alvarez-Carvajal, F., Gonzalez-Soto, T., Armenta-Calderón, A. D., Méndez Ibarra, R., Esquer-Miranda, E., Juarez, J., & Encinas-Basurto, D. (2020). Silver nanoparticles coated with chitosan against Fusarium oxysporum causing the tomato wilt. Biotecnia, 22(3), 73-80. https://doi.org/10.18633/biotecnia.v22i3.952
dc.relation.referencesAlves-Júnior, M., de Sousa, F. O., Silva, T. F., Albino, U. B., Garcia, M. G., Moreira, S. M. C. de O., & Vieira, M. R. da S. (2021). Functional and morphological analysis of isolates of phylloplane and rhizoplane endophytic bacteria interacting in different cocoa production systems in the Amazon. Current Research in Microbial Sciences, 2, 100039. https://doi.org/10.1016/j.crmicr.2021.100039
dc.relation.referencesAmaya-Gómez, C. V., Hirsch, A. M., & Soto, M. J. (2015). Biofilm formation assessment in Sinorhizobium meliloti reveals interlinked control with surface motility. BMC Microbiology, 15, 58. https://doi.org/10.1186/s12866-015-0390-z
dc.relation.referencesAndrews, S. C., Robinson, A. K., & Rodríguez-Quiñones, F. (2003). Bacterial iron homeostasis. FEMS Microbiology Reviews, 27(2-3), 215-237. https://doi.org/10.1016/S0168-6445(03)00055-X
dc.relation.referencesApprill, A., McNally, S., Parsons, R., & Weber, L. (2015). Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquatic Microbial Ecology, 75. https://doi.org/10.3354/ame01753
dc.relation.referencesArgüello-Navarro, A. Z., & Moreno-Rozo, L. Y. (2014). Evaluación del potencial biofertilizante de bacterias diazótrofas aisladas del cultivo de cacao (Theobroma cacao L.). Acta Agronómica, 63(3), 238-245. https://doi.org/10.15446/acag.v63n3.41033
dc.relation.referencesArnold, A. E., & Herre, E. A. (2003). Canopy cover and leaf age affect colonization by tropical fungal endophytes: Ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia, 95(3), 388-398.
dc.relation.referencesArora, N. K., Kang, S. C., & Maheshwari, D. K. (2001). Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Current Science, 81(6), 673-677.
dc.relation.referencesArya, N., Rana, A., Rajwar, A., Sahgal, M., & Sharma, A. (2018). Biocontrol Efficacy of Siderophore Producing Indigenous Pseudomonas Strains Against Fusarium Wilt in Tomato. National Academy Science Letters, 41. https://doi.org/10.1007/s40009-018-0630-5
dc.relation.referencesAscencio-Álvarez, A., López-Benítez, A., Borrego-Escalante, F., Rodríguez-Herrera, S. A., Flores-Olivas, A., Jiménez-Díaz, F., & Gámez-Vázquez, A. J. (2008). Marchitez Vascular del Tomate: I. Presencia de Razas de Fusarium oxysporum f. sp. lycopersici (Sacc.) Snyder y Hansen en Culiacán, Sinaloa, México. Revista mexicana de fitopatología, 26(2), 114-120.
dc.relation.referencesAznar, A., Chen, N., Rigault, M., Riache, N., Joseph, D., Desmaële, D., Mouille, G., Boutet, S., Soubigou-Taconnat, L., Renou, J.-P., Thomine, S., Expert, D., & Dellagi, A. (2014). Scavenging Iron: A Novel Mechanism of Plant Immunity Activation by Microbial Siderophores1[C][W]. Plant physiology, 164. https://doi.org/10.1104/pp.113.233585
dc.relation.referencesAznar, A., Chen, N. W. G., Thomine, S., & Dellagi, A. (2015). Immunity to plant pathogens and iron homeostasis. Plant Science, 240, 90-97. https://doi.org/10.1016/j.plantsci.2015.08.022
dc.relation.referencesAznar, A., Patrit, O., Berger, A., & Dellagi, A. (2015). Alterations of iron distribution in Arabidopsis tissues infected by Dickeya dadantii. Molecular Plant Pathology, 16(5), 521-528. https://doi.org/10.1111/mpp.12208
dc.relation.referencesBáez-Valdez, E. P., Carrillo-Fasio, J. A., Báez-Sañudo, M. A., García-Estrada, R. S., Valdez-Torres, J. B., & Contreras-Martínez, R. (2010). Uso de Portainjertos Resistentes para el Control de la Fusariosis (Fusarium oxysporum f. Sp. Lycopersici Snyder & Hansen raza 3) del Tomate (Lycopersicon esculentum Mill) en Condiciones de MallaSombra. Revista mexicana de fitopatología, 28(2), 111-123.
dc.relation.referencesBardin, M., Ajouz, S., Comby, M., Lopez-Ferber, M., Graillot, B., Siegwart, M., & Nicot, P. C. (2015). Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides? Frontiers in Plant Science, 6, 566. https://doi.org/10.3389/fpls.2015.00566
dc.relation.referencesBardin, M., & Nicot, P. (2018). Is the development of resistance to biological control among plant pathogens possible?
dc.relation.referencesBaysal, Ö., Siragusa, M., İkten, H., Polat, İ., Gümrükcü, E., Yigit, F., Carimi, F., & Teixeira da Silva, J. A. (2009). Fusarium oxysporum f. Sp. Lycopersici races and their genetic discrimination by molecular markers in West Mediterranean region of Turkey. Physiological and Molecular Plant Pathology, 74(1), 68-75. https://doi.org/10.1016/j.pmpp.2009.09.008
dc.relation.referencesBetoudji, F., Abd El Rahman, T., Miller, M. J., Ghosh, M., Jacques, M., Bouarab, K., & Malouin, F. (2020). A Siderophore Analog of Fimsbactin from Acinetobacter Hinders Growth of the Phytopathogen Pseudomonas syringae and Induces Systemic Priming of Immunity in Arabidopsis thaliana. Pathogens, 9(10), 806. https://doi.org/10.3390/pathogens9100806
dc.relation.referencesBetoudji, F., Rahman, T. A. El, Miller, M. J., Ghosh, M., Jacques, M., Bouarab, K., & Malouin, F. (2020). A siderophore analog of fimsbactin from acinetobacter hinders growth of the phytopathogen pseudomonas syringae and induces systemic priming of immunity in arabidopsis thaliana. Pathogens, 9(10), 1-12. https://doi.org/10.3390/pathogens9100806
dc.relation.referencesBinh, P., Viet Tru, N., Dung, V., Thoa, N., Thao, P., Ha, T., & Thang, V. (2017). Bacteria in Wooden Box Fermentation of Cocoa in Daklak, Vietnam. Journal of Microbiology & Experimentation, 5. https://doi.org/10.15406/jmen.2017.05.00176
dc.relation.referencesBodah, E. (2017). Root Rot Diseases in Plants: A Review of Common Causal Agents and Management Strategies. Agricultural Research & Technology: Open Access Journal, 5. https://doi.org/10.19080/ARTOAJ.2017.05.555661
dc.relation.referencesBonneau, A., Roche, B., & Schalk, I. (2020). Iron acquisition in Pseudomonas aeruginosa by the siderophore pyoverdine: An intricate interacting network including periplasmic and membrane proteins. Scientific Reports, 10, 120. https://doi.org/10.1038/s41598-019-56913-x
dc.relation.referencesBourigault, Y., Rodrigues, S., Crépin, A., Chane, A., Taupin, L., Bouteiller, M., Dupont, C., Merieau, A., Konto-Ghiorghi, Y., Boukerb, A. M., Turner, M., Hamon, C., Dufour, A., Barbey, C., & Latour, X. (2021). Biocontrol of Biofilm Formation: Jamming of Sessile-Associated Rhizobial Communication by Rhodococcal Quorum-Quenching. International Journal of Molecular Sciences, 22(15), 8241. https://doi.org/10.3390/ijms22158241
dc.relation.referencesBurbano-Figueroa, Ó. (2020). Resistencia de plantas a patógenos: Una revisión sobre los conceptos de resistencia vertical y horizontal. Revista Argentina de Microbiología, 52(3), 245-255. https://doi.org/10.1016/j.ram.2020.04.006
dc.relation.referencesCáceres, P. F. F., Vélez, L. P., Junca, H., & Moreno-Herrera, C. X. (2021). Theobroma cacao L. agricultural soils with natural low and high cadmium (Cd) in Santander (Colombia), contain a persistent shared bacterial composition shaped by multiple soil variables and bacterial isolates highly resistant to Cd concentrations. Current Research in Microbial Sciences, 2, 100086. https://doi.org/10.1016/j.crmicr.2021.100086
dc.relation.referencesCaracuel, Z., Roncero, M. I. G., Espeso, E. A., González-Verdejo, C. I., García-Maceira, F. I., & Di Pietro, A. (2003). The pH signalling transcription factor PacC controls virulence in the plant pathogen Fusarium oxysporum. Molecular Microbiology, 48(3), 765-779. https://doi.org/10.1046/j.1365-2958.2003.03465.x
dc.relation.referencesCardona, G. I., Arcos, A. L., & Murcia, U. G. (2005). Abundancia de actinomicetes y micorrizas arbusculares en paisajes fragmentados de la Amazonia colombiana*. Agronomía Colombiana, 23(2), 317-326
dc.relation.referencesCardona-Piedrahita, L., & Zapata, J. (2019). Comparación de métodos de inoculación de Fusarium oxysporum f. Sp. Lycopersici (Sacc.) Snyder & Hansen, causante del marchitamiento vascular del tomate. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 43, 227. https://doi.org/10.18257/raccefyn.854
dc.relation.referencesCarmona, S. L., Burbano-David, D., Gómez, M. R., Lopez, W., Ceballos, N., Castaño-Zapata, J., Simbaqueba, J., & Soto-Suárez, M. (2020). Characterization of Pathogenic and Nonpathogenic Fusarium oxysporum Isolates Associated with Commercial Tomato Crops in the Andean Region of Colombia. Pathogens, 9(1), 70. https://doi.org/10.3390/pathogens9010070
dc.relation.referencesCarmona, S. L., Villarreal-Navarrete, A., Burbano-David, D., Gómez-Marroquín, M., Torres-Rojas, E., & Soto-Suárez, M. (2021). Protection of tomato plants against Fusarium oxysporum f. Sp. Lycopersici induced by chitosan. Revista Colombiana de Ciencias Hortícolas, 15(3), e12822-e12822. https://doi.org/10.17584/rcch.2021v15i3.12822
dc.relation.referencesCarmona-Hernandez, S., Reyes-Pérez, J. J., Chiquito-Contreras, R. G., Rincon-Enriquez, G., Cerdan-Cabrera, C. R., & Hernandez-Montiel, L. G. (2019). Biocontrol of Postharvest Fruit Fungal Diseases by Bacterial Antagonists: A Review. Agronomy, 9(3), 121. https://doi.org/10.3390/agronomy9030121
dc.relation.referencesChaiharn, M., Chunhaleuchanon, S., & Lumyong, S. (2009). Screening siderophore producing bacteria as potential biological control agent for fungal rice pathogens in Thailand. World Journal of Microbiology and Biotechnology, 25, 1919-1928. https://doi.org/10.1007/s11274-009-0090-7
dc.relation.referencesChiang, K.-S., Liu, H. I., Tsai, J. W., Tsai, J. R., & Bock, C. (2017). A discussion on disease severity index values. Part II: Using the disease severity index for null hypothesis testing. Annals of Applied Biology, 171, 490-505. https://doi.org/10.1111/aab.12396
dc.relation.referencesConstantin, M. E., de Lamo, F. J., Vlieger, B. V., Rep, M., & Takken, F. L. W. (2019). Endophyte-Mediated Resistance in Tomato to Fusarium oxysporum Is Independent of ET, JA, and SA. Frontiers in Plant Science, 10, 979. https://doi.org/10.3389/fpls.2019.00979
dc.relation.referencesCucu, M. A., Gilardi, G., Pugliese, M., Gullino, M. L., & Garibaldi, A. (2020). An assessment of the modulation of the population dynamics of pathogenic Fusarium oxysporum f. Sp. Lycopersici in the tomato rhizosphere by means of the application of Bacillus subtilis QST 713, Trichoderma sp. TW2 and two composts. Biological Control, 142, 104158. https://doi.org/10.1016/j.biocontrol.2019.104158
dc.relation.referencesCui, Y., Chen, C.-L., Cui, M., Zhou, W.-J., Wu, H.-L., & Ling, H.-Q. (2018). Four IVa bHLH Transcription Factors Are Novel Interactors of FIT and Mediate JA Inhibition of Iron Uptake in Arabidopsis. Molecular Plant, 11. https://doi.org/10.1016/j.molp.2018.06.005
dc.relation.referencesde Lamo, F. J., & Takken, F. L. W. (2020). Biocontrol by Fusarium oxysporum Using Endophyte-Mediated Resistance. Frontiers in Plant Science, 11. https://www.frontiersin.org/article/10.3389/fpls.2020.00037
dc.relation.referencesDe Lorenzo, G., Ferrari, S., Cervone, F., & Okun, E. (2018). Extracellular DAMPs in Plants and Mammals: Immunity, Tissue Damage and Repair. Trends in Immunology, 39(11), 937-950. https://doi.org/10.1016/j.it.2018.09.006
dc.relation.referencesDe Sain, M., & Rep, M. (2015). The Role of Pathogen-Secreted Proteins in Fungal Vascular Wilt Diseases. International journal of molecular sciences, 16, 23970-23993. https://doi.org/10.3390/ijms161023970
dc.relation.referencesDean, R., Van Kan, J. A. L., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J., & Foster, G. D. (2012). The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13(4), 414-430. https://doi.org/10.1111/j.1364-3703.2011.00783.x
dc.relation.referencesDelgado-Jarana, J., Martínez-Rocha, A. L., Roldán-Rodriguez, R., Roncero, M. I. G., & Di Pietro, A. (2005). Fusarium oxysporum G-protein beta subunit Fgb1 regulates hyphal growth, development, and virulence through multiple signalling pathways. Fungal Genetics and Biology: FG & B, 42(1), 61-72. https://doi.org/10.1016/j.fgb.2004.10.001
dc.relation.referencesDelgado-Ramírez, C. S., Hernández-Martínez, R., & Sepúlveda, E. (2021). Rhizobacteria Associated with a Native Solanaceae Promote Plant Growth and Decrease the Effects of Fusariumoxysporum in Tomato. Agronomy, 11(3), 579. https://doi.org/10.3390/agronomy11030579
dc.relation.referencesDellagi, A., Segond, D., Rigault, M., Fagard, M., Simon, C., Saindrenan, P., & Expert, D. (2009). Microbial Siderophores Exert a Subtle Role in Arabidopsis during Infection by Manipulating the Immune Response and the Iron Status. Plant Physiology, 150(4), 1687-1696. https://doi.org/10.1104/pp.109.138636
dc.relation.referencesDi Pietro, A., García-MacEira, F. I., Méglecz, E., & Roncero, M. I. (2001). A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis. Molecular Microbiology, 39(5), 1140-1152.
dc.relation.referencesDíaz-García, Huang, S., Spröer, C., Sierra-Ramírez, R., Bunk, B., Overmann, J., & Jiménez, D. J. (2021). Dilution-to-Stimulation/Extinction Method: A Combination Enrichment Strategy To Develop a Minimal and Versatile Lignocellulolytic Bacterial Consortium. Applied and Environmental Microbiology, 87(2), e02427-20. https://doi.org/10.1128/AEM.02427-20
dc.relation.referencesDimkpa, C., Merten, D., Svatos, A., Büchel, G., & Kothe, E. (2009). Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biology and Biochemistry, 41, 154-162. https://doi.org/10.1016/j.soilbio.2008.10.010
dc.relation.referencesDixon, S. J., & Stockwell, B. R. (2014). The role of iron and reactive oxygen species in cell death. Nature Chemical Biology, 10(1), 9-17. https://doi.org/10.1038/nchembio.1416
dc.relation.referencesDuffy, B. K., & Défago, G. (1999). Environmental Factors Modulating Antibiotic and Siderophore Biosynthesis by Pseudomonas fluorescens Biocontrol Strains. Applied and Environmental Microbiology, 65(6), 2429-2438.
dc.relation.referencesDumas, Z., Ross-Gillespie, A., & Kümmerli, R. (2013). Switching between apparently redundant iron-uptake mechanisms benefits bacteria in changeable environments. Proceedings. Biological Sciences, 280(1764), 20131055. https://doi.org/10.1098/rspb.2013.1055
dc.relation.referencesDuyvesteijn, R., van Wijk, R., Boer, Y., Rep, M., Cornelissen, B., & Haring, M. (2005). Frp1 is a Fusarium oxysporum F-box protein required for pathogenicity on tomato. Molecular microbiology, 57, 1051-1063. https://doi.org/10.1111/j.1365-2958.2005.04751.x
dc.relation.referencesEhlert, G., Taraz, K., & Budzikiewicz, H. (1994). Serratiochelin, a New Catecholate Siderophore from Serratia marcescens. Zeitschrift Für Naturforschung C, 49(1-2), 11-17. https://doi.org/10.1515/znc-1994-1-203
dc.relation.referencesElshahawy, I., Saied, N., Abd-El-Kareem, F., & Morsy, A. (2018). Field application of selected bacterial strains and their combinations for controlling onion and garlic white rot disease caused by Stromatinia cepivora. Journal of Plant Pathology, 100. https://doi.org/10.1007/s42161-018-0113-z
dc.relation.referencesEsmeraldas García, G. A. (2019). Actividad antagonista de Rizobacterias Promotoras del Crecimiento Vegetal (PGPR) a Moniliophthora perniciosa (Escoba de bruja) en Cacao (Theobroma cacao L.). https://repositorio.uteq.edu.ec/handle/43000/3627
dc.relation.referencesEssarioui, A., Mokrini, F., & Afechtal, M. (2016). Molecular interactions between tomato and its wilt pathogen Fusarium oxysporum f. Sp. Lycopersici- a review. Revue Marocaine des Sciences Agronomiques et Vétérinaires, 4, 66-74.
dc.relation.referencesFang, Q., Fan, Z., Xie, Y., Wang, X., Li, K., & Liu, Y. (2016). Screening and Evaluation of the Bioremediation Potential of Cu/Zn-Resistant, Autochthonous Acinetobacter sp. FQ-44 from Sonchus oleraceus L. Frontiers in Plant Science, 7. https://www.frontiersin.org/article/10.3389/fpls.2016.01487
dc.relation.referencesFarag, H., Abdou, Z., Salama, D., Ibrahim, M., & Srour, H. (2011). Effect of neem and willow aqueous extracts on fusarium wilt disease in tomato seedlings: Induction of antioxidant defensive enzymes. Annals of Agricultural Sciences, 56, 1-7. https://doi.org/10.1016/j.aoas.2011.05.007
dc.relation.referencesFasio, J. A. C., Rodríguez, T. de J. M., Estrada, R. S. G., Ortega, J. E. C., Zequera, I. M., & Barajas, A. J. S. (2003). Razas de Fusarium oxysporum f. Sp. Lycopersici Snyder y Hansen, en Tomate (Lycopersicon esculentum Mill.) en el Valle de Culiacán, Sinaloa, México. Revista Mexicana de Fitopatología, 21(2), 123-127.
dc.relation.referencesFelsenstein, J. (1985). Phylogenies and the Comparative Method. The American Naturalist, 125(1), 1-15. Filiz, E., & Kurt, F. (2019). FIT (Fer-like iron deficiency-induced transcription factor) in plant iron homeostasis: Genome-wide identification and bioinformatics analyses. Journal of Plant Biochemistry and Biotechnology, 28(2), 143-157. https://doi.org/10.1007/s13562-019-00497-0
dc.relation.referencesFoughalia, A., Yousra, B., Chandeysson, C., Djedidi, M., Tahirine, M., Kamel, A., & Nicot, P. (2022). Acinetobacter calcoaceticus SJ19 and Bacillus safensis SJ4, two Algerian rhizobacteria protecting tomato plants against Botrytis cinerea and promoting their growth. Egyptian Journal of Biological Pest Control, 32. https://doi.org/10.1186/s41938-022-00511-z
dc.relation.referencesGanger, M. T., Dietz, G. D., & Ewing, S. J. (2017). A common base method for analysis of qPCR data and the application of simple blocking in qPCR experiments. BMC Bioinformatics, 18(1), 534. https://doi.org/10.1186/s12859-017-1949-5
dc.relation.referencesGao, M., He, Y., Yin, X., Zhong, X., Yan, B., Wu, Y., Chen, J., Li, X., Zhai, K., Huang, Y., Gong, X., Chang, H., Xie, S., Liu, J., Yue, J., Xu, J., Zhang, G., Deng, Y., Wang, E., … He, Z. (2021). Ca2+ sensor-mediated ROS scavenging suppresses rice immunity and is exploited by a fungal effector. Cell, 184(21), 5391-5404.e17. https://doi.org/10.1016/j.cell.2021.09.009
dc.relation.referencesGarzón, L. P. (2016). Importancia de las micorrizas arbusculares (MA) para un uso sostenible del suelo en la amazonia Colombiana. Revista Luna Azul, 42, 217-234.
dc.relation.referencesGoel, V., Kapil, A., Das, B., & Rao, D. (1998). Influence of iron on growth and extracellular products of Acinetobacter baumannii. Japanese journal of medical science & biology, 51, 25-33. https://doi.org/10.7883/yoken1952.51.25
dc.relation.referencesGonzález Marquetti, I., Arias, Y., & Peteira, B. (2012). ASPECTOS GENERALES DE LA INTERACCIÓN Fusarium oxysporum f. Sp. Lycopersici-TOMATE. Revista de Protección Vegetal, 27, 1-7.
dc.relation.referencesGonzález-Chávez, M. C. A. (2017). Fitorremediación asistida por microorganismos: Enfásis en bacterias promotoras del crecimiento de plantas. Agro Productividad, 10(4), Article 4. https://revistaagroproductividad.org/index.php/agroproductividad/article/view/1000
dc.relation.referencesGuerinot, M. L. (1994). Microbial Iron Transport. Annual Review of Microbiology, 48(1), 743-772. https://doi.org/10.1146/annurev.mi.48.100194.003523
dc.relation.referencesGulati, A., Vyas, P., Rahi, P., & Kasana, R. (2009). Plant Growth-Promoting and Rhizosphere-Competent Acinetobacter rhizosphaerae Strain BIHB 723 from the Cold Deserts of the Himalayas. Current microbiology, 58, 371-377. https://doi.org/10.1007/s00284-008-9339-x
dc.relation.referencesGuo, L., Zhao, G., Xu, J., Kistler, H. C., Gao, L., & Ma, L. (2016). Compartmentalized gene regulatory network of the pathogenic fungus Fusarium graminearum. The New Phytologist, 211(2), 527-541. https://doi.org/10.1111/nph.13912
dc.relation.referencesHamuel, J. D., Ndakidemi, P., Human, I., & Benade, S. (2011). The Ecology, Biology and Pathogenesis of Acinetobacter spp.: An Overview. Microbes and environments / JSME, 26, 101-112. https://doi.org/10.1264/jsme2.ME10179
dc.relation.referencesHeo, A. Y., Koo, Y. M., & Choi, H. W. (2022). Biological Control Activity of Plant Growth Promoting Rhizobacteria Burkholderia contaminans AY001 against Tomato Fusarium Wilt and Bacterial Speck Diseases. Biology, 11(4), 619. https://doi.org/10.3390/biology11040619
dc.relation.referencesHerlihy, J. H., Long, T. A., & McDowell, J. M. (2020). Iron homeostasis and plant immune responses: Recent insights and translational implications. Journal of Biological Chemistry, 295(39), 13444-13457. https://doi.org/10.1074/jbc.REV120.010856
dc.relation.referencesHernandez-Montiel, L. G., Gutierrez-Perez, E. D., Murillo-Amador, B., Vero, S., Chiquito-Contreras, R. G., & Rincon-Enriquez, G. (2018). Mechanisms employed by Debaryomyces hansenii in biological control of anthracnose disease on papaya fruit. Postharvest Biology and Technology, 139, 31-37. https://doi.org/10.1016/j.postharvbio.2018.01.015
dc.relation.referencesHider, R. C., & Kong, X. (2010). Chemistry and biology of siderophores. Natural Product Reports, 27(5), 637-657. https://doi.org/10.1039/b906679a
dc.relation.referencesHipólito-Romero, E., Carcaño-Montiel, M. G., Ramos-Prado, J. M., Vázquez-Cabañas, E. A., López-Reyes, L., & Ricaño-Rodríguez, J. (2017). Efecto de inoculantes bacterianos edáficos mixtos en el desarrollo temprano de cultivares mejorados de cacao (Theobroma cacao L.) en un sistema agroforestal tradicional del norte de Oaxaca, México. Revista Argentina de Microbiología, 49(4), 356-365. https://doi.org/10.1016/j.ram.2017.04.003
dc.relation.referencesHirano, Y., & Arie, T. (2006). PCR-based differentiation of Fusarium oxysporum ff. Sp. Lycopersici and radicis-lycopersici and races of F. oxysporum f. Sp. Lycopersici. Journal of General Plant Pathology, 72(5), 273-283. https://doi.org/10.1007/s10327-006-0287-7
dc.relation.referencesHöfte, M., & Bakker, P. (2007). Competition for Iron and Induced Systemic Resistance by Siderophores of Plant Growth Promoting Rhizobacteria (pp. 121-133). https://doi.org/10.1007/978-3-540-71160-5_6
dc.relation.referencesHolden, V. I., & Bachman, M. A. (2015). Diverging roles of bacterial siderophores during infection. Metallomics, 7(6), 986-995. https://doi.org/10.1039/c4mt00333k
dc.relation.referencesHouterman, P. M., Ma, L., van Ooijen, G., de Vroomen, M. J., Cornelissen, B. J. C., Takken, F. L. W., & Rep, M. (2009). The effector protein Avr2 of the xylem-colonizing fungus Fusarium oxysporum activates the tomato resistance protein I-2 intracellularly. The Plant Journal: For Cell and Molecular Biology, 58(6), 970-978. https://doi.org/10.1111/j.1365-313X.2009.03838.x
dc.relation.referencesHsiao, P.-Y., Cheng, C.-P., Koh, K. W., & Chan, M.-T. (2017). The Arabidopsis defensin gene, AtPDF1.1, mediates defence against Pectobacterium carotovorum subsp. Carotovorum via an iron-withholding defence system. Scientific Reports, 7(1), 9175. https://doi.org/10.1038/s41598-017-08497-7
dc.relation.referencesHuang, Z., Zhang, Z., Zhang, X., Zhang, H., Huang, D., & Huang, R. (2004). Tomato TERF1 modulates ethylene response and enhances osmotic stress tolerance by activating expression of downstream genes. FEBS Letters, 573(1-3), 110-116. https://doi.org/10.1016/j.febslet.2004.07.064
dc.relation.referencesHuddedar, S. B., Shete, A. M., Tilekar, J. N., Gore, S. D., Dhavale, D. D., & Chopade, B. A. (2002). Isolation, characterization, and plasmid pUPI126-mediated indole-3-acetic acid production in acinetobacter strains from rhizosphere of wheat. Applied Biochemistry and Biotechnology, 102-103(1-6), 21-39. https://doi.org/10.1385/abab:102-103:1-6:021
dc.relation.referencesHurtado, E., González-Vallejos, F., Roper, C., Bastías, E., & Mazuela, P. (2017). Propuesta para la determinación del contenido de clorofila en hojas de tomate. Idesia (Arica), 35, 129-130. https://doi.org/10.4067/S0718-34292017000400129
dc.relation.referencesIndiragandhi, P., Anandham, R., Madhaiyan, M., & Sa, T. (2008). Characterization of Plant Growth–Promoting Traits of Bacteria Isolated from Larval Guts of Diamondback Moth Plutella xylostella (Lepidoptera: Plutellidae). Current microbiology, 56, 327-333. https://doi.org/10.1007/s00284-007-9086-4
dc.relation.referencesJaramillo Noreña, J., Rodríguez, V. P., Guzmán, M., & Zapata, M. (2006). El cultivo de tomate bajo invernadero. http://localhost:8080/handle/11348/3824
dc.relation.referencesJ.g, M., C, K., & F, S. (1990). Additions to the host range of Fusarium oxysporum f. Sp. Radicis-lycopersici. Plant Disease.https://scholar.google.com/scholar_lookup?title=Additions+to+the+host+range+of+Fusarium+oxysporum+f.+sp.+radicis-lycopersici.&author=Menzies+J.G.&publication_year=1990
dc.relation.referencesJones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323-329. https://doi.org/10.1038/nature05286
dc.relation.referencesKang, S.-M., Khan, A., Hamayun, M., Shinwari, Z., Kim, Y.-H., Joo, G.-J., & Lee, I.-J. (2012). Acinetobacter Calcoaceticus ameliorated plant growth and influenced gibberellins and functional biochemicals. Abstracts of papers, 44, 365-372.
dc.relation.referencesKang, Y.-S., Jung, J., Jeon, C. O., & Park, W. (2011). Acinetobacter oleivorans sp. Nov. Is capable of adhering to and growing on diesel-oil. Journal of Microbiology (Seoul, Korea), 49(1), 29-34. https://doi.org/10.1007/s12275-011-0315-y
dc.relation.referencesKarthika, S., Varghese, S., & Jisha, M. S. (2020). Exploring the efficacy of antagonistic rhizobacteria as native biocontrol agents against tomato plant diseases. 3 Biotech, 10(7), 320. https://doi.org/10.1007/s13205-020-02306-1
dc.relation.referencesKhalil, Md. M. R., Fierro-Coronado, R. A., Peñuelas-Rubio, O., Villa-Lerma, A. G., Plascencia-Jatomea, R., Félix-Gastélum, R., & Maldonado-Mendoza, I. E. (2021). Rhizospheric bacteria as potential biocontrol agents against Fusarium wilt and crown and root rot diseases in tomato. Saudi Journal of Biological Sciences, 28(12), 7460-7471. https://doi.org/10.1016/j.sjbs.2021.08.043
dc.relation.referencesKhan, A., Singh, P., & Srivastava, A. (2018). Synthesis, nature and utility of universal iron chelator – Siderophore: A review. Microbiological Research, 212-213, 103-111. https://doi.org/10.1016/j.micres.2017.10.012
dc.relation.referencesKieu, N. P., Aznar, A., Segond, D., Rigault, M., Simond-Côte, E., Kunz, C., Soulie, M.-C., Expert, D., & Dellagi, A. (2012). Iron deficiency affects plant defence responses and confers resistance to Dickeya dadantii and Botrytis cinerea. Molecular Plant Pathology, 13(8), 816-827. https://doi.org/10.1111/j.1364-3703.2012.00790.x
dc.relation.referencesKim, K.-J., Jang, J.-H., & Yang, Y.-J. (2017). Production of siderophore from L-glutamic acid as both carbon and nitrogen sole sources in Acinetobacter sp. B-W. Korean Journal of Microbiology, 53(2), 97-102. https://doi.org/10.7845/kjm.2017.7023
dc.relation.referencesKöhl, J., Kolnaar, R., & Ravensberg, W. J. (2019). Mode of Action of Microbial Biological Control Agents Against Plant Diseases: Relevance Beyond Efficacy. Frontiers in Plant Science, 10. https://www.frontiersin.org/article/10.3389/fpls.2019.00845
dc.relation.referencesKwon, H.-D., & Song, H.-G. (2014). Interactions between Indole-3-acetic Acid Producing Acinetobacter sp. SW5 and Growth of Tomato Plant. The Korean Journal of Microbiology, 50, 302-307. https://doi.org/10.7845/kjm.2014.4050
dc.relation.referencesLairini, K., Perez-Espinosa, A., Pineda, M., & Ruiz-Rubio, M. (1996). Purification and characterization of tomatinase from Fusarium oxysporum f. Sp. Lycopersici. Applied and environmental microbiology, 62, 1604-1609. https://doi.org/10.1128/AEM.62.5.1604-1609.1996
dc.relation.referencesLamont, I. L., Beare, P. A., Ochsner, U., Vasil, A. I., & Vasil, M. L. (2002). Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences, 99(10), 7072-7077. https://doi.org/10.1073/pnas.092016999
dc.relation.referencesLeite, H. A. C., Silva, A. B., Gomes, F. P., Gramacho, K. P., Faria, J. C., de Souza, J. T., & Loguercio, L. L. (2013). Bacillus subtilis and Enterobacter cloacae endophytes from healthy Theobroma cacao L. trees can systemically colonize seedlings and promote growth. Applied Microbiology and Biotechnology, 97(6), 2639-2651. https://doi.org/10.1007/s00253-012-4574-2
dc.relation.referencesLeiva, E., Osorio García, M. A., & Ramírez, R. (2013). Microorganismos asociados a la rizosfera del cacao (Theobroma cacao) en condiciones de bosque húmedo premontano (Bh-PM). Suelos Ecuatoriales, 43, 35-45.
dc.relation.referencesLievens, B., van Baarlen, P., Verreth, C., van Kerckhove, S., Rep, M., & Thomma, B. P. H. J. (2009). Evolutionary relationships between Fusarium oxysporum f. Sp. Lycopersici and F. oxysporum f. Sp. Radicis-lycopersici isolates inferred from mating type, elongation factor-1alpha and exopolygalacturonase sequences. Mycological Research, 113(Pt 10), 1181-1191. https://doi.org/10.1016/j.mycres.2009.07.019
dc.relation.referencesLin, H.-R., Shu, H.-Y., & Lin, G.-H. (2018). Biological roles of indole-3-acetic acid in Acinetobacter baumannii. Microbiological Research, 216, 30-39. https://doi.org/10.1016/j.micres.2018.08.004
dc.relation.referencesLin, J., Cheng, J., Wang, Y., & Shen, X. (2018). The Pseudomonas Quinolone Signal (PQS): Not Just for Quorum Sensing Anymore. Frontiers in Cellular and Infection Microbiology, 8. https://www.frontiersin.org/article/10.3389/fcimb.2018.00230
dc.relation.referencesLópez-Berges, M. S., Rispail, N., Prados-Rosales, R. C., & Di Pietro, A. (2010). A nitrogen response pathway regulates virulence functions in Fusarium oxysporum via the protein kinase TOR and the bZIP protein MeaB. The Plant Cell, 22(7), 2459-2475. https://doi.org/10.1105/tpc.110.075937
dc.relation.referencesLópez-Díaz, C. (2019). Mecanismos genéticos y moleculares implicados en la plasticidad genómica de Fusarium oxysporum. http://helvia.uco.es/xmlui/handle/10396/18865
dc.relation.referencesMadrid, M. P., Di Pietro, A., & Roncero, M. I. G. (2003). Class V chitin synthase determines pathogenesis in the vascular wilt fungus Fusarium oxysporum and mediates resistance to plant defence compounds. Molecular Microbiology, 47(1), 257-266. https://doi.org/10.1046/j.1365-2958.2003.03299.x
dc.relation.referencesMaindad, D. V., Kasture, V. M., Chaudhari, H., Dhavale, D. D., Chopade, B. A., & Sachdev, D. P. (2014). Characterization and Fungal Inhibition Activity of Siderophore from Wheat Rhizosphere Associated Acinetobacter calcoaceticus Strain HIRFA32. Indian Journal of Microbiology, 54(3), 315-322. https://doi.org/10.1007/s12088-014-0446-z
dc.relation.referencesMantilla-Paredes, A. J., Cardona, G. I., Peña-Venegas, C. P., Murcia, U., Rodríguez, M., & Zambrano, M. M. (2009). Distribución de bacterias potencialmente fijadoras de nitrógeno y su relación con parámetros fisicoquímicos en suelos con tres coberturas vegetales en el sur de la Amazonia colombiana. Revista de Biología Tropical, 57(4), 915-927.
dc.relation.referencesMartínez-Medina, A., Fernández, I., Sánchez-Guzmán, M. J., Jung, S. C., Pascual, J. A., & Pozo, M. J. (2013). Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato. Frontiers in Plant Science, 4, 206. https://doi.org/10.3389/fpls.2013.00206
dc.relation.referencesMartín-Urdíroz, M., Roncero, M. I. G., González-Reyes, J. A., & Ruiz-Roldán, C. (2008). ChsVb, a class VII chitin synthase involved in septation, is critical for pathogenicity in Fusarium oxysporum. Eukaryotic Cell, 7(1), 112-121. https://doi.org/10.1128/EC.00347-07
dc.relation.referencesMcRose, D., Baars, O., Seyedsayamdost, M., & Morel, F. (2018). Quorum sensing and iron regulate a two-for-one siderophore gene cluster in Vibrio harveyi. Proceedings of the National Academy of Sciences, 115, 201805791. https://doi.org/10.1073/pnas.1805791115
dc.relation.referencesMehnert, M., Retamal-Morales, G., Schwabe, R., Vater, S., Heine, T., Levicán, G. J., Schlömann, M., & Tischler, D. (2017). Revisiting the Chrome Azurol S Assay for Various Metal Ions. Solid State Phenomena, 262, 509-512. https://doi.org/10.4028/www.scientific.net/SSP.262.509
dc.relation.referencesMeziane, H., Sluis, I. van der, Loon, L. C. van, Höfte, M., & Bakker, P. (2005). Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Molecular plant pathology. https://doi.org/10.1111/j.1364-3703.2005.00276.x
dc.relation.referencesMichavila, G., Adler, C., De Gregorio, P. R., Lami, M. J., Caram Di Santo, M. C., Zenoff, A. M., de Cristobal, R. E., & Vincent, P. A. (2017). Pseudomonas protegens CS1 from the lemon phyllosphere as a candidate for citrus canker biocontrol agent. Plant Biology (Stuttgart, Germany), 19(4), 608-617. https://doi.org/10.1111/plb.12556
dc.relation.referencesMichielse, C. B., & Rep, M. (2009). Pathogen profile update: Fusarium oxysporum. Molecular Plant Pathology, 10(3), 311-324. https://doi.org/10.1111/j.1364-3703.2009.00538.x
dc.relation.referencesMilagres, A. M., Machuca, A., & Napoleão, D. (1999). Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. Journal of Microbiological Methods, 37(1), 1-6. https://doi.org/10.1016/s0167-7012(99)00028-7
dc.relation.referencesModarresi, F., Azizi, O., Shakibaie, M. R., Motamedifar, M., Mosadegh, E., & Mansouri, S. (2015). Iron limitation enhances acyl homoserine lactone (AHL) production and biofilm formation in clinical isolates of Acinetobacter baumannii. Virulence, 6(2), 152-161. https://doi.org/10.1080/21505594.2014.1003001
dc.relation.referencesMoreno Reséndez, A., Carda Mendoza, V., Reyes Carrillo, J. L., Vásquez Arroyo, J., Cano Ríos, P., Moreno Reséndez, A., Carda Mendoza, V., Reyes Carrillo, J. L., Vásquez Arroyo, J., & Cano Ríos, P. (2018). Rizobacterias promotoras del crecimiento vegetal: Una alternativa de biofertilización para la agricultura sustentable. Revista Colombiana de Biotecnología, 20(1), 68-83. https://doi.org/10.15446/rev.colomb.biote.v20n1.73707
dc.relation.referencesMüller, G., Matzanke, B. F., & Raymond, K. N. (1984). Iron transport in Streptomyces pilosus mediated by ferrichrome siderophores, rhodotorulic acid, and enantio-rhodotorulic acid. Journal of Bacteriology, 160(1), 313-318. https://doi.org/10.1128/jb.160.1.313-318.1984
dc.relation.referencesMuñoz Macías, B. I. (2019). Rizobacterias promotoras de crecimiento (PGPR) en el biocontrol del nematodo Meloidogyne incognita y Fusarium oxysporum f. Sp. Lycopersici en el cultivo de tomate (Lycopersicum esculentum). https://repositorio.uteq.edu.ec/handle/43000/3634
dc.relation.referencesNirmaladevi, D., Venkataramana, M., Srivastava, R. K., Uppalapati, S. R., Gupta, V. K., Yli-Mattila, T., Clement Tsui, K. M., Srinivas, C., Niranjana, S. R., & Chandra, N. S. (2016). Molecular phylogeny, pathogenicity and toxigenicity of Fusarium oxysporum f. Sp. Lycopersici. Scientific Reports, 6(1), 21367. https://doi.org/10.1038/srep21367
dc.relation.referencesNishad, R., Ahmed, T., Rahman, V. J., & Kareem, A. (2020). Modulation of Plant Defense System in Response to Microbial Interactions. Frontiers in Microbiology, 11. https://www.frontiersin.org/article/10.3389/fmicb.2020.01298
dc.relation.referencesNogales, J., Domínguez-Ferreras, A., Amaya-Gómez, C. V., van Dillewijn, P., Cuéllar, V., Sanjuán, J., Olivares, J., & Soto, M. J. (2010). Transcriptome profiling of a Sinorhizobium meliloti fadD mutant reveals the role of rhizobactin 1021 biosynthesis and regulation genes in the control of swarming. BMC Genomics, 11(1), 157. https://doi.org/10.1186/1471-2164-11-157
dc.relation.referencesNüsslein, K. (2012, enero 11). Amazon rainforest microbial observatory: Functional diversity, taxonomic diversity and response to ecosystem conversion.
dc.relation.referencesParada, A. E., Needham, D. M., & Fuhrman, J. A. (2016). Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environmental Microbiology, 18(5), 1403-1414. https://doi.org/10.1111/1462-2920.13023
dc.relation.referencesPayne, S. M. (1994). Detection, isolation, and characterization of siderophores. Methods in Enzymology, 235, 329-344. https://doi.org/10.1016/0076-6879(94)35151-1
dc.relation.referencesPedroza-Sandoval, A., & Gaxiola, J. (2009). Análisis del área bajo la curva del progreso de las enfermedades (ABCPE) en patosistemas agrícolas (pp. 180-189). https://doi.org/10.13140/2.1.4475.7767
dc.relation.referencesPena, R. T., Blasco, L., Ambroa, A., González-Pedrajo, B., Fernández-García, L., López, M., Bleriot, I., Bou, G., García-Contreras, R., Wood, T. K., & Tomás, M. (2019). Relationship Between Quorum Sensing and Secretion Systems. Frontiers in Microbiology, 10. https://www.frontiersin.org/articles/10.3389/fmicb.2019.01100
dc.relation.referencesPenwell, W. F., DeGrace, N., Tentarelli, S., Gauthier, L., Gilbert, C. M., Arivett, B. A., Miller, A. A., Durand-Reville, T. F., Joubran, C., & Actis, L. A. (2015). Discovery and Characterization of New Hydroxamate Siderophores, Baumannoferrin A and B, produced by Acinetobacter baumannii. Chembiochem: A European Journal of Chemical Biology, 16(13), 1896-1904. https://doi.org/10.1002/cbic.201500147
dc.relation.referencesPieterse, C. M. J., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C. M., & Bakker, P. A. H. M. (2014). Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 52, 347-375. https://doi.org/10.1146/annurev-phyto-082712-102340
dc.relation.referencesPietro, A., Gonzalez-Roncero, M., & Roldán, M. (2009). From Tools of Survival to Weapons of Destruction: The Role of Cell Wall-Degrading Enzymes in Plant Infection (Vols. 181-200, pp. 181-200). https://doi.org/10.1007/978-3-540-87407-2_10
dc.relation.referencesPopat, R., Harrison, F., da Silva, A., Easton, S., Mcnally, L., Williams, P., & Diggle, S. (2017). Environmental modification via a quorum sensing molecule influences the social landscape of siderophore production. https://doi.org/10.1101/053918
dc.relation.referencesPopovic, Z., Maier, V., Avramov, M., Uzelac, I., Gosic-Dondo, S., Blagojević, D., & Kostál, V. (2021). Acclimations to Cold and Warm Conditions Differently Affect the Energy Metabolism of Diapausing Larvae of the European Corn Borer Ostrinia nubilalis (Hbn.). Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.768593
dc.relation.referencesPrashant, D., Makarand, R. R., Bhushan, L., & Sudhir, B. (2009). Siderophoregenic Acinetobacter calcoaceticus isolated from wheat rhizosphere with strong PGPR activity. https://doi.org/10.21161/mjm.13508
dc.relation.referencesPrathibha, K., & Sumathi, S. (2008). Biodegradation of mixture containing monohydroxybenzoate isomers by Acinetobacter calcoaceticus. World Journal of Microbiology and Biotechnology, 24(6), 813-823. https://doi.org/10.1007/s11274-007-9545-x
dc.relation.referencesPrihatna, C., Barbetti, M. J., & Barker, S. J. (2018). A Novel Tomato Fusarium Wilt Tolerance Gene. Frontiers in Microbiology, 9. https://www.frontiersin.org/article/10.3389/fmicb.2018.01226
dc.relation.referencesPurkayastha, G., Mangar, P., Saha, A., & Saha, D. (2018). Evaluation of the biocontrol efficacy of a Serratia marcescens strain indigenous to tea rhizosphere for the management of root rot disease in tea. PLOS ONE, 13, e0191761. https://doi.org/10.1371/journal.pone.0191761
dc.relation.referencesRada Cuentas, J. (2016). Acinetobacter un patógeno actual. Revista de la Sociedad Boliviana de Pediatría, 55(1), 29-48.
dc.relation.referencesRadó, J., Kaszab, E., Benedek, T., Kriszt, B., & Szoboszlay, S. (2019). First isolation of carbapenem-resistant Acinetobacter beijerinckii from an environmental sample. Acta Microbiologica et Immunologica Hungarica, 66(1), 113-130. https://doi.org/10.1556/030.66.2019.004
dc.relation.referencesRadzki, W., Gutierrez Mañero, F. J., Algar, E., Lucas García, J. A., García-Villaraco, A., & Ramos Solano, B. (2013). Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek, 104(3), 321-330. https://doi.org/10.1007/s10482-013-9954-9
dc.relation.referencesRanjan, K., Paula, F. S., Mueller, R. C., Jesus, E. da C., Cenciani, K., Bohannan, B. J. M., Nüsslein, K., & Rodrigues, J. L. M. (2015). Forest-to-pasture conversion increases the diversity of the phylum Verrucomicrobia in Amazon rainforest soils. Frontiers in Microbiology, 6. https://www.frontiersin.org/article/10.3389/fmicb.2015.00779
dc.relation.referencesRehman, R., Waheed, K., Nawaz, H., & Hanif, M. A. (2019). Medicinal Plants of South Asia, Chapter 46—Tomato (p. 768). https://doi.org/10.1016/B978-0-08-102659-5.00046-X
dc.relation.referencesRestrepo, S., Henao, C., Galvis, L., Pérez, J., Hoyos, R., & Granada, D. (2020). Siderophore containing extract from Serratia plymuthica AED38 as an efficient strategy against avocado root rot caused by Phytophthora cinnamomi. Biocontrol Science and Technology, 31, 1-15. https://doi.org/10.1080/09583157.2020.1846162
dc.relation.referencesRíos, A. G., Vidal, C. C. R., Montes, E. R., & López, A. S. (2017). Residuos de plaguicidas en tomate (Solanum lycopersicum) comercializado en Armenia, Colombia. Vitae, 24(2 (2)), 68-79. https://doi.org/10.17533/udea.vitae.v24n2(2)a08
dc.relation.referencesRispail, N., & Pietro, A. (2009). Fusarium oxysporum Ste12 Controls Invasive Growth and Virulence Downstream of the Fmk1 MAPK Cascade. Molecular plant-microbe interactions : MPMI, 22, 830-839. https://doi.org/10.1094/MPMI-22-7-0830
dc.relation.referencesRodrigues, J. L. M., Pellizari, V. H., Mueller, R., Baek, K., Jesus, E. da C., Paula, F. S., Mirza, B., Hamaoui, G. S., Tsai, S. M., Feigl, B., Tiedje, J. M., Bohannan, B. J. M., & Nüsslein, K. (2013). Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 110(3), 988-993. https://doi.org/10.1073/pnas.1220608110
dc.relation.referencesRokhbakhsh-Zamin, F., Sachdev, D., Kazemi-Pour, N., Engineer, A., Pardesi, K. R., Zinjarde, S., Dhakephalkar, P. K., & Chopade, B. A. (2011). Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. Journal of Microbiology and Biotechnology, 21(6), 556-566.
dc.relation.referencesRongai, D., Pulcini, P., Pesce, B., & Milano, F. (2017). Antifungal activity of pomegranate peel extract against fusarium wilt of tomato. European Journal of Plant Pathology, 147(1), 229-238. https://doi.org/10.1007/s10658-016-0994-7
dc.relation.referencesRooney, A. P., Dunlap, C. A., & Flor-Weiler, L. B. (2016). Acinetobacter lactucae sp. nov., isolated from iceberg lettuce (Asteraceae: Lactuca sativa). International Journal of Systematic and Evolutionary Microbiology, 66(9), 3566-3572. https://doi.org/10.1099/ijsem.0.001234
dc.relation.referencesRosconi, F., Davyt, D., Martínez, V., Martínez, M., Abin-Carriquiry, J. A., Zane, H., Butler, A., de Souza, E. M., & Fabiano, E. (2013). Identification and structural characterization of serobactins, a suite of lipopeptide siderophores produced by the grass endophyte Herbaspirillum seropedicae. Environmental Microbiology, 15(3), 916-927. https://doi.org/10.1111/1462-2920.12075
dc.relation.referencesSachdev, D., Nema, P., Dhakephalkar, P., Zinjarde, S., & Chopade, B. (2010). Assessment of 16S rRNA gene-based phylogenetic diversity and promising plant growth-promoting traits of Acinetobacter community from the rhizosphere of wheat. Microbiological Research, 165(8), 627-638. https://doi.org/10.1016/j.micres.2009.12.002
dc.relation.referencesSafdarpour, F., & Khodakaramian, G. (2019). Assessment of antagonistic and plant growth promoting activities of tomato endophytic bacteria in challenging with Verticillium dahliae under in-vitro and in-vivo conditions. 7, 77-90.
dc.relation.referencesSaha, M., Sarkar, S., Sarkar, B., Sharma, B. K., Bhattacharjee, S., & Tribedi, P. (2016). Microbial siderophores and their potential applications: A review. Environmental Science and Pollution Research, 23(5), 3984-3999. https://doi.org/10.1007/s11356-015-4294-0
dc.relation.referencesSaijo, Y., Loo, E. P.-I., & Yasuda, S. (2018). Pattern recognition receptors and signaling in plant-microbe interactions. The Plant Journal: For Cell and Molecular Biology, 93(4), 592-613. https://doi.org/10.1111/tpj.13808
dc.relation.referencesSaitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
dc.relation.referencesSajeed Ali, S., & Vidhale, N. (2013). Bacterial Siderohore and their Application: A review. Int.J.Curr.Microbiol.App.Sci, 2, 303-312.
dc.relation.referencesSantos, S., Neto, I. F. F., Machado, M. D., Soares, H. M. V. M., & Soares, E. V. (2014). Siderophore Production by Bacillus megaterium: Effect of Growth Phase and Cultural Conditions. Applied Biochemistry and Biotechnology, 172(1), 549-560. https://doi.org/10.1007/s12010-013-0562-y
dc.relation.referencesSantoyo, G., Valencia-Cantero, E., Orozco-Mosqueda, Ma. D. C., Peña Cabriales, J., & Farías-Rodríguez, R. (2010). Papel de los sideróforos en la actividad antagónica de Pseudomonas fluorescens ZUM80 hacia hongos fitopatógenos. Terra Latinoamericana, 28, 53-60.
dc.relation.referencesSayyed, Chincholkar, S., Reddy, M., Gangurde, Dr. N., Patel, P., & Maheshwari, D. (2013). Siderophore Producing PGPR for Crop Nutrition and Phytopathogen Suppression. En Bacteria in Agrobiology: Disease Management (pp. 449-471). https://doi.org/10.1007/978-3-642-33639-3_17
dc.relation.referencesSayyed, R., Badgujar, M., Sonawane, H., Mhaske, M., & Chincholkar, S. (2005). Production of microbial iron chelators (siderophores) by Fluorescent pseudomonads. Indian Journal of Biotechnology Vol, 4, 484-490.
dc.relation.referencesSayyed, R., & Reddy, M. (2011). Siderophore based heavy metal resistant green fungicides for sustainable environment (pp. 443-445).
dc.relation.referencesSayyed, R. Z., & Patel, P. R. (2011). Biocontrol Potential of Siderophore Producing Heavy Metal Resistant Alcaligenes sp. And Pseudomonas aeruginosa RZS3 vis-à-vis Organophosphorus Fungicide. Indian Journal of Microbiology, 51(3), 266-272. https://doi.org/10.1007/s12088-011-0170-x
dc.relation.referencesSchandry, N. (2017). A Practical Guide to Visualization and Statistical Analysis of R. solanacearum Infection Data Using R. Frontiers in Plant Science, 8. https://www.frontiersin.org/article/10.3389/fpls.2017.00623
dc.relation.referencesSchmidt, S. M., Houterman, P. M., Schreiver, I., Ma, L., Amyotte, S., Chellappan, B., Boeren, S., Takken, F. L. W., & Rep, M. (2013). MITEs in the promoters of effector genes allow prediction of novel virulence genes in Fusarium oxysporum. BMC Genomics, 14(1), 119. https://doi.org/10.1186/1471-2164-14-119
dc.relation.referencesSchmitt, S., Maréchaux, I., Chave, J., Fischer, F. J., Piponiot, C., Traissac, S., & Hérault, B. (2020). Functional diversity improves tropical forest resilience: Insights from a long-term virtual experiment. Journal of Ecology, 108(3), 831-843. https://doi.org/10.1111/1365-2745.13320
dc.relation.referencesSchwyn, B., & Neilands, J. B. (1987a). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160(1), 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
dc.relation.referencesSchwyn, B., & Neilands, J. B. (1987b). Universal CAS assay for the detection and determination of siderophores. Analytical biochemistry, 160, 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
dc.relation.referencesShapiro, J. A., & Wencewicz, T. (2016). Acinetobactin Isomerization Enables Adaptive Iron Acquisition in Acinetobacter baumannii through pH-Triggered Siderophore Swapping. ACS infectious diseases. https://doi.org/10.1021/acsinfecdis.5b00145
dc.relation.referencesSheldon, J. R., & Skaar, E. P. (2020). Acinetobacter baumannii can use multiple siderophores for iron acquisition, but only acinetobactin is required for virulence. PLoS Pathogens, 16(10), e1008995. https://doi.org/10.1371/journal.ppat.1008995
dc.relation.referencesShi, Y., Lou, K., & Li, C. X. (2011). Growth promotion effects of the endophyte Acinetobacter johnsonii strain 3-1 on sugar beet. Symbiosis. https://doi.org/10.1007/s13199-011-0139-x
dc.relation.referencesShin, B., Park, C., Imlay, J. A., & Park, W. (2018). 4-Hydroxybenzaldehyde sensitizes Acinetobacter baumannii to amphenicols. Applied Microbiology and Biotechnology, 102(5), 2323-2335. https://doi.org/10.1007/s00253-018-8791-1
dc.relation.referencesSilva, J. C. da, Santos, L. D. S., Faria, P. S. A., Silva, F. G., Rubio, A., Martins, P. F., & Selari, P. J. R. G. (2021). Multifunctional characteristics of Acinetobacter lwoffii Bac109 for growth promotion and colonization in micropropagated sugarcane. Pesquisa Agropecuária Tropical, 51. https://www.redalyc.org/journal/2530/253068585042/html/#B50
dc.relation.referencesSingh, P., Singh, J., Ray, S., Rajput, R., Vaishnav, A., Singh, R., & Singh, H. (2020). Seed biopriming with antagonistic microbes and ascorbic acid induce resistance in tomato against Fusarium wilt. Microbiological Research, 237, 126482. https://doi.org/10.1016/j.micres.2020.126482
dc.relation.referencesSingh, R., Biswas, S., Nagar, D., Singh, J., Singh, M., & Mishra, Y. (2015). Sustainable Integrated Approach for Management of Fusarium Wilt of Tomato Caused by Fusarium oxysporum f. Sp. Lycopersici (Sacc.) Synder and Hansen. Sustainable Agriculture Research, 4. https://doi.org/10.5539/sar.v4n1p138
dc.relation.referencesSoares, E. (2022). Perspective on the biotechnological production of bacterial siderophores and their use. Applied Microbiology and Biotechnology, 106. https://doi.org/10.1007/s00253-022-11995-y
dc.relation.referencesSolanki, M. K., Singh, R. K., Srivastava, S., Kumar, S., Kashyap, P. L., Srivastava, A. K., & Arora, D. K. (2014). Isolation and characterization of siderophore producing antagonistic rhizobacteria against Rhizoctonia solani. Journal of Basic Microbiology, 54(6), 585-597. https://doi.org/10.1002/jobm.201200564
dc.relation.referencesSridevi, M., & Mallaiah, K. (2008). Production of Hydroxamate-Type of Siderophores by Rhizobium strains from Sesbania sesban (L.) Merr. International Journal of Soil Science, 3, 28-34. https://doi.org/10.3923/ijss.2008.28.34
dc.relation.referencesSrinivas, C., Nirmala Devi, D., Narasimha Murthy, K., Mohan, C. D., Lakshmeesha, T. R., Singh, B., Kalagatur, N. K., Niranjana, S. R., Hashem, A., Alqarawi, A. A., Tabassum, B., Abd_Allah, E. F., Chandra Nayaka, S., & Srivastava, R. K. (2019). Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: Biology to diversity– A review. Saudi Journal of Biological Sciences, 26(7), 1315-1324. https://doi.org/10.1016/j.sjbs.2019.06.002
dc.relation.referencesSrinivasan, R., Mohankumar, R., Kannappan, A., Karthick Raja, V., Archunan, G., Karutha Pandian, S., Ruckmani, K., & Veera Ravi, A. (2017). Exploring the Anti-quorum Sensing and Antibiofilm Efficacy of Phytol against Serratia marcescens Associated Acute Pyelonephritis Infection in Wistar Rats. Frontiers in Cellular and Infection Microbiology, 7, 498. https://doi.org/10.3389/fcimb.2017.00498
dc.relation.referencesStintzi, A., Evans, K., Meyer, J., & Poole, K. (1998). Quorum-sensing and siderophore biosynthesis in Pseudomonas aeruginosa: LasRllasI mutants exhibit reduced pyoverdine biosynthesis. FEMS Microbiology Letters, 166(2), 341-345. https://doi.org/10.1111/j.1574-6968.1998.tb13910.x
dc.relation.referencesSuzuki, W., Sugawara, M., Miwa, K., & Morikawa, M. (2014). Plant growth-promoting bacterium Acinetobacter calcoaceticus P23 increases the chlorophyll content of the monocot Lemna minor (duckweed) and the dicot Lactuca sativa (lettuce). Journal of Bioscience and Bioengineering, 118(1), 41-44. https://doi.org/10.1016/j.jbiosc.2013.12.007
dc.relation.referencesTaguchi, F., Suzuki, T., Inagaki, Y., Toyoda, K., Shiraishi, T., & Ichinose, Y. (2010). The Siderophore Pyoverdine of Pseudomonas syringae pv. Tabaci 6605 Is an Intrinsic Virulence Factor in Host Tobacco Infection. Journal of Bacteriology, 192(1), 117-126. https://doi.org/10.1128/JB.00689-09
dc.relation.referencesTejman-Yarden, N., Robinson, A., Davidov, Y., Shulman, A., Varvak, A., Reyes, F., Rahav, G., & Nissan, I. (2019). Delftibactin-A, a Non-ribosomal Peptide With Broad Antimicrobial Activity. Frontiers in Microbiology, 10. https://www.frontiersin.org/article/10.3389/fmicb.2019.02377
dc.relation.referencesThapa, S., & Prasanna, R. (2018). Prospecting the characteristics and significance of the phyllosphere microbiome. Annals of Microbiology, 68(5), 229-245. https://doi.org/10.1007/s13213-018-1331-5
dc.relation.referencesTian, F., Ding, Y., Zhu, H., Liang-tong, Y., & Du, B. (2009). Genetic diversity of siderophore-producing bacteria of tobacco rhizosphere. https://doi.org/10.1590/S1517-83822009000200013
dc.relation.referencesTian, F., Ding, Y., Zhu, H., Yao, L., Jin, F., & Du, B. (2008). [Screening, identification and antagonistic activity of a siderophore-producing bacteria G-229-21T from rhizosphere of tobacco]. Wei Sheng Wu Xue Bao = Acta Microbiologica Sinica, 48(5), 631-637.
dc.relation.referencesTiwari, V., Rajeswari, M. R., & Tiwari, M. (2019). Proteomic analysis of iron-regulated membrane proteins identify FhuE receptor as a target to inhibit siderophore-mediated iron acquisition in Acinetobacter baumannii. International Journal of Biological Macromolecules, 125, 1156-1167. https://doi.org/10.1016/j.ijbiomac.2018.12.173
dc.relation.referencesTorres, M. A. (2009). ROS in biotic interactions. Physiologia plantarum, 138, 414-429. https://doi.org/10.1111/j.1399-3054.2009.01326.x
dc.relation.referencesVallejo Cabrera, F. A. (1999). Mejoramiento genético y producción de tomate en Colombia. Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/51997
dc.relation.referencesVásquez-Ramírez, L., & Castaño-Zapata, J. (2017, julio). Manejo integrado de la marchitez vascular del tomate (Fusarium oxysporum f. Sp. Lycopersici (SACC.) W.C. Snyder & H.N. Hansen): Una Revisión. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-42262017000200014
dc.relation.referencesVélez, J. M. bedoya, Castaño, G., & Agudelo, S. O. (2019). Tolerancia al plomo de aislamientos nativos de Pseudomonas spp. De aguas residuales del Valle de Aburrá. Revista Colombiana de Biotecnología, 21(1), 135-143. https://doi.org/10.15446/rev.colomb.biote.v21n1.65146
dc.relation.referencesVerbon, E., Trapet, P., Stringlis, I., Kruijs, S., Bakker, P., & Pieterse, C. (2017). Iron and Immunity. Annual review of phytopathology, 55, 355-375. https://doi.org/10.1146/annurev-phyto-080516-035537
dc.relation.referencesVilla Martínez, A., Pérez-Leal, R., Morales-Morales, H., Basurto-Sotelo, M., Soto-Parra, J., & Martínez-Escudero, E. (2014). Situación actual en el control de Fusarium spp. Y evaluación de la actividad antifúngica de extractos vegetales. Acta Agronómica, 64, 194-205. https://doi.org/10.15446/acag.v64n2.43358
dc.relation.referencesVillegas, M. E. D. de, Villa, P., & Frías, A. (2002). Evaluation of the siderophores production by Pseudomonas aeruginosa PSS. Revista Latinoamericana de Microbiología, 44(3-4), 112-117.
dc.relation.referencesWang, H., & Ng, T. B. (1999). Pharmacological activities of fusaric acid (5-butylpicolinic acid). Life Sciences, 65(9), 849-856. https://doi.org/10.1016/s0024-3205(99)00083-1
dc.relation.referencesWeakland, D. R., Smith, S. N., Bell, B., Tripathi, A., & Mobley, H. L. T. (2020). The Serratia marcescens Siderophore Serratiochelin Is Necessary for Full Virulence during Bloodstream Infection. Infection and Immunity, 88(8), e00117-20. https://doi.org/10.1128/IAI.00117-20
dc.relation.referencesWen, Y., Kim, I. H., Son, J.-S., Lee, B., & Kim, K.-S. (2012). Iron and Quorum Sensing Coordinately Regulate the Expression of Vulnibactin Biosynthesis in Vibrio vulnificus. The Journal of biological chemistry, 287, 26727-26739. https://doi.org/10.1074/jbc.M112.374165
dc.relation.referencesWilson, M. K., Abergel, R. J., Raymond, K. N., Arceneaux, J. E. L., & Byers, B. R. (2006). Siderophores of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Biochemical and Biophysical Research Communications, 348(1), 320-325. https://doi.org/10.1016/j.bbrc.2006.07.055
dc.relation.referencesWinkelmann, G. (2002). Microbial siderophore-mediated transport. Biochemical Society transactions, 30, 691-696. https://doi.org/10.1042/BST0300691
dc.relation.referencesWu, H., & Ling, H.-Q. (2019). FIT-Binding Proteins and Their Functions in the Regulation of Fe Homeostasis. Frontiers in Plant Science, 0. https://doi.org/10.3389/fpls.2019.00844
dc.relation.referencesXue, Q.-Y., Chen, Y., Li, S.-M., Chen, L.-F., Ding, G.-C., Guo, D.-W., & Guo, J.-H. (2009). Evaluation of the strains of Acinetobacter and Enterobacter as potential biocontrol agents against Ralstonia wilt of tomato. Biological Control, 48(3), 252-258. https://doi.org/10.1016/j.biocontrol.2008.11.004
dc.relation.referencesYeole, G. J., Kotkar, H. M., Teli, N. P., & Mendki, P. S. (2016). Herbal fungicide to control Fusarium wilt in tomato plants. Biopesticides International, 12(1), 25-35.
dc.relation.referencesYockteng, R., Almeida, A. M. R., Yee, S., Andre, T., Hill, C., & Specht, C. D. (2013). A method for extracting high-quality RNA from diverse plants for next-generation sequencing and gene expression analyses. Applications in Plant Sciences, 1(12), 1300070. https://doi.org/10.3732/apps.1300070
dc.relation.referencesYu, S., Teng, C., Bai, X., Liang, J., Song, T., Dong, L., Jin, Y., & Qu, J. (2017). Optimization of Siderophore Production by Bacillus sp. PZ-1 and Its Potential Enhancement of Phytoextration of Pb from Soil. Journal of Microbiology and Biotechnology, 27(8), 1500-1512. https://doi.org/10.4014/jmb.1705.05021
dc.relation.referencesYu, Teng, C., Liang, J., Song, T., Dong, L., Bai, X., Jin, Y., & Qu, J. (2017). Characterization of siderophore produced by Pseudomonas syringae BAF.1 and its inhibitory effects on spore germination and mycelium morphology of Fusarium oxysporum. Journal of Microbiology (Seoul, Korea), 55(11), 877-884. https://doi.org/10.1007/s12275-017-7191-z
dc.relation.referencesYu, X., Ai, C., Xin, L., & Zhou, G. (2011). The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. European Journal of Soil Biology, 47(2), 138-145. https://doi.org/10.1016/j.ejsobi.2010.11.001
dc.relation.referencesZhao, L., Xu, Y., & Lai, X. (2018). Antagonistic endophytic bacteria associated with nodules of soybean (Glycine max L.) and plant growth-promoting properties. Brazilian Journal of Microbiology: [Publication of the Brazilian Society for Microbiology], 49(2), 269-278. https://doi.org/10.1016/j.bjm.2017.06.007
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocFusarium oxysporum f.sp. lycopersici
dc.subject.agrovocTomate - Enfermedades y plagas
dc.subject.lembControl biológico
dc.subject.proposalSeveridad de la enfermedad
dc.subject.proposalQuelantes de hierro
dc.subject.proposalRespuesta de defensa
dc.subject.proposalBiocontrol
dc.subject.proposalDisease severity
dc.subject.proposaliron chelators
dc.subject.proposalDefense response
dc.title.translatedControl of Fusarium oxysporum f.sp. lycopersici by supernatants with siderophores of Acinetobacter sp.
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleRecomendaciones para el manejo integrado de gota y marchitez por Fusarium, dos enfermedades prevalentes en el cultivo de tomate bajo condiciones protegidas
oaire.fundernameMinisterio de Agricultura y Desarrollo Rural de Colombia (Tv18)
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dc.description.curricularareaÁrea Curricular en Producción Agraria Sostenible
dc.contributor.orcid0000-0003-1742-5753
dc.contributor.orcid0000-0002-8423-8432
dc.contributor.cvlacPisco Ortiz, Yeinny
dc.subject.wikidataSideróforo


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito