Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorRoa Rojas, Jairo
dc.contributor.advisorPlazas de Pinzón, María Cristina
dc.contributor.authorRossi Rincon, Ian Mitchel
dc.date.accessioned2023-08-14T19:05:36Z
dc.date.available2023-08-14T19:05:36Z
dc.date.issued2023-06-12
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84555
dc.descriptionilustraciones, fotografías
dc.description.abstractLa importancia de este trabajo se basa en encontrar la mejor respuesta termoluminiscente de la síntesis por el método de reacción de estado sólido del compuesto LiF con incorporaciones de NdF3, CeF3 y LaF3. De esta manera, se encuentran por medio de los difractogramas la coexistencia de dos fases de manera independiente del LiF y las incorporaciones de NdF3, LaF3 y CeF3 del 2%, 6% y 12% respectivamente, variando entre ellas la intensidad y el ancho de los picos característicos, de tal manera que la intensidad de los picos tiene relación directa con la respuesta termoluminiscente, donde la absorción de radiación implica una disminución de la intensidad de la señal. Se encuentran los coeficientes de electrones retrodispersados para el LiF de η = 46.7%, para la incorporación del 2% de NdF3 es de η = 6.0%, para la incorporación del 6% de LaF3 es de η = 25.8% y para el CeF3 es de η = 21.4%. Este factor es importante para la absorción y almacenamiento de radiación ionizante. De esta manera se encuentra solamente respuesta termoluminiscente bajo radiación rayos X de 1KeV para el caso de la incorporación del NdF3 obteniendo la mejor respuesta para el caso del 2% y un pico máximo de emisión 2μA, LiF un pico máximo de emisión de 74nA. Por último, se encontraros respuestas TL máximas bajo radiación UV-C de 25nA para el LiF, 310nA para el 2% NdF3, 152nA para el 6% LaF3 y de 47nA para el 2% CeF3. (Texto tomado de la fuente).
dc.description.abstracthe importance of this work is based on finding the best thermoluminescent response of the synthesis by the solid state reaction method of the LiF compound with incorporations of NdF3, CeF3 and LaF3. This way, the coexistence of two phases independently of LiF and the incorporations of NdF3, LaF3 and CeF3 of 2%, 6% y 12% respectively, varying between them the intensity and width of the characteristic peaks. respectively, are found by means of the diffractograms, varying between them the intensity and width of the characteristic peaks, in such a way that the intensity of the peaks is directly related to the thermoluminescent response, where the absorption of radiation implies a decrease in the intensity of the signal. The coefficients of backscattered electrons for LiF are found to be η = 46.7%, for the incorporation of 2% NdF3 it is η = 6.0%, or the incorporation of 6%, LaF3 it is η = 25.8% and for CeF3 it is η= 21.4%. This factor is important for the absorption and storage of ionizing radiation. In this way, only thermoluminescent response is found under 1KeV X-ray radiation for the case of NdF3 incorporation, obtaining the best response for the case of 2% and a maximum emission peak of 2μA, LiF a maximum emission peak of 74nA. Finally, maximum TL responses under UV-C radiation of 25nA for LiF, 310nA for 2% NdF3, 152nA for 6% LaF3 and 47nA for 2% CeF3 were found.
dc.format.extentxi, 92 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc530 - Física::535 - Luz y radiación relacionada
dc.titleSíntesis y características físicas del compuesto LiF dopado con LaF3, NdF3 y CeF3
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Física
dc.contributor.researchgroupGrupo Fisica Medica Unalb
dc.contributor.researchgroupGrupo de Física de Nuevos Materiales
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Física
dc.description.researchareaFísica de nuevos materiales
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references[1] M. Chakraborty and M. S. J. Hashmi, “High energy radiation detection materials: fabrication and applications,” Advances in Materials and Processing Technologies, vol. 5, no. 2, pp. 279–294, 2019, doi: 10.1080/2374068X.2019.1575714.
dc.relation.references[2] A. T. McCay, T. L. Harley, P. L. Younger, D. C. W. Sanderson, and A. J. Cresswell, “Gammaray spectrometry in geothermal exploration: State of the art techniques,”
dc.relation.references[3] S. del Sordo, L. Abbene, E. Caroli, A. M. Mancini, A. Zappettini, and P. Ubertini, “Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications,” Sensors, vol. 9, no. 5, pp. 3491–3526, 2009, doi: 10.3390/s90503491.
dc.relation.references[4] J. H. D. Wong et al., “Characterization of a novel two dimensional diode array the magic plate as a radiation detector for radiation therapy treatment,” Med Phys, vol. 39, no. 5, pp. 2544–2558, 2012, doi: 10.1118/1.3700234.
dc.relation.references[5] G. Alzen and G. Benz-Bohm, “Kinderradiologie - besonderheiten des strahlenschutzes,” Dtsch Arztebl, vol. 108, no. 24, pp. 407–414, 2011, doi: 10.3238/arztebl.2011.0407.
dc.relation.references[6] V. Kortov, “Materials for thermoluminescent dosimetry: Current status and future trends,” Radiat Meas, vol. 42, no. 4–5, pp. 576–581, 2007, doi: 10.1016/j.radmeas.2007.02.067.
dc.relation.references[7] A. G. Wintle and D. J. Huntley, “Thermoluminescence dating of sediments,” Quat Sci Rev, vol. 1, no. 1, pp. 31–53, 1982, doi: 10.1016/0277-3791(82)90018-X.
dc.relation.references[8] S. W. S. McKeever, Thermoluminescence of Solids. Cambridge University Press, 1985. doi: 10.1017/CBO9780511564994.
dc.relation.references[9] T. Nakajima, Y. Murayama, T. Matsuzawa, and A. Koyano, “Development of a new highly sensitive LiF thermoluminescence dosimeter and its applications,” Nuclear Instruments and Methods, vol. 157, no. 1, pp. 155–162, 1978, doi: 10.1016/0029-554X(78)90601-8.
dc.relation.references[10] H. Yazan, Z. G. Portakal-Uçar, S. Akça, M. Topaksu, P. D. Townsend, and N. Can, “Thermoluminescence of Ce and Nd co-doped CaF2 phosphors after beta irradiation,” J Lumin, vol. 234, no. October 2020, p. 117949, 2021, doi: 10.1016/j.jlumin.2021.117949.
dc.relation.references[11] P. Konstantinidis, E. Tsoutsoumanos, G. S. Polymeris, and G. Kitis, “Thermoluminescence response of various dosimeters as a function of irradiation temperature,” Radiation Physics and Chemistry, vol. 177, no. September,
dc.relation.references[12] S. G. Gorbics, F. H. Attix, and J. A. Pfaff, “Temperature stability of CaF2:Mn and LiF(TLD-100) thermoluminescent dosimeters,” Int J Appl Radiat Isot, vol. 18, no. 9, pp. 625–630, Sep. 1967, doi: 10.1016/0020-708X(67)90063-4.
dc.relation.references[13] E. B. Podgoršak, P. R. Moran, and J. R. Cameron, “Thermoluminescent behavior of LiF (TLD- 100) from 77° to 500°K,” J Appl Phys, vol. 42, no. 7, pp. 2761–2767, 1971, doi: 10.1063/1.1660620.
dc.relation.references[14] H. Jung, K. J. Lee, and J. L. Kim, “A personal thermoluminescence dosimeter using LiF:Mg,Cu,Na,Si detectors for photon fields,” Applied Radiation and Isotopes, vol. 59, no. 1, pp. 87–93, 2003, doi: 10.1016/S0969- 043(03)00120-9.
dc.relation.references[15] S. del Sordo, L. Abbene, E. Caroli, A. M. Mancini, A. Zappettini, and P. Ubertini, “Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications,” Sensors, vol. 9, no. 5, pp. 3491–3526, 2009, doi: 10.3390/s90503491.
dc.relation.references[16] L. Singh, V. Chopra, and S. P. Lochab, “Synthesis and characterization of thermoluminescent Li2B 4O7 nanophosphor,” J Lumin, vol. 131, no. 6, pp. 1177–1183, 2011, doi: 10.1016/j.jlumin.2011.02.035.
dc.relation.references[17] B. J. R. Swamy et al., “Thermoluminescence study of MnO doped borophosphate glass samples for radiation dosimetry,” J Non Cryst Solids, vol. 368, no. 1, pp. 40–44, 2013, doi: 10.1016/j.jnoncrysol.2013.02.020.
dc.relation.references[18] O. Annalakshmi et al., “Thermoluminescence dosimetric characteristics of thulium doped ZnB 2O4 phosphor,” J Lumin, vol. 146, pp. 295–301, 2014, doi: 10.1016/j.jlumin.2013.09.042.
dc.relation.references[19] S. Bahl, S. P. Lochab, and P. Kumar, “CaSO4: DY,Mn: A new and highly sensitive thermoluminescence phosphor for versatile dosimetry,” Radiation Physics and Chemistry, vol. 119, pp. 136–141, 2016, doi: 10.1016/j.radphyschem.2015.10.004.
dc.relation.references[20] D. A. Bradley et al., “Developments in production of silica-based thermoluminescence dosimeters,” Radiation Physics and Chemistry, vol. 137, pp. 37–44, 2017, doi: 10.1016/j.radphyschem.2016.01.013.
dc.relation.references[21] T. Matsuo et al., “Photoluminescence, scintillation, and dosimetric properties of Cecodoped MgF2:Tb ceramics,” J Lumin, vol. 231, no. August 2020, p. 117803, 2021, doi: 10.1016/j.jlumin.2020.117803.
dc.relation.references[22] M. Mehrabi, M. Zahedifar, Z. Saeidi, R. Gheisari, and S. Hasanloo, “Effect of using ultrasonic waves in synthesis on the size, shape and luminescence properties of NaCl:Ce3+ crystals for clinical dosimeter application,” Mater Chem Phys, vol. 263, no. January, p. 124374, 2021, doi: 10.1016/j.matchemphys.2021.124374.
dc.relation.references[23] A. A. Saray, P. Kaviani, and D. Shahbazi-Gahrouei, “Dosimetric characteristics of lithium triborate (LiB3O5) nanophosphor for medical applications,” Radiat Meas, vol. 140, no. June 2020, p. 106502, 2021, doi: 10.1016/j.radmeas.2020.106502.
dc.relation.references[24] M. F. Churbanov et al., “Cascade sensitization of mid-infrared Ce3+ luminescence by Dy3+ ions in selenide glass,” J Lumin, vol. 231, no. July 2020, p. 117809, 2021, doi: 10.1016/j.jlumin.2020.117809.
dc.relation.references[25] A. R. Kadam, G. C. Mishra, and S. J. Dhoble, “Thermoluminescence study and evaluation of trapping parameters CaTiO3: RE (RE=Eu3+, Dy3+) phosphor for TLD applications,” J Mol Struct, vol. 1225, p. 129129, 2021, doi: 10.1016/j.molstruc.2020.129129.
dc.relation.references[26] H. A. Thabit, N. A. Kabir, N. M. Ahmed, S. Alraddadi, and M. S. Al-Buriahi, “Synthesis, structural, optical, and thermoluminescence properties of ZnO/Ag/Y nanopowders for electronic and dosimetry applications,” Ceram Int, vol. 47, no. 3, pp. 4249–4256, 2021, doi: 10.1016/j.ceramint.2020.10.002.
dc.relation.references[27] P. O. Ike, D. E. Folley, K. K. Agwu, M. L. Chithambo, S. Chikwembani, and F. I. Ezema, “Influence of dysprosium doping on the structural, thermoluminescence and optical properties of lithium aluminium borate,” J Lumin, vol. 233, no. December 2020, p. 117932, 2021, doi: 10.1016/j.jlumin.2021.117932.
dc.relation.references[28] J. Azorin, “Preparation methods of thermoluminescent materials for dosimetric applications: An overview,” Applied Radiation and Isotopes, vol. 83, pp. 187–191, 2014, doi: 10.1016/j.apradiso.2013.04.031.
dc.relation.references[29] J. I. Goldstein et al., “Scanning Electron Microscopy and X-Ray Microanalysis.”
dc.relation.references[30] L. L. Noto et al., “Photoluminescence and thermoluminescence properties of BaGa2O4,” Physica B Condens Matter, vol. 535, pp. 268–271, Apr. 2018, doi: 10.1016/j.physb.2017.07.059.
dc.relation.references[31] A. R. Kadam, G. C. Mishra, and S. J. Dhoble, “Thermoluminescence study and evaluation of trapping parameters CaTiO3: RE (RE=Eu3+, Dy3+) phosphor for TLD applications,” J Mol Struct, vol. 1225, p. 129129, 2021, doi: 10.1016/j.molstruc.2020.129129.
dc.relation.references[32] M. K. Shoushtari, M. Zahedifar, and E. Sadeghi, “Preparation and thermoluminescent dosimetry features of high sensitivity LiF:Mg,Ce phosphor,” Nucl Instrum Methods Phys Res A, vol. 887, no. April, pp. 128–132, 2018, doi: 10.1016/j.nima.2018.01.043.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalDosíimetria
dc.subject.proposalDetectores TLD
dc.subject.proposalSemiconductores
dc.subject.proposalDosimetry
dc.subject.proposalDetectors TLD
dc.subject.proposalSemiconductors
dc.subject.unescoEquipamiento electrónico
dc.subject.unescoElectronic equipment
dc.subject.unescoQuímica física
dc.subject.unescoPhysical chemistry
dc.subject.unescoPropiedad química
dc.subject.unescoChemical properties
dc.title.translatedSynthesis and physical characteristics of the LiF compound doped with LaF3, NdF3 and CeF3
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentPúblico general


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito