Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorGarcía Dávila, Mario Augusto
dc.contributor.advisorGómez López, Eyder Daniel
dc.contributor.authorRivera Calderón, Angela Liliana
dc.date.accessioned2023-08-09T21:21:51Z
dc.date.available2023-08-09T21:21:51Z
dc.date.issued2023-07-25
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84514
dc.descriptionIlustraciones, fotografías, tablas, gráficas
dc.description.abstractEl cultivo de Capsicum en el Valle del Cauca en Colombia tiene un alto potencial agrícola e industrial afectado por diferentes factores bióticos y abióticos; las bacterias pueden ocasionar pérdidas entre 10 y 20 % y, en condiciones ambientales favorables para su desarrollo, hasta del 100 %. Para abordar esta problemática el objetivo de este estudio fue caracterizar bacterias fitopatógenas y aquellas con potencial biocontrolador de las anteriores. Se recolectó material vegetal afectado en 17 zonas del departamento, de las cuales se obtuvieron 69 aislamientos: 8 aislamientos fueron fitopatógenos Gram negativos y 4 con potencial biocontrolador Gram positivos. Se realizaron las siguientes caracterizaciones: cultural, morfológica, bioquímica (pruebas API 20NE), patogénica y molecular (región del 16S rADN, GyrB y GyrA), y se evaluó el potencial biocontrolador in vitro. Los aislamientos fitopatógenos identificados fueron: tres especies del género Pseudomonas (Pseudomonas asiatica, P. straminea, P. synxantha); uno asociado al subgrupo de Pseudomonas straminea; dos asociados a las enterobacterias: Kosakonia cowanii y Pantoea agglomerans; y dos de Ralstonia solanacearum. Los primeros seis se consideran el primer reporte para Colombia y de los últimos dos no hay reporte en la literatura colombiana asociados a Capsicum spp. La caracterización patogénica se evaluó en los cultivares Habanero, Tabasco y Cayenne, encontrándose que los aislamientos asociados a enterobacterias y Ralstonia solanacearum fueron los más virulentos. Los aislamientos con potencial biocontrolador se caracterizaron como Bacillus amyloliquefaciens; de estos, el aislamiento 43 presentó los mayores halos de inhibición sobre las fitopatógenas. Durante las pruebas in vitro se evaluó la importancia de que estos aislamientos se sembraran 48 horas antes de las fitopatógenas. Como resultado, se determinaron seis nuevas especies de fitopatógenas no relacionadas anteriormente al cultivo de Capsicum en Colombia. Esto constituye un aporte significativo al conocimiento. Se encontró que los aislamientos obtenidos de Bacillus amyloliquefaciens tienen potencial biocontrolador. (Texto tomado de la fuente)
dc.description.abstractThe Capsicum crop in the department of Valle del Cauca in Colombia has a high agricultural and industrial potential that is affected by different biotic and abiotic factors. Bacteria can cause losses between 10 and 20 % and under favorable environmental conditions for their development up to 100 %. The objective of this study was established to characterize pathogenic and those with bio-control potential bacteria. Affected plant material was collected in 17 sites of the department, from which 69 isolates were obtained: 8 isolates were Gram negative phytopathogenic and 4 Gram positive isolates with biocontrol potential were selected. The following characterizations were carried out: Cultural, morphological, biochemical (API 20NE test), pathogenic and molecular (16S rDNA region, GyrB and GyrA); and the in vitro biocontrol potential was evaluated The phytopathogenic isolates identified were three species of Pseudomonas genus: (Pseudomonas asiatica, P. straminea, P. syxantha), one associated with the subgroup of Pseudomonas straminea; two associated with enterobacteria: Kosakonia cowanii and Pantoea agglomerans; and two from Ralstonia solanacearum. The first six isolates are considered the first report for Colombia and of the last two; there are no reports in the Colombian literature associated with Capsicum spp. The pathogenic characterization was evaluated in the cultivars Habanero, Tabasco and Cayenne, finding that the isolates associated with enterobacteriaceae and Ralstonia solanacearum were the most virulent. Isolates with biocontroller potential were characterized as Bacillus amyloliquefaciens; Of these, isolation 43 presented the largest halos of inhibition on phytopathogens During the in vitro tests, the importance of these isolates being seeded 48 hours before the phytopathogens was evaluated. As a result, six new species of plant pathogens not previously related to the cultivation of Capsicum in Colombia were determined. This constitutes a significant contribution to knowledge. It was found that the isolates obtained from Bacillus amyloliquefaciens have biocontrol potential.
dc.description.sponsorshipConvocatoria 727 de 2015 Doctorados Nacionales Colciencias
dc.format.extentxxii, 111 páginas + anexos
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales
dc.titleCaracterización morfológica y molecular de bacterias asociadas a Capsicum spp. en el Valle del Cauca-Colombia
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programPalmira - Ciencias Agropecuarias - Doctorado en Ciencias Agrarias
dc.contributor.researchgroupProtección Vegetal Para El Mejoramiento de la Productividad
dc.coverage.regionValle del Cauca, Colombia
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ciencias Agrarias
dc.description.methodsLa metodología desarrollada durante esta investigación fue elaborada con base en los objetivos planteados. Se realizaron colectas de tejido sano y enfermo en Cultivos de Capsicum spp en el Valle del Cauca. Las muestras fueron procesadas en los laboratorios de Microbiología Agrícola y Diagnóstico Vegetal. A partir de estas muestras se realizó aislamientos de las bacterias hasta obtenerlas en cultivo puro. Los aislamientos se caracterizaron cultural, morfológica, patogénica, bioquímica y molecularmente. Además se estableció el efecto biorregulador de bacterias no patogénicas en el desarrollo de las bacterias fitopatógenas in vitro
dc.description.researchareaProtección de Cultivos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDoctorado en Ciencias Agrarias
dc.publisher.facultyFacultad de Ciencias Agropecuarias
dc.publisher.placePalmira, Valle del Cauca, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmira
dc.relation.referencesACIAR. (2013). Bacterial Diseases. In Tomato, capsicum, chilli and eggplant: a field guide for Australia and Cambodia (pp. 131–143). https://doi.org/10.1177/003591572902200643
dc.relation.referencesAdhikari, M., Yadav, D. R., Kim, S. W., Um, Y. H., Kim, H. S., Lee, S. C., Song, J. Y., Kim, H. G., & Lee, Y. S. (2017). Biological control of bacterial fruit blotch of watermelon pathogen (Acidovorax citrulli) with Rhizosphere associated bacteria. Plant Pathology Journal, 33(2), 170–183. https://doi.org/10.5423/PPJ.OA.09.2016.0187
dc.relation.referencesAgaras, B. C., & Valverde, C. (2018). A novel oligonucleotide pair for genotyping members of the pseudomonas genus by single-round PCR amplification of the gyrb gene. Methods and Protocols, 1(3), 1–13. https://doi.org/10.3390/mps1030024
dc.relation.referencesAguilar-Marcelino, L., Mendoza-de-Gives, P., Al-Ani, L. K. T., López-Arellano, M. E., Gómez-Rodríguez, O., Villar-Luna, E., & Reyes-Guerrero, D. E. (2020). Using molecular techniques applied to beneficial microorganisms as biotechnological tools for controlling agricultural plant pathogens and pest. Molecular Aspects of Plant Beneficial Microbes in Agriculture, 333–349. https://doi.org/10.1016/b978-0-12-818469-1.00027-4
dc.relation.referencesAlvarez, P. L., Grabowsky, C., Carpio, C., Toro, V., Ferreira, A. F., & Mizubuti, E. S. (2021). First report of Ralstonia solanacearum causing bacterial wilt of Eucalyptus in Ecuador. Plant Diseases, 105, 211.
dc.relation.referencesAnaya-Esparza, L. M., de la Mora, Z. V., Vázquez-Paulino, O., Ascencio, F., & Villarruel-López, A. (2021). Bell peppers (Capsicum annum l.) losses and wastes: Source for food and pharmaceutical applications. Molecules, 26(17), 1–23. https://doi.org/10.3390/molecules26175341
dc.relation.referencesBarona, O., Chaverra, Y., Morante, D., & Mosquera, O. (2011). La gestión tecnológica: una herramienta para el desarroll o de la Cadena Productiva del Ají en el Vall e del Cauca. Entramado, 7(1), 1–20. http://www.redalyc.org/pdf/2654/265420116002.pdf
dc.relation.referencesBashir, Z., Ahmad, A., Shafique, S., Anjum, T., Shafique, S., & Akram, W. (2013). HYPERSENSITIVE RESPONSE – A BIOPHYSICAL PHENOMENON. 3, 105–110. https://doi.org/10.1556/EuJMI.3.2013.2.3
dc.relation.referencesBass, D., Stentiford, G. D., Wang, H. C., Koskella, B., & Tyler, C. R. (2019). The Pathobiome in Animal and Plant Diseases. Trends in Ecology and Evolution, 34(11), 996–1008. https://doi.org/10.1016/j.tree.2019.07.012
dc.relation.referencesBeattie, G. A. (2007). Plant-associated bacteria: Survey, molecular phylogeny, genomics and recent advances. In S. . . Gnanamanickam (Ed.), Plant Asociated-Bacteria (pp. 1–56). Springer. https://doi.org/https://doi.org/10.1007/978-1-4020-4538-7_1
dc.relation.referencesBerg, G. (2009). Plant-microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology, 84(1), 11–18. https://doi.org/10.1007/s00253-009-2092-7
dc.relation.referencesBerg, G., Grube, M., Schloter, M., & Smalla, K. (2014). Unraveling the plant microbiome: Looking back and future perspectives. Frontiers in Microbiology, 5(JUN), 1–7. https://doi.org/10.3389/fmicb.2014.00148
dc.relation.referencesBernal, A. (2017). Certificado de Reporte. https://ipt.biodiversidad.co/cr-sib/pdf.do?r=rge266_pseudomonassyringae_20200312&n=170D0F3CA3B
dc.relation.referencesBhat, K. A., Masood, S. D., Bhat, N. A., Bhat, M. A., Razvi, S. M., Mir, M. R., Akhtar, S., Wani, N., & Habib, M. (2010). Current status of post harvest soft rot in vegetables: A review. Asian Journal of Plant Sciences, 9(4), 200–208. https://doi.org/10.3923/ajps.2010.200.208
dc.relation.referencesBioMérieux. (2003). API 20 NE. Identification system for non-fastidious, non enteric Gram-negative rods. https://www.mediray.co.nz/media/15781/om_biomerieux_test-kits_ot-20050_package_insert-20050.pdf
dc.relation.referencesBlakeman, J. P., & Brodien, I. D. . (1976). Inhibition of pathogens by epiphytic bacteria on aerial plant surfaces. In T. . Dickinson, C.H.; Preece (Ed.), Microbiology in aerial plant surfaces (pp. 529–557). ACADEMIC PRESS.
dc.relation.referencesBoottanun, P., Potisap, C., Hurdle, J. G., & Sermswan, R. W. (2017). Secondary metabolites from Bacillus amyloliquefaciens isolated from soil can kill Burkholderia pseudomallei. AMB Express, 7(1). https://doi.org/10.1186/s13568-016-0302-0
dc.relation.referencesBorkar, S. G. (2018). Laboratory techniques in plant bacteriology. CRC Press.
dc.relation.referencesBrady, C., Cleenwerck, I., Venter, S., Coutinho, T., & De Vos, P. (2013). Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): Proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen. nov. as Lelliottia nimipressuralis comb. nov. and Lelliottia amnigena comb. nov., . Systematic and Applied Microbiology, 36(5), 309–319. https://doi.org/10.1016/j.syapm.2013.03.005
dc.relation.referencesBraun-Kiewnick, A., & Sands, D. . (2001). Pseudomonas. In Norman W Schaad, J. B. Jones, & W. Chun (Eds.), Laboratory guide for identification of plant pathogenic bacteria (Third edit, pp. 84–120). American Phytopathological Society - APS.
dc.relation.referencesBraun-Kiewnick, A., & Sands, D. . (2015). Pseudomonas. In Norman W; Schaad, J. B. Jones, & W. Chun (Eds.), Laboratory guide for identification of plant pathogenic bacteria (pp. 84–138). APS Press.
dc.relation.referencesBrenner, D. ., & Farmer, J. . (2015). Enterobacteriaceae. In Bergey’s Manual of Systematics of Archaea and Bacteria (p. 24). https://doi.org/10.1002/9781118960608.fbm00222.
dc.relation.referencesBritania. (2011). Mac Conkey Agar. https://www.britanialab.com/back/public/upload/productos/upl_60707267ecda2.pdf
dc.relation.referencesBulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E., & Schulze-Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64, 807–838. https://doi.org/10.1146/annurev-arplant-050312-120106
dc.relation.referencesButtimer, C., McAuliffe, O., Ross, R. P., Hill, C., O’Mahony, J., & Coffey, A. (2017). Bacteriophages and bacterial plant diseases. Frontiers in Microbiology, 8(JAN), 1–15. https://doi.org/10.3389/fmicb.2017.00034
dc.relation.referencesCai, R., Lewis, J., Yan, S., Liu, H., Clarke, C. R., Campanile, F., Almeida, N. F., Studholme, D. J., Lindeberg, M., Schneider, D., Zaccardelli, M., Setubal, J. C., Morales-Lizcano, N. P., Bernal, A., Coaker, G., Baker, C., Bender, C. L., Leman, S., & Vinatzer, B. A. (2011). The plant pathogen pseudomonas syringae pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity. PLoS Pathogens, 7(8). https://doi.org/10.1371/journal.ppat.1002130
dc.relation.referencesCardozo, C., Silva, B., Salazar Yepes, M., & Morales, J. G. (2015). Diversidad genética de aislados de Ralstonia solanacearum procedentes de tres regiones de Colombia. Revista de Proteccion Vegetal, 30(3), 213–224.
dc.relation.referencesCarreño, N., Vargas, A., Bernal, A. J., & Restrepo, S. (2007). Problemas fitopatológicos en especies de la familia Solanaceae causados por los géneros Phytophthora , Alternaria y Ralstonia en Colombia . Una revisión Biotic contraints of the Solanaceae caused by Phytophthora ,. Agronomía Colombiana, 25(2), 320–329.
dc.relation.referencesCastellanos, G., Jara, C., & Mosquera, G. (2011). Guía práctica 2. Manejo de la bacteria en el laboratorio, Xanthomonas axonopodis pv. phaseoli.
dc.relation.referencesCaviedes, D. (2009). Aislamiento y selección de rizobacterias promotoras de crecimiento vegetal en cultivos de uchuva(Physalis peruviana L.) con capacidad antagónica frente a Fusarium sp. 1–61.
dc.relation.referencesCaycedo- Lozano L;, Corrales-Ramírez, L., T, & Trujillo, D. (2021). Las bacterias, su nutrición y crecimiento: una mirada desde la química. In Nova.
dc.relation.referencesChavez, P. (2007). Utilización de bacterias y hongos endofíticos para el control biológico del nematodo barrenador Radopholus similis ( Cobb ). Catie, 85. http://orton.catie.ac.cr/repdoc/A1654E/A1654E.PDF
dc.relation.referencesCheewawiriyakul, S., Conn, K., Gabor, B., Kao, J., & Salati, R. (2006). Pepper & Eggplant, Disease Guide: A practical guide for seedsmen, growers and agricultural advisors. Seminis Vegetable Seeds, 1–72. http://seminisus.s3.amazonaws.com/wp-content/uploads/2014/09/SEM-12095_PepperDiseases_8p5x11_072313.pdf
dc.relation.referencesChoudhary, D. K., & Johri, B. N. (2009). Interactions of Bacillus spp. and plants - With special reference to induced systemic resistance (ISR). Microbiological Research, 164(5), 493–513. https://doi.org/10.1016/j.micres.2008.08.007
dc.relation.referencesChun, W., & Vidaver, A. K. (2001). Bacillus. In N.W; Schaad, J. B. Jones, & W. Chun (Eds.), Laboratory guide for identification of plant pathogenic bacteria (3rd ed., pp. 250–260). APS Press.
dc.relation.referencesCorporación Colombiana de Investigación Agropecuaria (Corpoica);, & Gobernación de Antioquia. (2014). Modelo productivo del cultivo de Pimentón bajo condiciones protegidas en el oriente Antioqueño. Fotomontajes S.A.S.
dc.relation.referencesDavey, M. E., & O’toole, G. A. (2000). Microbial biofilms: from ecology to molecular genetics. Microbiology and Molecular Biology Reviews : MMBR, 64(4), 847–867. https://doi.org/10.1128/MMBR.64.4.847-867.2000
dc.relation.referencesDe Clerck, E., Vanhoutte, T., Hebb, T., Geerinck, J., Devos, J., & De Vos, P. (2004). Isolation, characterization, and identification of bacterial contaminants in semifinal gelatin extracts. Applied and Environmental Microbiology, 70(6), 3664–3672. https://doi.org/10.1128/AEM.70.6.3664-3672.2004
dc.relation.referencesDenny, T. P., & Hayward, A. C. (2001). Ralstonia. In Norman W; Schaad, J. B. Jones, & W. Chum (Eds.), Laboratory guide for identification of plant pathogenic bacteria (third edit, pp. 151–174). APS Press.
dc.relation.referencesDimartino, M., Panebianco, S., Vitale, A., Castello, I., Leonardi, C., Cirvilleri, G., & Polizzi, G. (2011). Occurrence and pathogenicity of Pseudomonas fluorescens and P. Putida on tomato plants in Italy. Journal of Plant Pathology, 93(1), 78–87.
dc.relation.referencesDurairaj, K., Velmurugan, P., Park, J. H., Chang, W. S., Park, Y. J., Senthilkumar, P., Choi, K. M., Lee, J. H., & Oh, B. T. (2018). Characterization and assessment of two biocontrol bacteria against Pseudomonas syringae wilt in Solanum lycopersicum and its genetic responses. Microbiological Research, 206(July 2017), 43–49. https://doi.org/10.1016/j.micres.2017.09.003
dc.relation.referencesEllis, S. D. B. M. J. C. D. (2008). Bacterial Diseases of Plants. In Ohio State University Extension. http://www.learnnc.org/lp/media/uploads/2010/11/bacterial-diseases-fact-sheet.pdf
dc.relation.referencesEuropean and Mediterranean Plant Protection Organization. (2018). PM 7/21 (2) Ralstonia solanacearum, R. pseudosolanacearum and R. syzygii (Ralstonia solanacearum species complex). EPPO Bulletin, 48(1), 32–63. https://doi.org/10.1111/epp.12454
dc.relation.referencesExtension University of Illinois. (1988). Bacterial spot of pepper and tomato. Report on Plant Disease, 910, 1–4.
dc.relation.referencesFan, B., Blom, J., Klenk, H. P., & Borriss, R. (2017). Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis Form an “Operational Group B. amyloliquefaciens” within the B. subtilis species complex. Frontiers in Microbiology, 8(JAN), 1–15. https://doi.org/10.3389/fmicb.2017.00022
dc.relation.referencesFegan, M., & Prior, P. (2006). Diverse members of the Ralstonia solanacearum species complex cause bacterial wilts of banana Diverse members of the Ralstonia solanacearum species complex cause. Australasian Plant Pathology, 35, 93–101. https://doi.org/10.1071/AP05105
dc.relation.referencesFelsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783–791.
dc.relation.referencesFlorez-Martínez, D. . (2013). ANÁLISIS DE TENDENCIAS PARA LA CADENA HORTALIZAS – PRODUCTO AJÍ. CONSUMO, DEMANDA, MERCADO INTERNACIONAL E INVESTIGACIÓN EN COLOMBIA (p. 23). Ministerio de Agricultura de Colombia.
dc.relation.referencesFritze, D. (2004). Taxonomy of the genus bacillus and related genera: the aerobic endospore-forming bacteria. Phytopathology, 94(11), 1245–1248. https://doi.org/10.1094/PHYTO.2004.94.11.1245
dc.relation.referencesGappa-Adachi, R., Morita, Y., Shimomoto, Y., & Takeuchi, S. (2014). Bacterial leaf blight of sweet pepper (Capsicum annuum) caused by Pseudomonas cichorii in Japan. Journal of General Plant Pathology, 80(1), 103–107. https://doi.org/10.1007/s10327-013-0491-1
dc.relation.referencesGarcía-González, T., Sáenz-Hidalgo, H. K., Silva-Rojas, H. V., Morales-Nieto, C., Vancheva, T., Koebnik, R., & Ávila-Quezada, G. D. (2018). Enterobacter cloacae, an emerging plant-pathogenic bacterium affecting chili pepper seedlings. Plant Pathology Journal, 34(1), 1–10. https://doi.org/10.5423/PPJ.OA.06.2017.0128
dc.relation.referencesGarrido-Sanz, D., Meier-Kolthoff, J. P., Göker, M., Martín, M., Rivilla, R., & Redondo-Nieto, M. (2016). Genomic and genetic diversity within the Pseudomonas fluoresces complex. PLoS ONE, 11(2). https://doi.org/10.1371/journal.pone.0150183
dc.relation.referencesGolkhandan, E. (2014). Characterization of Pectobacterium carotovorum and P. wasabiae and their potential control using antagonistic bacteria. Universiti Putra Malaysia.
dc.relation.referencesGómez, R., & Adex, C. (2015). Capsicum Peruanos : Análisis y Retos Peruvian Capsicum : Analysis & Challenges.
dc.relation.referencesGomila, M., Peña, A., Mulet, M., & Lalucat, J. (2015). Phylogenomics and systematics in Pseudomonas. Frontiers in Microbiology, 6(March), 1–13. https://doi.org/10.3389/fmicb.2015.00214
dc.relation.referencesGoszczynska, T., Serfontein, J. J., & Serfontein, S. (2000). Introduction to Practical Phytobacteriology. In Safrinet (Issue October).
dc.relation.referencesGoto, M. (1992a). Diagnosis and Control of Bacterial Plant Diseases. Fundamentals of Bacterial Plant Pathology, 242–265. https://doi.org/10.1016/b978-0-12-293465-0.50016-9
dc.relation.referencesGoto, M. (1992b). Fundamentals of Bacterial Plant Pathology. Academic press.
dc.relation.referencesGrimont, P. A. D., & Grimont, F. (2015). Pantoea . Bergey’s Manual of Systematics of Archaea and Bacteria, 1–14. https://doi.org/10.1002/9781118960608.gbm01157
dc.relation.referencesHarrison, J., Hussain, R. M. F., Aspin, A., Grant, M. R., Vicente, J. G., & Studholme, D. J. (2023). Phylogenomic Analysis Supports the Transfer of 20 Pathovars from Xanthomonas campestris into Xanthomonas euvesicatoria. Taxonomy, 3(1), 29–45. https://doi.org/10.3390/taxonomy3010003
dc.relation.referencesHauben, L., Moore, E. R. B., Vauterin, L., Steenackers, M., Mergaert, J., Verdonck, L., & Swings, J. (1998). Phylogenetic position of phytopathogens within the Enterobacteriaceae. Systematic and Applied Microbiology, 21(3), 384–397. https://doi.org/10.1016/S0723-2020(98)80048-9
dc.relation.referencesHesse, C., Schulz, F., Bull, C. T., Shaffer, B. T., Yan, Q., Shapiro, N., Hassan, K. A., Varghese, N., Elbourne, L. D. H., Paulsen, I. T., Kyrpides, N., Woyke, T., & Loper, J. E. (2018). Genome-based evolutionary history of Pseudomonas spp. Environmental Microbiology, 20(6), 2142–2159. https://doi.org/10.1111/1462-2920.14130
dc.relation.referencesHu, H. Q., Li, X. S., & He, H. (2010). Characterization of an antimicrobial material from a newly isolated Bacillus amyloliquefaciens from mangrove for biocontrol of Capsicum bacterial wilt. Biological Control, 54(3), 359–365. https://doi.org/10.1016/j.biocontrol.2010.06.015
dc.relation.referencesHugouvieux‐Cotte‐Pattat, N., Condemine, G., Gueguen, E., & Shevchik, V. E. (2020). Dickeya Plant Pathogens. ELS. John Wiley & Sons, Ltd: Chichester, March, 1–10. https://doi.org/10.1002/9780470015902.a0028932
dc.relation.referencesIbarra, J. E., Castro, M. C. D. R., Galindo, E., Patiño, M., Serrano, L., García, R., Carrillo, J. A., Pereyra-Alférez, B., Alcázar-Pizaña, A., Luna-Olvera, H., Galán-Wong, L., Pardo, L., Muñoz-Garay, C., Gómez, I., Soberón, M., & Bravo, A. (2006). Los microorganismos en el control biológico de insectos y fitopatógenos. Revista Latinoamericana de Microbiologia, 48(2), 113–120.
dc.relation.referencesIntegrated Taxonomic Information System (ITIS). (2022). Integrated Taxonomic Information System web site. https://doi.org/https://doi.org/10.5066/F7KH0KBK
dc.relation.referencesJan-Roblero, J., Cruz-Maya, J. A., & Guerrero Barajas, C. C. (2020). Kosakonia. In Beneficial Microbes in Agro-Ecology: Bacteria and Fungi (pp. 213–231). https://doi.org/10.1016/B978-0-12-823414-3.00012-5
dc.relation.referencesJanda, J. M., & Abbott, S. L. (2021). The Changing Face of the Family Enterobacteriaceae ( Order : Syndromes. Clin Microbiol Rev, 28(February), 1–45.
dc.relation.referencesJanse, J. D. (2005). Phytobacteriology: Principles and practice. In Phytobacteriology: Principles and Practice (CABI Publi).
dc.relation.referencesJaramillo, J., & Tamayo M, P. J. (2013). Enfermedades del tomate, berenjena en Colombia. Guía para su diagnóstico y manejo. Corporación Colombiana de Investigación Agropecuaria-CORPOICA.
dc.relation.referencesKado, C. . (2010). Plant bacteriology. APS Press.
dc.relation.referencesKannan, V. R., Bastas, K. K., & Antony, R. (2015). Plant Pathogenic Bacteria. In Sustainable Approaches to Controlling Plant Pathogenic Bacteria. CRC Press. https://doi.org/10.1201/b18892
dc.relation.referencesKimura, M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120.
dc.relation.referencesKing, E. O., Ward, M. K., & Raney, D. E. (1954). Two simple media for the demostration of pyocyanin and fluorescein. The Journal of Laboratory and Clinical Medicine, 44(2), 301–307.
dc.relation.referencesKloepper, J. W. (2004). Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology, 94(11), 1259–1266. http://getit.libraries.psu.edu:9003/sfx_local?sid=google&auinit=JW&aulast=Kloepper&atitle=Induced systemic resistance and promotion of plant growth by Bacillus spp.&title=Phytopathology&volume=94&issue=11&date=2004&spage=1259&issn=0031-949X
dc.relation.referencesKöhl, J., Kolnaar, R., & Ravensberg, W. J. (2019). Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Frontiers in Plant Science, 10(July), 1–19. https://doi.org/10.3389/fpls.2019.00845
dc.relation.referencesKrawczyk, K., & Borodynko-Filas, N. (2020). Kosakonia cowanii as the New Bacterial Pathogen Affecting Soybean (Glycine max Willd.). European Journal of Plant Pathology, 157(1), 173–183. https://doi.org/10.1007/s10658-020-01998-8
dc.relation.referencesKreissl, J., Mall, V., Steinhaus, P., & Steinhaus, M. (2022). Leibniz-LSB@TUM Odorant Database. Version 1.2. Leibniz Institute for Food Systems Biology at the Technical University of Munich: Freising, Germany. https://www.leibniz-lsb.de/en/databases/leibniz-lsbtum-odorant-database
dc.relation.referencesKrimm, U., Abanda-Nkpwatt, D., Schwab, W., & Schreiber, L. (2005). Epiphytic microorganisms on strawberry plants (Fragaria ananassa cv. Elsanta): Identification of bacterial isolates and analysis of their interaction with leaf surfaces. FEMS Microbiology Ecology, 53(3), 483–492. https://doi.org/10.1016/j.femsec.2005.02.004
dc.relation.referencesKyoung-Soo, P., Ji-Hye, Lee; Young-Tak, K., Hye-Seong, K., June-woo, L., Hyun-Su, L., Hyok-In, L., & Jae-Soon, C. (2021). Occurrence of Leaf Spot Disease on Watermelon Caused by Pseudomonas syringae pv. syringae. Research in Plant Disease, 27(4), 180–186.
dc.relation.referencesLalucat, J., Mulet, M., Gomila, M., & Garc, E. (2020). Genomics in Bacterial Taxonomy : Impact on the Genus Pseudomonas.
dc.relation.referencesLayton, C., Maldonado, E., Monroy, L., Corrales, L. C., & Sánchez, L. C. (2011). Bacillus spp .; perspectiva de su efecto biocontrolador mediante antibiosis en cultivos afectados por fitopatógenos. NOVA - Publicación Científica En Ciencias Biomédicas, 9(15), 113–214.
dc.relation.referencesLee, Y., Luo, H., Kim, W., & Yu, J. (2022). First report of tomato pith necrosis caused by Pseudomonas mediterranea in South Korea. . Plant Dise, April. https://doi.org/doi: 10.1094/PDIS-07-21-1434-PDN.
dc.relation.referencesLindow, S. E., & Brandl, M. T. (2003). Microbiology of the Phyllosphere MINIREVIEW Microbiology of the Phyllosphere. Applied and Environmental Microbiology, 69(4), 1875–1883. https://doi.org/10.1128/AEM.69.4.1875
dc.relation.referencesLipps, S. M., & Samac, D. A. (2022). Pseudomonas viridiflava: An internal outsider of the Pseudomonas syringae species complex. Molecular Plant Pathology, 23(1), 3–15. https://doi.org/10.1111/mpp.13133
dc.relation.referencesLiu, H.-X., Li, S.-M., Luo, Y.-M., Luo, L.-X., Li, J.-Q., & Guo, J.-H. (2014). Biological control of Ralstonia wilt, Phytophthora blight, Meloidogyne root-knot on bell pepper by the combination of Bacillus subtilis AR12, Bacillus subtilis SM21 and Chryseobacterium sp. R89. European Journal of Plant Pathology:, 139(1), 107–116.
dc.relation.referencesLiu, Y., Štefanič, P., Miao, Y., Xue, Y., Xun, W., Zhang, N., Shen, Q., Zhang, R., Xu, Z., & Mandic-Mulec, I. (2022). Housekeeping gene gyrA, a potential molecular marker for Bacillus ecology study. AMB Express, 12(1). https://doi.org/10.1186/s13568-022-01477-9
dc.relation.referencesLiu, Z., Han, J., Liu, Z., Zhang, X., Chen, J., Dong, A., & Liu, X. (2019). First report of Pseudomonas aeruginosa causing tumor disease of Populus koreana in China. Journal of Plant Diseases and Protection, 126(5), 485–488.
dc.relation.referencesLogan, N. A. ., & De Vos, P. (2009). Bacillus. In Bergey’s Manual of Systematics of Archaea and Bacteria (p. 164). John Wiley & Sons, Inc. https://doi.org/10.1002/9781118960608.gbm00530.
dc.relation.referencesLyu, D., Msimbira, L. A., Nazari, M., Antar, M., Pagé, A., Shah, A., Monjezi, N., Zajonc, J., Tanney, C. A. S., Backer, R., & Smith, D. L. (2021). The coevolution of plants and microbes underpins sustainable agriculture. Microorganisms, 9(5), 1–13. https://doi.org/10.3390/microorganisms9051036
dc.relation.referencesMa, B., Hibbing, M. E., Kim, H. S., Reedy, R. M., Yedidia, I., Breuer, J., Breuer, J., Glasner, J. D., Perna, N. T., Kelman, A., & Charkowski, A. O. (2007). Host range and molecular phylogenies of the soft rot enterobacterial genera Pectobacterium and Dickeya. Phytopathology, 97(9), 1150–1163. https://doi.org/10.1094/PHYTO-97-9-1150
dc.relation.referencesMadigan, M. T., Martinko, J. M., Bender, K., Buckley, D., & Stahl, D. (2015). Brock. Biología de los microorganismos (14th ed.). Pearson.
dc.relation.referencesMaughan, H., & Van der Auwera, G. (2011). Bacillus taxonomy in the genomic era finds phenotypes to be essential though often misleading. Infection, Genetics and Evolution, 11(5), 789–797. https://doi.org/10.1016/j.meegid.2011.02.001
dc.relation.referencesMay, R., Völksch, B., & Kampmann, G. (1997). Antagonistic activities of epiphytic bacteria from soybean leaves against Pseudomonas syringae pv. glycinea in vitro and in planta. Microbial Ecology, 34(2), 118–124. https://doi.org/10.1007/s002489900041
dc.relation.referencesMigula, N. (1894). Arbeiten aus dem Bakteriologischen. Institut Der Technischen Hochschule Zu Karlsruhe, 1, 235–238.
dc.relation.referencesMiljakovic, D., Marinkovic, J., & Balesevick-Tubic, S. (2020). The significance of Bacillus spp in disease suppression and growth promotion of field and vegetable crops. Microorganisms, 8(1037), 19.
dc.relation.referencesMiller, Sally A;, Jones, J. B., & Kurowski, C. (2017). Detection of Xanthomonas spp. in tomato and pepper seeds. In M. Fatmi, R. R. Walcott, & N. W. Schaad (Eds.), Detection of plant- pathogenic bacteria in seed and other planting material (Second edi, pp. 125–132). APS Press.
dc.relation.referencesMiller, Sally A. (2003). Bacterial spot. In K. Pernezny, P. Roberts, J. F. Murphy, & N. Goldberg (Eds.), Compendium of Pepper Diseases (p. 6). APS Press.
dc.relation.referencesMondino, P. (2006). Bases conceptuales para el Manejo Ecológico de Plagas y Enfermedades. Control Biológico de Pnfermedades de Plantas, 198–206.
dc.relation.referencesMougou, I., & Boughalleb-M’hamdi, N. (2018). Biocontrol of Pseudomonas syringae pv. syringae affecting citrus orchards in Tunisia by using indigenous Bacillus spp. and garlic extract. Egyptian Journal of Biological Pest Control, 28(1). https://doi.org/10.1186/s41938-018-0061-0
dc.relation.referencesNarayanasami, P. (2011). Pathogens-Dectection and disease detection: Bacterial and phitoplasmal pathogens. Vol 2. (Springer). https://doi.org/10.1007/978-90-481-9769-9
dc.relation.referencesNational Center for Biotechnology Information (NCBI). (2023). Genome. National Library of Medicine (US), National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov
dc.relation.referencesNational Library of Medicine (US), N. C. for B. I. (2023). National Center for Biotechnology Information (NCBI)[Internet].
dc.relation.referencesNei, M., & S., K. (2000). Molecular Evolution and Phylogenetics. Oxford University Press.
dc.relation.referencesObregón, M., Rodríguez, P. A., Morales, J. G., & Salazar, M. (2019). Hospedantes de ralstonia solanacearum en plantaciones de banano y plátano en colombia. Revista Facultad Nacional de Agronomía. https://repositorio.unal.edu.co/bitstream/handle/unal/36983/24783-86971-1-PB.pdf?sequence=1&isAllowed=y
dc.relation.referencesOepp, B., & Bulletin, E. (2018). PM 7 / 21 ( 2 ) Ralstonia solanacearum , R . pseudosolanacearum and R . syzygii ( Ralstonia solanacearum species complex ). https://doi.org/10.1111/epp.12454
dc.relation.referencesOrganización de las Naciones Unidas para la Alimentación y la Agricultura -FAO. (2022). FAOSTAT. https://www.fao.org/faostat/es/#data/QCL/visualize
dc.relation.referencesOrganización de las Naciones Unidas para la Alimentación y la Agricultura (FAO);, & Organización Mundial de la Salud (OMS). (2008). Propuestas de nuevos trabajos para Normas del Codex sobre el Chile Fresco y el Ajo. Comisión Del Codex Alimentarius, 1–29. www.codexalimeintarius.net
dc.relation.referencesOsdaghi, E., Taghavi, S. M., Koebnik, R., & Lamichhane, J. R. (2018). Multilocus sequence analysis reveals a novel phylogroup of Xanthomonas euvesicatoria pv. perforans causing bacterial spot of tomato in Iran. Plant Pathology, 67(7), 1601–1611. https://doi.org/10.1111/ppa.12864
dc.relation.referencesOsdaghi, Ebrahim, Taghavi, S. M., Hamzehzarghani, H., & Lamichhane, J. R. (2016). Occurrence and Characterization of the Bacterial Spot Pathogen Xanthomonas euvesicatoria on Pepper in Iran. Journal of Phytopathology, 164, 722–734. https://doi.org/10.1111/jph.12493
dc.relation.referencesPadilha;, H. K. M., & Barbieri., R. L. (2016). Plant breeding of chili peppers (Capsicum, Solanaceae) – A review. Australian Journal of Basic and Applied Sciences, 10(October), 148–154.
dc.relation.referencesPal, K. K., & Mc Spadden Gardener, B. (2006). Biological Control of Plant Pathogens. The Plant Health Instructor, 1–25. https://doi.org/10.1094/PHI-A-2006-1117-02.Biological
dc.relation.referencesPal, K. K., Mc Spadden Gardener, B., Bulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E., Schulze-Lefert, P., Müller, D. B., Vogel, C., Bai, Y., & Vorholt, J. A. (2013). Biological Control of Plant Pathogens. Annual Review of Genetics, 64(1), 1–25. https://doi.org/10.1146/annurev-genet-120215-034952
dc.relation.referencesPalleroni, N. (2015). Pseudomonas. In M. E. Trujillo, S. Dedysh, P. DeVos, B. Hedlund, P. Kämpfer, F. A. Rainey, & W. B. Whitman (Eds.), Bergey’s Manual of Systematics of Archaea and Bacteria (pp. 58–69). https://doi.org/10.1002/9781118960608.gbm01210.
dc.relation.referencesPardo, J. M. ., López-Álvarez, D. ., Leiva, A. M., Ceballos, G. ., Álvarez, E. ., Domínguez, V.; Barrantes, I. ., & Cuellar, W. (2022). Genoma completo, diagnóstico y detección de resistencia a plátanos híbridos Ralstonia solanacearum. XXVIII Congreso de La Sociedad Chilena de Fitopatología. Libro de Resúmenes, 64.
dc.relation.referencesParisi, M., Alioto, D., & Tripodi, P. (2020). Overview of biotic stresses in pepper (Capsicum spp.): Sources of genetic resistance, molecular breeding and genomics. International Journal of Molecular Sciences, 21(7). https://doi.org/10.3390/ijms21072587
dc.relation.referencesPaudel, S., Dobhal, S., Alvarez, A. M., & Arif, M. (2020). solanacearum Species Complex : A Complex Pathogen with Extraordinary Economic Consequences.
dc.relation.referencesPeix, A., Berge, O., Rivas, R., Abril, A., & Velázquez, E. (2005). Pseudomonas argentinensis sp. nov., a novel yellow pigment-producing bacterial species, isolated from rhizospheric soil in Córdoba, Argentina. International Journal of Systematic and Evolutionary Microbiology, 55(3), 1107–1112. https://doi.org/10.1099/ijs.0.63445-0
dc.relation.referencesPerea-Molina, P. A., Pedraza-Herrera, L. A., Uribe-Vélez, D., & Beauregard, P. B. (2022). A biocontrol Bacillus velezensis strain decreases pathogen Burkholderia glumae population and occupies a similar niche in rice plants. Biological Control, 176. https://doi.org/https://doi.org/10.1016/j.biocontrol.2022.105067
dc.relation.referencesPrograma de Transformación Productiva. (2013). Plan de Negocios de Ají. Plan de Negocios de Ají, 173. https://www.ptp.com.co/documentos/PLAN DE NEGOCIO AJ� diciembre.pdf
dc.relation.referencesQiu, Z., Lu, X., Li, N., Zang, M., & Qiao, X. (2017). gyrA Characterization of garlic endophytes isolated from the black garlic processing. Microbiology Open, 1–11.
dc.relation.referencesRamírez, M., Moncada, R. N., Villegas-Escobar, V., Jackson, R. W., & Ramírez, C. A. (2020). Phylogenetic and pathogenic variability of strains of Ralstonia solanacearum causing moko disease in Colombia. In Plant Pathology. https://doi.org/10.1111/ppa.13121
dc.relation.referencesRamzan, M., Sana, S., Javaid, N., Shah, A. A., Ejaz, S., Malik, W. N., Yasin, N. A., Alamri, S., Siddiqui, M. H., Datta, R., Fahad, S., Tahir, N., Mubeen, S., Ahmed, N., Ali, M. A., El Sabagh, A., & Danish, S. (2021). Mitigation of bacterial spot disease induced biotic stress in Capsicum annuum L. cultivars via antioxidant enzymes and isoforms. Scientific Reports, 11(1), 1–10. https://doi.org/10.1038/s41598-021-88797-1
dc.relation.referencesRating, S., Reaper, C., & Scorpion, T. G. (2014). The us market for fresh hot peppers. December, 1–6.
dc.relation.referencesRuiz-Sánchez, E., Mejía-Bautista, M. Á., Serrato-Díaz, A., Reyes-Ramírez, A., Estrada-Girón, Y., & Valencia-Botín, A. J. (2016). ANTIFUNGAL ACTIVITY AND MOLECULAR IDENTIFICATION OF NATIVE STRAINS OF Bacillus subtilis ACTIVIDAD ANTIFUNGICA E IDENTIFICACION MOLECULAR DE CEPAS NATIVAS DE Bacillus subtilis. Agrociencia, 50(2), 133–148.
dc.relation.referencesSaati-Santamaría, Z., Peral-Aranega, E., Velázquez, E., Rivas, R., & García-Fraile, P. (2021). Phylogenomic analyses of the genus pseudomonas lead to the rearrangement of several species and the definition of new genera. Biology, 10(8). https://doi.org/10.3390/biology10080782
dc.relation.referencesSaddler, G. S., & Bradbury, J. F. (2015). Xanthomonas. In M. E. Trujillo, S. Dedysh, P. DeVos, B. Hedlund, P. Kämpfer, F. A. Rainey, & W. B. Whitman (Eds.), Bergey’s Manual of Systematics of Archaea and Bacteria. https://doi.org/https://doi-org.ezproxy.unal.edu.co/10.1002/9781118960608.gbm01239
dc.relation.referencesSafni, I., Cleenwerck, I., De Vos, P., Fegan, M., Sly, L., & Kappler, U. (2014). Polyphasic taxonomic revision of the Ralstonia solanacearum species complex: Proposal to emend the descriptions of Ralstonia solanacearum and Ralstonia syzygii and reclassify current R. syzygii strains as Ralstonia syzygii subsp. syzygii subsp. nov., R. s. In International Journal of Systematic and Evolutionary Microbiology. https://doi.org/10.1099/ijs.0.066712-0
dc.relation.referencesSánchez-Soto, V. (2017). Aislamiento e identificación de bacterias con potencial de biocontrol a Alternaria sp., asociadas a Solanum lycopersicum [Universidad Nacional de Colombia]. In Universidad Nacional de Colombia. http://bdigital.unal.edu.co/65140/
dc.relation.referencesSanchez de Prager, M. (2018). Aportes de la biología del suelo a la agroecología. Universidad Nacional de Colombia sede Palmira.
dc.relation.referencesSawada, H., Horita, H., Nishimura, F., & Mori, M. (2020). Pseudomonas salomonii, another causal agent of garlic spring rot in Japan. Journal of General Plant Pathology, 86(3), 180–192.
dc.relation.referencesSawada, Hiroyuki, Horita, H., Misawa, T., & Takikawa, Y. (2019). Pseudomonas grimontii , causal agent of turnip bacterial rot disease in Japan. Journal of General Plant Pathology. https://doi.org/10.1007/s10327-019-00869-3
dc.relation.referencesSchaad, N. W. (2001). Initial Identification of Common Genera. In N.W; Schaad, J. B. Jones, & W. Chun (Eds.), Laboratory guide for identification of plant pathogenic bacteria (Third edit, pp. 1–16). APS Press.
dc.relation.referencesSchleifer, K. H. (2009). Classification of Bacteria and Archaea: Past, present and future. Systematic and Applied Microbiology, 32(8), 533–542. https://doi.org/10.1016/j.syapm.2009.09.002
dc.relation.referencesSeal, S., Jackson, L., & Daniels, M. (1992). Use of tRNA Consensus Primers To Indicate Subgroups of Pseudomonas solanacearum by Polymerase Chain Reaction Amplification. Applied and Enviromental Microbiology, 58(11), 3759–3761. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC183170/
dc.relation.referencesShanmugam, V., Thakur, H., Paul, S., Bhadwal, P., Mahajan, S., & Kumar, K. (2016). First report of collar rot caused by Pseudomonas aeruginosa on calla lily (Zantedeschia elliottiana). ,. Phytopathologia Mediterranea, 55(3), 427–431.
dc.relation.referencesShe, X., Yu, L., Lan, G., Tang, Y., & He, Z. (2017). Identification and Genetic Characterization of Ralstonia solanacearum Species Complex Isolates from Cucurbita maxima in China. Frontiers in Plant Science, 8(October). https://doi.org/10.3389/fpls.2017.01794
dc.relation.referencesSigee, D. C. (2005). Bacterial Plant Pathology. Cell and Molecular Aspects. Cambridge University Press.
dc.relation.referencesSigma-Aldrich. (2011). Product Information - GenElute(TM) PCR clean-up kit. Sigma -Aldrich. https://www.sigmaaldrich.cn/deepweb/assets/sigmaaldrich/product/documents/786/801/na1020bul.pdf
dc.relation.referencesSigma-Aldrich. (2017). GenElute Bacterial Genomic DNA Kit (p. 14). Sigma-Aldrich. https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/product/documents/203/124/na2110bul.pdf
dc.relation.referencesSingh, N., & Siddiqui, Z. a. (2012). Inoculation of Tomato with Ralstonia solanacearum, Xanthomonas campestris , and Meloidogyne javanica. International Journal of Vegetable Science, 18(1), 78–86. https://doi.org/10.1080/19315260.2011.579232
dc.relation.referencesSomeya, N. ., Ikeda, S. ., & Tsuchiya, K. (2012). Pseudomonas Inoculants as Agents for Plant Disease Management. In Bacteria in Agrobiology: Disease Management (pp. 219–241). https://doi.org/10.1007/978-3-642-33639-3_4
dc.relation.referencesSousa, A. M., Machado, I., Nicolau, A., & Pereira, M. O. (2013). Improvements on colony morphology identification towards bacterial profiling. Journal of Microbiological Methods, 95(3), 327–335. https://doi.org/10.1016/j.mimet.2013.09.020
dc.relation.referencesSouthern African Development Goverment (SADC). (2007). Trade information brief Capsicum (pp. 1–51). http://www.bdigital.unal.edu.co/702/1/9004001.2008.pdf
dc.relation.referencesStommel, J. R., Goth, R. W., Haynes, K. G. ., & Hwan, K. (1996). Pepper (Capsicum annuum) Soft Rot Caused by Erwinia carotovora subsp. atroseptica. Plant Disease, 80, 1109–1112.
dc.relation.referencesSulley, S., Babadoost, M., & Hind, S. R. (2021). Biocontrol agents from cucurbit plants infected with Xanthomonas cucurbitae for managing bacterial spot of pumpkin. Biological Control, 163(March), 104757. https://doi.org/10.1016/j.biocontrol.2021.104757
dc.relation.referencesTamura, K;, & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10, 512-526.
dc.relation.referencesTamura, K. (1992). Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Molecular Biology and Evolution, 9, 678–687.
dc.relation.referencesTamura, K., Stecher, G., & Kumar, S. (2021). MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution. https://doi.org/https://doi.org/10.1093/molbev/msab120.
dc.relation.referencesTaxonomic Integrated Information System (ITIS). (2022). No Title. https://doi.org/https://doi.org/10.5066/F7KH0KBK
dc.relation.referencesTaxonomic Integrated Information System (ITIS). (2023). Integrated Taxonomic Information System (ITIS) online database. https://doi.org/Https://doi.org/10.5066/F7KH0KBK
dc.relation.referencesThakur, H., Sharma, A., Sharma, P., & Rana, R. S. (2021). An insight into the problem of bacterial wilt in Capsicum spp. With special reference to India. Crop Protection, 140, 105420. https://doi.org/10.1016/j.cropro.2020.105420
dc.relation.referencesThind, B. S. (2015). Diagnosis and Management of Bacterial Plant Diseases. In L. P. Awasthi (Ed.), Recent Advances in the Diagnosis and Management of Plant Diseases (pp. 101–117). Springer. https://doi.org/10.1007/978-81-322-2571-3
dc.relation.referencesThind, B. S. (2020). Phytopathogenic Bacteria and Plant Diseases. CRC Press.
dc.relation.referencesTrankner, A. (1992). Biological Control of Plant Diseases,. March, 35–42.
dc.relation.referencesUchino, M., Kosako, Y., Uchimura, T., & Komagata, K. (2000). Emendation of Pseudomonas straminea lizuka and Komagata 1963. International Journal of Systematic and Evolutionary Microbiology, 50(4), 1513–1519. https://doi.org/10.1099/00207713-50-4-1513
dc.relation.referencesUniversidad Autónoma del Estado de México. (2013). Programa de prácticas de bacteriología y micología (p. 43).
dc.relation.referencesVallejo, F.A.; Estrada, E. I. . (2004). Producción de hortalizas de clima calido. Universidad Nacional de Colombia - Sede Palmira.
dc.relation.referencesvan Teeseling, M. C. F., de Pedro, M. A., & Cava, F. (2017). Determinants of bacterial morphology: From fundamentals to possibilities for antimicrobial targeting. Frontiers in Microbiology, 8(JUL), 1–18. https://doi.org/10.3389/fmicb.2017.01264
dc.relation.referencesVancheva, T., Bogatzevska, N., Moncheva, P., Mitrev, S., Vernière, C., & Koebnik, R. (2021). Molecular epidemiology of xanthomonas euvesicatoria strains from the balkan peninsula revealed by a new multiple‐locus variable‐number tandem‐repeat analysis scheme. Microorganisms, 9(3), 1–19. https://doi.org/10.3390/microorganisms9030536
dc.relation.referencesVidaver, A. K. (1967). Synthetic and complex media for rapid detection of fluorescence of phytopathogenic pseudomonads: Effect of the carbon source. Applied Microbiology, 15, 1523–1524.
dc.relation.referencesWalker, T. S., Bais, H. P., Grotewold, E., & Vivanco, J. M. (2003). Root Exudation and Rhizosphere Biology. 132(May), 44–51. https://doi.org/10.1104/pp.102.019661.Although
dc.relation.referencesWalterson, A. M., & Stavrinides, J. (2015). Pantoea: Insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS, 39(6), 968–984. https://doi.org/10.1093/femsre/fuv027
dc.relation.referencesWang, J., Chen, T., Xue, L., Wei, X., White, J. F., Qin, Z., & Li, C. (2022). A new bacterial leaf blight disease of oat (Avena sativa) caused by Pantoea agglomerans in China. Plant Pathology, 71(2), 470–478. https://doi.org/10.1111/ppa.13479
dc.relation.referencesWinstead, N. N., & Kelman, A. (1952). Inoculation Techniques for Evaluating Resistance to Pseudomonas solanacearum. Phytopathology, 42, 628–634.
dc.relation.referencesYabuuchi, K., Oyaizu, Y., Hotta, H., Ezaki, Y., Kosako, O., Yano, H. ;, Hashimoto, E., & Arakawa. (1998). lBURKHOLDERIA SOLANACEARUM Burkholderia solanacearum ( Smith ). Systematic and Applied Microbiology, 2(2), 1–6. https://doi.org/10.1007/s10658-014-0403-z
dc.relation.referencesYabuuchi, Kosako, Yano, Hotta, & Nishiuchi. (2015). Ralstonia. In Bergey’s Manual of Systematics of Archaea and Bacteria (p. 21). https://doi.org/10.1002/9781118960608.gbm00941
dc.relation.referencesYazdani, R., Safaie, N., & Shams-Bakhsh, M. (2018). Association of Pantoea ananatis and Pantoea agglomerans with leaf spot disease on ornamental plants of Araceae Family. European Journal of Plant Pathology: European Journal of Plant Pathology, 150(1), 167–178.
dc.relation.referencesYoung, J. M. (2010). Isolation and identification of plant pathogenic bacteria. In Pseudomonas Pathogens of Stone Fruits and Nuts : Classical and Molecular Phytobacteriology Pseudomonas Pathogens of Stone Fruits and Nuts : Classical and Molecular Phytobacteriology (Issue April, pp. 22–26).
dc.relation.referencesZhang, C., Lin, T., Li, J., Ma, G., Wang, Y., Zhu, P., & Xu, L. (2016). First report of the melon stem rot disease in protected cultivation caused by Pseudomonas fluorescens. Journal of Plant Diseases and Protection, 123(5), 247–255.
dc.relation.referencesZhao, M., Koirala, S., Chen, H. C., Gitaitis, R., Kvitko, B., & Dutta, B. (2021). Pseudomonas capsici sp. Nov., a plant-pathogenic bacterium isolated from pepper leaf in Georgia, USA. International Journal of Systematic and Evolutionary Microbiology, 71(8). https://doi.org/10.1099/ijsem.0.004971
dc.relation.referencesZheng, X. . ., Zhu, Y., Liu, B., Zhou, Y., Che, J., & Li, N. (2014). Relationship between ralstonia solanacearum diversity and severity of bacterial wilt disease in tomato fields in China. Journal of Phytopathology, 162, 606–616. https://doi.org/http://doi.org/10.1080/19315260.2011.579232
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.subject.agrovocColombia
dc.subject.agrovocValle del Cauca
dc.subject.agrovocCaracterización molecular
dc.subject.agrovocMolecular characterization
dc.subject.agrovocBacterias patógenas
dc.subject.agrovocPathogenic bacteria
dc.subject.agrovocInfectious Agent
dc.subject.agrovocAgente infeccioso
dc.subject.agrovocEnfermedades de las plantas
dc.subject.agrovocPlant diseases
dc.subject.agrovocEnfermedades bacterianas
dc.subject.agrovocBacterial diseases
dc.subject.proposalFitobacteria
dc.subject.proposalFitobacteriología
dc.subject.proposalFitopatología
dc.subject.proposalBiorregulador
dc.subject.proposalCapsicum spp.
dc.subject.proposalPlant bacteriology
dc.subject.proposalPhytopathogen
dc.subject.proposalPhytopathology
dc.subject.proposalBiocontrol
dc.subject.proposalPlant bacteria
dc.title.translatedMorphological and molecular characterization of plant bacteria associated to Capsicum spp. in Valle del Cauca - Colombia
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleProyecto 39584. Caracterización de fitobacterias asociadas a Capsicum spp en el Valle del Cauca
oaire.awardtitleProyecto 39897. Caracterización morfológica y molecular de bacterias asociadas a ají y pimentón Capsicum spp. en el Valle del Cauca
oaire.fundernameColciencias
oaire.fundernameUniversidad Nacional de Colombia
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dc.description.curricularareaCiencias Agropecuarias.Sede Palmira
dc.contributor.orcidhttps://orcid.org/0000-0003-1831-481X
dc.contributor.orcidAngela Liliana Rivera-Calderón
dc.contributor.cvlacRivera Calderón, Angela Liliana
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000331465
dc.contributor.researchgatehttps://www.researchgate.net/profile/Angela-Rivera-2
dc.contributor.researchgateAngela Rivera
dc.contributor.googlescholarAngela Liliana Rivera Calderón
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=-dDzVswAAAAJ&hl=es&oi=ao


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito