Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorCadavid Estrada, Juan Guillermo
dc.contributor.advisorNarváez Rincón, Paulo César
dc.contributor.authorMayorga Betancourt, Manuel Alejandro
dc.date.accessioned2023-09-01T19:24:45Z
dc.date.available2023-09-01T19:24:45Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84628
dc.descriptionilustraciones, diagramas
dc.description.abstractEl desarrollo de biocombustibles avanzados es una opción que contribuye a la transición energética a corto y mediano plazo. Así, en esta investigación se verificó experimentalmente la obtención de biodiésel no éster por desoxigenación catalítica de aceite de palma con hidrógeno generado in situ en lugar de alimentarlo. Entonces se definieron dos sistemas catalíticos capaces de generarlo, por transferencia catalítica y/o reformado en fase acuosa, a partir de donantes como ácido fórmico y etanol, para luego hidrotratar los triglicéridos. Se seleccionaron como fases activas platino y paladio soportadas al 5% en carbono, así como su mezcla equimásica. Para estudiar primordialmente el rendimiento de hidrocarburos y la selectividad hacia hidrodesoxigenación, se evaluó el proceso con exceso hidrógeno del 50% y 100%, a 250 °C y 300 °C. El sistema 5% Pt/C con ácido fórmico en un exceso del 50% a 300 °C presentó el mejor desempeño en la producción de hidrocarburos, pues se obtuvo un producto líquido con 94% principalmente de n-pentadecano y n-heptadecano, por lo que favoreció la descarbonilación-descarboxilación, minimizando la selectividad. La temperatura es la variable de mayor incidencia en la producción de hidrocarburos, tal que para el mismo sistema de platino con 100% de exceso de fórmico a 250 °C se obtuvieron menos hidrocarburos aunque se maximizó la selectividad. Mientras que el sistema platino-paladio con un exceso del 50% de ácido fórmico a 300 °C fue el más equilibrado en rendimiento y selectividad. Las diferencias observadas en la actividad de ambos catalizadores, se explican en parte por la mayor mesoporosidad y dispersión del platino. (Texto tomado de la fuente)
dc.description.abstractThe development of advanced biofuels is an option that contributes to the energy transition in the short and medium term. Thus, in this research, the obtaining of non-ester biodiesel by catalytic deoxygenation of palm oil with hydrogen generated in situ instead of feeding it was experimentally verified. Two catalytic systems capable of generating it were then defined, by catalytic transfer and/or reforming in the aqueous phase, from donors such as formic acid and ethanol, to then hydrotreat the triglycerides. Platinum and palladium supported at 5% on carbon were selected as active phases, as well as their of equal mass mixture. To primarily study the yield of hydrocarbons and the selectivity towards hydrodeoxygenation, the process was evaluated with excess hydrogen of 50% and 100%, at 250 °C and 300 °C. The 5% Pt/C system with formic acid in excess of 50% at 300 °C presented the best performance in the production of hydrocarbons, since a liquid product with 94% mainly n-pentadecane and n-heptadecane was obtained, for which favored decarbonylation-decarboxylation, minimizing selectivity. Temperature is the variable with the highest incidence in the production of hydrocarbons, such that for the same platinum system with 100% excess formic at 250 °C, the less hydrocarbons were obtained, although selectivity was maximized. While the platinum-palladium system with a 50% excess of formic acid at 300 °C was the most balanced in yield and selectivity. The differences observed in the activity of both catalysts are partly explained by the higher mesoporosity and dispersion of platinum.
dc.description.sponsorshipUniversidad ECCI
dc.description.sponsorshipInstituto de Investigaciones en Catálisis y Petroquímica, INCAPE, de la Universidad Nacional del Litoral (UNL) y del Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) de Santa Fe, Argentina
dc.format.extentxiii, 352
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc660 - Ingeniería química::661 - Tecnología de químicos industriales
dc.subject.ddc660 - Ingeniería química::665 - Tecnología de aceites, grasas, ceras, gases industriales
dc.subject.ddc660 - Ingeniería química::668 - Tecnología de otros productos orgánicos
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánica
dc.subject.ddc620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.titleProducción de biodiésel no éster mediante desoxigenación catalítica de aceite de palma con generación de hidrógeno in situ
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Química
dc.contributor.researchgroupGrupo de Investigación en Procesos Químicos y Bioquímicos
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ingeniería
dc.description.methodsExperimental, empleando un diseño factorial con cuatro (4) factores: tres (3) sistemas catalíticos (5%Pt/C, 5% Pd/C y Mezcla equimásica 5% Pt/C - 5% Pd/C), dos (2) donantes de hidrógeno (ácido fórmico y alcohol etílico), dos (2) excesos de donante (50% y 100%), y dos (2) temperaturas (250 °C y 300 °C). Las variables de respuesta fueron el rendimiento en la producción de hidrocarburos, la selectividad por la ruta de la hidrodesoxigenación, la concentración de hidrógeno generado y la conversión del aceite de palma. El análisis químico se realizó mediante GC y HPLC, mientras que los catalizadores empleados fueron caracterización en estado fresco y usado.
dc.description.researchareaBiorrefinerías y Biocombustibles
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAatola, H., Larmi, M., Sarjovaara, T., & Mikkonen, S. (2008). Hydrotreated Vegetable Oil (HVO) as a Renewable Diesel Fuel: Trade-off between NOx, Particulate Emission, and Fuel Consumption of a Heavy Duty Engine. SAE Technical Paper 2008-01-2500. SAE Technical Papers, 724, 12. https://doi.org/10.4271/2008-01-2500
dc.relation.referencesAatola, H., Larmi, M., Sarjovaara, T., & Mikkonen, S. (2008). Hydrotreated Vegetable Oil (HVO) as a Renewable Diesel Fuel: Trade-off between NOx, Particulate Emission, and Fuel Consumption of a Heavy Duty Engine. SAE Technical Paper 2008-01-2500. SAE Technical Papers, 724, 12. https://doi.org/10.4271/2008-01-2500
dc.relation.referencesAcid, F. (1960). Phys. Org. 1923. 1923–1925
dc.relation.referencesAfonso, M., Pedroza, P., Soter, I., Segtovich, V., Sermoud, V. D. M., & Antunes, M. (2022). Hydrodeoxygenation of stearic acid to produce diesel – like hydrocarbons: kinetic modeling, parameter estimation and simulation. Chemical Engineering Science, 254, 117576. https://doi.org/10.1016/j.ces.2022.117576
dc.relation.referencesAhmadi, M., Nambo, A., Jasinski, J. B., Ratnasamy, P., & Carreon, M. A. (2014). Decarboxylation of oleic acid over Pt catalysts supported on small-pore zeolites and hydrotalcite. Catalysis Science & Technology, 5(1), 380–388. https://doi.org/10.1039/C4CY00661E
dc.relation.referencesAl-Muhtaseb, A. H., Jamil, F., Al-Haj, L., Al-Hinai, M. a., Baawain, M., Myint, M. T. Z., & Rooney, D. (2016). Efficient utilization of waste date pits for the synthesis of green diesel and jet fuel fractions. Energy Conversion and Management, 127, 226–232. https://doi.org/10.1016/j.enconman.2016.09.004
dc.relation.referencesAl Alwan, B., Salley, S. O., & Ng, K. Y. S. (2015). Biofuels production from hydrothermal decarboxylation of oleic acid and soybean oil over Ni-based transition metal carbides supported on Al-SBA-15. In Applied Catalysis A: General (Vol. 498, pp. 32–40). Elsevier B.V. https://doi.org/10.1016/j.apcata.2015.03.012
dc.relation.referencesAlvear, M., Aho, A., Simakova, I. L., Grénman, H., Salmi, T., & Murzin, D. Y. (2020). Aqueous phase reforming of xylitol and xylose in the presence of formic acid. Catalysis Science and Technology, 10(15), 5245–5255. https://doi.org/10.1039/d0cy00811g
dc.relation.referencesAnand, M., Farooqui, S. A., Kumar, R., Joshi, R., Kumar, R., Sibi, M. G., Singh, H., & Sinha, A. K. (2016). Kinetics, thermodynamics and mechanisms for hydroprocessing of renewable oils. Applied Catalysis A: General, 516, 144–152. https://doi.org/10.1016/j.apcata.2016.02.027
dc.relation.referencesAndersson, K., Hell, M., & Lowendahl, L. (1974). Diffusivities of Hydrogen and Glyceryl Trioleate in Cottonseed Oil at Elevated Temperature. Journal of the American Oil Chemists´s Society, 51(April), 171–173.
dc.relation.referencesArora, P., Lind, E., Olsson, L., & Creaser, D. (2019). Kinetic study of hydrodeoxygenation of stearic acid as model compound for renewable oils. Chemical Engineering Journal, 364(January), 376–389. https://doi.org/10.1016/j.cej.2019.01.134
dc.relation.referencesArun, N., Sharma, R. V., & Dalai, A. K. (2015). Green diesel synthesis by hydrodeoxygenation of bio-based feedstocks: Strategies for catalyst design and development. Renewable and Sustainable Energy Reviews, 48, 240–255. https://doi.org/10.1016/j.rser.2015.03.074
dc.relation.referencesAslam, M., Konwar, L. J., Sarma, A. K., & Kothiyal, N. C. (2015). An investigation of catalytic hydrocracking of high FFA vegetable oils to liquid hydrocarbons using biomass derived heterogeneous catalysts. Journal of Analytical and Applied Pyrolysis, 115, 401–409. https://doi.org/10.1016/j.jaap.2015.08.015
dc.relation.referencesAustin, G. T. (1988). Manual de Procesos Químicos en la Industria (McGraw-Hill (ed.); 1a (En Esp).
dc.relation.referencesBach, A., Maillard, F., Chatenet, M., Soudant, P., & Cremers, C. (2016). Ethanol oxidation reaction ( EOR ) investigation on Pt/C , Rh/C , and Pt-based bi- and tri-metallic electrocatalysts : A DEMS and in situ FTIR study. “Applied Catalysis B, Environmental,” 181, 672–680. https://doi.org/10.1016/j.apcatb.2015.08.041
dc.relation.referencesBaharudin, K. B., Arumugam, M., Hunns, J., Lee, A. F., Mayes, E., & Taufiq-yap, Y. H. (2019). Octanoic acid hydrodeoxygenation over bifunctional Ni/Al-SBA-15 catalysts. Catalysis Science & Technology, 9, 6673–6680. https://doi.org/10.1039/c9cy01710k
dc.relation.referencesBalagurumurthy, B., Singh, R., & Bhaskar, T. (2015). Catalysts for Thermochemical Conversion of Biomass. In Recent Advances in Thermochemical Conversion of Biomass. Elsevier B.V. https://doi.org/10.1016/B978-0-444-63289-0.00004-1
dc.relation.referencesBaldiraghi, F., Stanislao, M. Di, Faraci, G., Perego, C., Marker, T., Gosling, C., Kokayeff, P., Kalnes, T., & Marinangeli, R. (2009). Ecofining: New Process for Green Diesel Production from Vegetable Oil. In Sustainable Industrial Chemistry (pp. 427–438). https://doi.org/10.1002/9783527629114.ch8
dc.relation.referencesBenson, T. J., Daggolu, P. R., Hernandez, R. A., Liu, S., & White, M. G. (2013). Catalytic deoxygenation chemistry: Upgrading of liquids derived from biomass processing. In Advances in Catalysis (1st ed., Vol. 56). Elsevier Inc. https://doi.org/10.1016/B978-0-12-420173-6.00003-6
dc.relation.referencesBernard, E. (2014). Biodiesel : Los aspectos mecánicos en los vehículos (Issue 506). http://www.bioenergywiki.net/images/e/e1/CNPML-Costa-Rica-Biodiesel-Aspectos-Meca?nicos-Vehi?culos.pdf
dc.relation.referencesBernas, A., Myllyoja, J., Salmi, T., & Murzin, D. Y. (2009). Kinetics of linoleic acid hydrogenation on Pd/C catalyst. Applied Catalysis A: General, 353(2), 166–180. https://doi.org/10.1016/j.apcata.2008.10.059
dc.relation.referencesBertero, M., & Sedran, U. (2015). Coprocessing of Bio-oil in Fluid Catalytic Cracking. In Recent Advances in Thermochemical Conversion of Biomass (pp. 355–381). Elsevier B.V. https://doi.org/10.1016/B978-0-444-63289-0.00013-2
dc.relation.referencesBesse, X., Schuurman, Y., & Guilhaume, N. (2016). Hydrothermal conversion of linoleic acid and ethanol for biofuel production. Applied Catalysis A: General, 524, 139–148. https://doi.org/10.1016/j.apcata.2016.06.030
dc.relation.referencesBezergianni, S., & Dimitriadis, A. (2013). Comparison between different types of renewable diesel. Renewable and Sustainable Energy Reviews, 21, 110–116. https://doi.org/10.1016/j.rser.2012.12.04
dc.relation.referencesBezergianni, S., Dimitriadis, A., & Chrysikou, L. P. (2014). Quality and sustainability comparison of one- vs. Two-step catalytic hydroprocessing of waste cooking oil. Fuel, 118, 300–307. https://doi.org/10.1016/j.fuel.2013.10.078
dc.relation.referencesBezergianni, S., Dimitriadis, A., Kalogianni, A., & Knudsen, K. G. (2011). Toward hydrotreating of waste cooking oil for biodiesel production. Effect of pressure, H2/oil ratio, and liquid hourly space velocity. Industrial and Engineering Chemistry Research, 50(7), 3874–3879. https://doi.org/10.1021/ie200251a
dc.relation.referencesBezergianni, S., Dimitriadis, A., Kikhtyanin, O., & Kubi, D. (2018). Refinery co-processing of renewable feeds. Progress in Energy and Combustion Science, 68, 29–64. https://doi.org/10.1016/j.pecs.2018.04.002
dc.relation.referencesBhaskar, T., & Pandey, A. (2015). Advances in Thermochemical Conversion of Biomass-Introduction. Recent Advances in Thermochemical Conversion of Biomass, 3–30. https://doi.org/10.1016/B978-0-444-63289-0.00001-6
dc.relation.referencesBie, Y., Lehtonen, J., & Kanervo, J. (2016). Hydrodeoxygenation (HDO) of methyl palmitate over bifunctional Rh/ZrO2 catalyst: Insights into reaction mechanism via kinetic modeling. Applied Catalysis A: General, 526, 183–190. https://doi.org/10.1016/j.apcata.2016.08.030
dc.relation.referencesBiswas, B., Kumar, J., & Bhaskar, T. (2019). Advanced hydrothermal liquefaction of biomass for bio-oil production. In Biomass, Biofuels, Biochemicals: Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels (2nd ed., pp. 245–266). Elsevier Inc. https://doi.org/10.1016/B978-0-12-816856-1.00010-5
dc.relation.referencesBockey, D. (2019). The significance and perspective of biodiesel production –A European and global view. OCL Journal, 26(40)
dc.relation.referencesBoda, L., Onyestyák, G., Solt, H., Lónyi, F., Valyon, J., & Thernesz, A. (2010). Catalytic hydroconversion of tricaprylin and caprylic acid as model reaction for biofuel production from triglycerides. Applied Catalysis A: General, 374(1–2), 158–169. https://doi.org/10.1016/j.apcata.2009.12.005
dc.relation.referencesBoffito, D. C., Galli, F., Pirola, C., & Patience, G. S. (2017). CaO and isopropanol transesterify and crack triglycerides to isopropyl esters and green diesel. Energy Conversion and Management, 139, 71–78. https://doi.org/10.1016/j.enconman.2017.02.008
dc.relation.referencesBond, G. C. (1987). Heterogeneous Catalysis: Principles and Aplications (Oxford University Press (ed.); Second Edi)
dc.relation.referencesBrieger, G., & Nestrick, T. J. (1974). Brieger, G., & Nestrick, T. J. (1974). Catalytic transfer hydrogenation. Chemical Reviews, 74, 567–580. http://doi.org/10.1021/cr60291a003. Chemical Reviews, 74, 567–580. https://doi.org/10.1021/cr60291a003
dc.relation.referencesBrown, B., & Radich, T. (2015). Renewable diesel production, planned projects on the rise. Biomass Magazine.
dc.relation.referencesBrowning, B., Afanasiev, P., Pitault, I., Couenne, F., & Tayakout-Fayolle, M. (2016). Detailed kinetic modelling of vacuum gas oil hydrocracking using bifunctional catalyst: A distribution approach. Chemical Engineering Journal, 284, 270–284. https://doi.org/10.1016/j.cej.2015.08.126
dc.relation.referencesBu, Q., Lei, H., Zacher, A. H., Wang, L., Ren, S., Liang, J., Wei, Y., Liu, Y., Tang, J., Zhang, Q., & Ruan, R. (2012). A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis. Bioresource Technology, 124, 470–477. https://doi.org/10.1016/j.biortech.2012.08.089
dc.relation.referencesBui, L., Luo, H., Gunther, W. R., & Román-Leshkov, Y. (2013). Domino reaction catalyzed by zeolites with Brønsted and Lewis acid sites for the production of γ-valerolactone from furfural. Angewandte Chemie - International Edition, 52(31), 8022–8025. https://doi.org/10.1002/anie.201302575
dc.relation.referencesCABA. (2019). A Roadmap for Eliminating Petroleum Diesel in California by 2030 (Issue January). caadvancedbiofuelsalliance.org
dc.relation.referencesCalero, J., Luna, D., Sancho, E. D., Luna, C., Bautista, F. M., Romero, A. A., Posadillo, A., Berbel, J., & Verdugo-escamilla, C. (2015). An overview on glycerol-free processes for the production of renewable liquid biofuels , applicable in diesel engines. Renewable and Sustainable Energy Reviews, 42, 1437–1452. https://doi.org/10.1016/j.rser.2014.11.007
dc.relation.referencesCao, W., Luo, W., Ge, H., Su, Y., Wang, A., & Zhanga, T. (2017). UiO-66 derived Ru/ZrO2@C as a highly stable catalyst for hydrogenation of levulinic acid to γ-valerolactone. Green Chemistry, 19, 2201–2211. https://doi.org/10.1039/C7GC00512A
dc.relation.referencesCao, X., Long, F., Zhai, Q., Liu, P., & Xu, J. (2020). Enhancement of fatty acids hydrodeoxygenation selectivity to diesel- range alkanes over the supported Ni-MoO x catalyst and elucidation of the active phase. Renewable Energy, 162, 2113–2125. https://doi.org/10.1016/j.renene.2020.10.052
dc.relation.referencesCastillo, E. (2015). Advanced Biofuels from Palm Oil. 18Th International Oil Palm Conference.
dc.relation.referencesCe, L., Ni, O., & Lee, C. (2012). Hydrogen production from oxidative steam reforming of ethanol on pyrochlore-type metal oxide ,. 1th International Conference on Renewable Energy Research and Applications, ICRERA 2012, 9–11.
dc.relation.referencesChang, X., Liu, A. F., Cai, B., Luo, J. Y., Pan, H., & Huang, Y. B. (2016). Catalytic Transfer Hydrogenation of Furfural to 2-Methylfuran and 2-Methyltetrahydrofuran over Bimetallic Copper–Palladium Catalysts. ChemSusChem, 9(23), 3330–3337. https://doi.org/10.1002/cssc.201601122
dc.relation.referencesCheah, K. W., Taylor, M. J., Osatiashtiani, A., Beaumont, S. K., Nowakowski, D. J., Yusup, S., Bridgwater, A. V., & Kyriakou, G. (2020). Monometallic and bimetallic catalysts based on Pd, Cu and Ni for hydrogen transfer deoxygenation of a prototypical fatty acid to diesel range hydrocarbons. Catalysis Today, 355(November 2018), 882–892. https://doi.org/10.1016/j.cattod.2019.03.017
dc.relation.referencesCheah, K. W., Yusup, S., Kyriakou, G., Ameen, M., Taylor, M. J., Nowakowski, D. J., Bridgwater, A. V., & Uemura, Y. (2019). In-situ hydrogen generation from 1,2,3,4-tetrahydronaphthalene for catalytic conversion of oleic acid to diesel fuel hydrocarbons: Parametric studies using Response Surface Methodology approach. International Journal of Hydrogen Energy, 44(37), 20678–20689. https://doi.org/10.1016/j.ijhydene.2018.05.112
dc.relation.referencesCheah, K. W., Yusup, S., Taylor, M. J., How, B. S., Osatiashtiani, A., Nowakowski, D. J., Bridgwater, A. V., Skoulou, V., Kyriakou, G., & Uemura, Y. (2020). Kinetic modelling of hydrogen transfer deoxygenation of a prototypical fatty acid over a bimetallic Pd60Cu40catalyst: An investigation of the surface reaction mechanism and rate limiting step. Reaction Chemistry and Engineering, 5(9), 1682–1693. https://doi.org/10.1039/d0re00214c
dc.relation.referencesChen, H., Chen, K., Fu, J., Lu, X., Huang, H., & Ouyang, P. (2017). Water-mediated promotion of the catalytic conversion of oleic acid to produce an alternative fuel using Pt/C without a H 2 source. Catalysis Communications, 98(April), 26–29. https://doi.org/10.1016/j.catcom.2017.04.044
dc.relation.referencesChen, H., Wang, Q., Zhang, X., & Wang, L. (2015). Effect of support on the NiMo phase and its catalytic hydrodeoxygenation of triglycerides. Fuel, 159, 430–435. https://doi.org/10.1016/j.fuel.2015.07.010
dc.relation.referencesChen, L., Zhu, Y., Zheng, H., Zhang, C., & Li, Y. (2012). Aqueous-phase hydrodeoxygenation of propanoic acid over the Ru/ZrO2 and Ru-Mo/ZrO2 catalysts. Applied Catalysis A: General, 411–412, 95–104. https://doi.org/10.1016/j.apcata.2011.10.026
dc.relation.referencesChen, L., Zhu, Y., Zheng, H., Zhang, C., Zhang, B., & Li, Y. (2011). Aqueous-phase hydrodeoxygenation of carboxylic acids to alcohols or alkanes over supported Ru catalysts. Journal of Molecular Catalysis A: Chemical, 351, 217–227. https://doi.org/10.1016/j.molcata.2011.10.015
dc.relation.referencesChen, N., Gong, S., & Qian, E. W. (2015). Effect of reduction temperature of NiMoO3-x/SAPO-11 on its catalytic activity in hydrodeoxygenation of methyl laurate. Applied Catalysis B: Environmental, 174–175, 253–263. https://doi.org/10.1016/j.apcatb.2015.03.011
dc.relation.referencesChen, R., & Wang, W. (2019). The production of renewable aviation fuel from waste cooking oil . Part I : Bio-alkane conversion through hydro-processing of oil. Renewable Energy, 135, 819–835. https://doi.org/10.1016/j.renene.2018.12.048
dc.relation.referencesChen, S., Zhou, G., & Miao, C. (2019). Green and renewable bio-diesel produce from oil hydrodeoxygenation: Strategies for catalyst development and mechanism. Renewable and Sustainable Energy Reviews, 101(December 2018), 568–589. https://doi.org/10.1016/j.rser.2018.11.027
dc.relation.referencesChen, X., Wang, X., Yao, S., & Mu, X. (2013). Hydrogenolysis of biomass-derived sorbitol to glycols and glycerol over Ni-MgO catalysts. Catalysis Communications, 39(3), 86–89. https://doi.org/10.1016/j.catcom.2013.05.012
dc.relation.referencesCheng, S., Wei, L., Radhi, M., Corbin, F., Julson, J., Boakye, E., & Raynie, D. (2018). In situ hydrodeoxygenation upgrading of pine sawdust bio-oil to hydrocarbon biofuel using Pd/C catalyst. Journal of the Energy Institute, 91(2), 163–171. https://doi.org/10.1016/j.joei.2017.01.004
dc.relation.referencesChheda, J. N., Huber, G. W., & Dumesic, J. A. (2007). Liquid-Phase Catalytic Processing of Biomass-Derived Oxygenated Hydrocarbons to Fuels and Chemicals Angewandte. 7164–7183. https://doi.org/10.1002/anie.200604274
dc.relation.referencesChia, M., & Dumesic, J. A. (2011). Liquid-phase catalytic transfer hydrogenation and cyclization of levulinic acid and its esters to γ-valerolactone over metal oxide catalysts. ChemComm, 47, 12233–12235. https://doi.org/10.1039/c1cc14748j
dc.relation.referencesChiappero, M., Thi, P., Do, M., Crossley, S., Lobban, L. L., & Resasco, D. E. (2011). Direct conversion of triglycerides to olefins and paraffins over noble metal supported catalysts. Fuel, 90(3), 1155–1165. https://doi.org/10.1016/j.fuel.2010.10.025
dc.relation.referencesChiu, Y. T., Wang, H., Lee, J., & Lin, K. Y. A. (2019). Reductive and adsorptive elimination of bromate from water using Ru/C, Pt/C and Pd/C in the absence of H2 : A comparative study. Process Safety and Environmental Protection, 127, 36–44. https://doi.org/10.1016/j.psep.2019.04.030
dc.relation.referencesChoi, I. H., Hwang, K. R., Choi, H. Y., & Lee, J. S. (2018). Catalytic deoxygenation of waste soybean oil over hybrid catalyst for production of bio-jet fuel: in situ supply of hydrogen by aqueous-phase reforming (APR) of glycerol. Research on Chemical Intermediates, 1–10. https://doi.org/10.1007/s11164-018-3376-2
dc.relation.referencesChoudhary, T. V., & Phillips, C. B. (2011). Renewable fuels via catalytic hydrodeoxygenation. Applied Catalysis A: General, 397(1–2), 1–12. https://doi.org/10.1016/j.apcata.2011.02.025
dc.relation.referencesCoronado, I., Stekrova, M., Reinikainen, M., Simell, P., Lefferts, L., & Lehtonen, J. (2016). A review of catalytic aqueous-phase reforming of oxygenated hydrocarbons derived from biorefinery water fractions. International Journal of Hydrogen Energy, 41(26), 11003–11032. https://doi.org/10.1016/j.ijhydene.2016.05.032
dc.relation.referencesCortright, R. D., Davda, R. R., & Dumesic, J. A. (2002). Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature, 418(6901), 964–967. https://doi.org/10.1038/nature01009
dc.relation.referencesCzernik, S., French, R., Feik, C., & Chornet, E. (2002). Hydrogen by catalytic steam reforming of liquid byproducts from biomass thermoconversion processes. Industrial and Engineering Chemistry Research, 41(17), 4209–4215. https://doi.org/10.1021/ie020107q
dc.relation.referencesda Mota, S. A. P., Mancio, A. A., Lhamas, D. E. L., de Abreu, D. H., da Silva, M. S., dos Santos, W. G., de Castro, D. A. R., de Oliveira, R. M., Araújo, M. E., Borges, L. E. P., & Machado, N. T. (2014). Production of green diesel by thermal catalytic cracking of crude palm oil (Elaeis guineensis Jacq) in a pilot plant. Journal of Analytical and Applied Pyrolysis, 110(1), 1–11. https://doi.org/10.1016/j.jaap.2014.06.011
dc.relation.referencesda Silva, V. T., & Sousa, L. A. (2013). Catalytic Upgrading of Fats and Vegetable Oils for the Production of Fuels. The Role of Catalysis for the Sustainable Production of Bio-Fuels and Bio-Chemicals, 67–92. https://doi.org/10.1016/B978-0-444-56330-9.00003-6
dc.relation.referencesDabros, T. M. H., Stummann, M. Z., Høj, M., Jensen, P. A., Grunwaldt, J.-D., Gabrielsen, J., Mortensen, P. M., & Jensen, A. D. (2018). Transportation fuels from biomass fast pyrolysis , catalytic hydrodeoxygenation , and catalytic fast hydropyrolysis. Progress in Energy and Combustion Science, 68, 268–309. https://doi.org/10.1016/j.pecs.2018.05.002
dc.relation.referencesDarpo Bioenergy. (2016). Diamond Green Diesel. https://www.darpro-bioenergy.com/solutions/diamond-green-diesel/
dc.relation.referencesDavda, R. R., Shabaker, J. W., Huber, G. W., Cortright, R. D., & Dumesic, J. A. (2005). A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts. Applied Catalysis B: Environmental, 56(1-2 SPEC. ISS.), 171–186. https://doi.org/10.1016/j.apcatb.2004.04.027
dc.relation.referencesDe Oliveira, F. C., & Coelho, S. T. (2016). History, evolution, and environmental impact of biodiesel in Brazil: A review. Renewable and Sustainable Energy Reviews, October, 0–1. https://doi.org/10.1016/j.rser.2016.10.060
dc.relation.referencesDe, S., Dutta, S., & Saha, B. (2012). One-pot conversions of lignocellulosic and algal biomass into liquid fuels. ChemSusChem, 5(9), 1826–1833. https://doi.org/10.1002/cssc.201200031
dc.relation.referencesDe, S., Saha, B., & Luque, R. (2015). Hydrodeoxygenation processes: Advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels. Bioresource Technology, 178, 108–118. https://doi.org/10.1016/j.biortech.2014.09.065
dc.relation.referencesDelly, I., Vlasona, E. N., Nuzhdin, A. L., & Bukhtuyarova, G. A. (2011). The comparison of sulfide CoMo / γ -Al2O3 and NiMo / γ -Al2O3 catalysts in methyl palmitate and methyl heptanoate hydrodeoxygenation. Proceedings of the 2nd European Conference of Control, and Proceedings of the 2nd European Conference on Mechanical Engineering, February 2016, 24–29
dc.relation.referencesDeng, L., Li, J., Lai, D. M., Fu, Y., & Guo, Q. X. (2009). Catalytic Conversion of Biomass-Derived Carbohydrates into γ-Valerolactone without Using an External H2 Supply. Angewandte Chemie - International Edition, 48(35), 6529–6532. https://doi.org/10.1002/anie.200902281
dc.relation.referencesDeng, L., Zhao, Y., Li, J., Fu, Y., Liao, B., & Guo, Q. X. (2010). Conversion of levulinic acid and formic acid into γ-valerolactone over heterogeneous catalysts. ChemSusChem, 3(10), 1172–1175. https://doi.org/10.1002/cssc.201000163
dc.relation.referencesDepartament of Commerce, E. (2016). United States Patent and Trademark Office. USPTO Patent Full-Text and Image Database. http://patft.uspto.gov/netahtml/PTO/search-bool.htm
dc.relation.referencesDi, G., Nolfi, V., & Gallucci, K. (2021). Green Diesel Production by Catalytic Hydrodeoxygenation of Vegetables Oils.
dc.relation.referencesDickinson, J. G., Poberezny, J. T., & Savage, P. E. (2012). Deoxygenation of benzofuran in supercritical water over a platinum catalyst. Applied Catalysis B: Environmental, 123–124, 357–366. https://doi.org/10.1016/j.apcatb.2012.05.005
dc.relation.referencesDing, S., Li, Z., Li, F., Wang, Z., Li, J., Zhao, T., Lin, H., & Chen, C. (2018). Catalytic hydrogenation of stearic acid over reduced NiMo catalysts : Structure – activity relationship and e ff ect of the hydrogen-donor. Applied Catalysis A, General, 566(August), 146–154. https://doi.org/10.1016/j.apcata.2018.08.028
dc.relation.referencesDNP. (2017). Energy Demand Situation in Colombia.
dc.relation.referencesDNP. (2022). Política de Transición Energética - CONPES 4075. https://colaboracion.dnp.gov.co/CDT/Conpes/Económicos/4075.pdf
dc.relation.referencesDo, P. T., Chiappero, M., Lobban, L. L., & Resasco, D. E. (2009). Catalytic deoxygenation of methyl-octanoate and methyl-stearate on Pt/Al2O3. Catalysis Letters, 130(1–2), 9–18. https://doi.org/10.1007/s10562-009-9900-7
dc.relation.referencesDomínguez-Barroso, M. V., Herrera, C., Larrubia, M. A., & Alemany, L. J. (2016). Diesel oil-like hydrocarbon production from vegetable oil in a single process over Pt-Ni/Al2O3 and Pd/C combined catalysts. Fuel Processing Technology, 148, 110–116. https://doi.org/10.1016/j.fuproc.2016.02.032
dc.relation.referencesDonnis, B., Egeberg, R. G., Blom, P., & Knudsen, K. G. (2009). Hydroprocessing of bio-oils and oxygenates to hydrocarbons. Understanding the reaction routes. Topics in Catalysis, 52(3), 229–240. https://doi.org/10.1007/s11244-008-9159-z
dc.relation.referencesDragu, A., Kinayyigit, S., García-suárez, E. J., Florea, M., Stepan, E., & Velea, S. (2015). Deoxygenation of oleic acid: Influence of the synthesis route of Pd/mesoporous carbon nanocatalysts onto their activity and selectivity. “Applied Catalysis A, General,” 504, 81–91. https://doi.org/10.1016/j.apcata.2015.01.008
dc.relation.referencesDry, M. E. (2002). The Fischer - Tropsch process: 1950-2000. Catalysis Today, 71(3–4), 227–241. https://doi.org/10.1016/S0920-5861(01)00453-9
dc.relation.referencesDu, J., Zhang, J., Sun, Y., Jia, W., Si, Z., Gao, H., Tang, X., Zeng, X., Lei, T., Liu, S., & Lin, L. (2018). Catalytic transfer hydrogenation of biomass-derived furfural to furfuryl alcohol over in-situ prepared nano Cu-Pd/C catalyst using formic acid as hydrogen source. Journal of Catalysis, 368, 69–78. https://doi.org/10.1016/j.jcat.2018.09.025
dc.relation.referencesDu, X. L., He, L., Zhao, S., Liu, Y. M., Cao, Y., He, H. Y., & Fan, K. N. (2011). Hydrogen-independent reductive transformation of carbohydrate biomass into γ-valerolactone and pyrrolidone derivatives with supported gold catalysts. Angewandte Chemie - International Edition, 50(34), 7815–7819. https://doi.org/10.1002/anie.201100102
dc.relation.referencesDuan, J., Han, J., Sun, H., Chen, P., Lou, H., & Zheng, X. (2012). Diesel-like hydrocarbons obtained by direct hydrodeoxygenation of sunflower oil over Pd/Al-SBA-15 catalysts. Catalysis Communications, 17, 76–80. https://doi.org/10.1016/j.catcom.2011.10.009
dc.relation.referencesDuan, P., Bai, X., Xu, Y., Zhang, A., Wang, F., Zhang, L., & Miao, J. (2013). Catalytic upgrading of crude algal oil using platinum/gamma alumina in supercritical water. Fuel, 109, 225–233. https://doi.org/10.1016/j.fuel.2012.12.074
dc.relation.referencesDuan, P., Xu, Y., & Bai, X. (2013). Upgrading of crude duckweed bio-oil in subcritical water. Energy and Fuels, 27(8), 4729–4738. https://doi.org/10.1021/ef4009168
dc.relation.referencesDurán-Martín, D., Ojeda, M., Granados, M. L., Fierro, J. L. G., & Mariscal, R. (2013). Stability and regeneration of Cu-ZrO2 catalysts used in glycerol hydrogenolysis to 1,2-propanediol. Catalysis Today, 210(3), 98–105. https://doi.org/10.1016/j.cattod.2012.11.013
dc.relation.referencesECOPETROL. (2011). Biocombustibles: Una Apuesta Estratégica de Ecopetrol S.A
dc.relation.referencesECOPETROL. (2012). Diesel Renovable: Una Nueva Opción en Biocombustibles. Entorno Verde. Departamento de Biocombustibles. Vol. 3.
dc.relation.referencesEdeh, I., Overton, T., & Bowra, S. (2019). Renewable diesel production by hydrothermal decarboxylation of fatty acids over platinum on carbon catalyst over platinum on carbon catalyst. Biofuels, 0(0), 1–8. https://doi.org/10.1080/17597269.2018.1560554
dc.relation.referencesEdeh, I., Overton, T., & Bowra, S. (2021a). Catalytic hydrothermal deoxygenation of fatty acids over palladium on activated carbon catalyst (Pd/C) for renewable diesel production. Biofuels, 12(9), 1075–1082. https://doi.org/10.1080/17597269.2019.1580971
dc.relation.referencesEdeh, I., Overton, T., & Bowra, S. (2021b). Catalytic hydrothermal deoxygenation of the lipid fraction of activated sludge. Biofuels, 12(8), 925–929. https://doi.org/10.1080/17597269.2018.1558842
dc.relation.referencesEEA. (2022). Transport and Environment Report 2021 (Issue 02). https://www.eea.europa.eu/publications/transport-and-environment-report-2021
dc.relation.referencesEIA. (2022). U.S. Renewable Diesel Fuel and Other Biofuels Plant Production Capacity (Vol. 2). https://www.eia.gov/biofuels/renewable/capacity/
dc.relation.referencesElAmin, B., Anantharamaiah, G. M., Royer, G. P., & Means, G. E. (1979). Removal of benzyl-type protecting groups from peptides by catalytic transfer hydrogenation with formic acid. J. Org. Chem., 44(19), 3442–3444. https://doi.org/10.1021/jo01333a048
dc.relation.referencesElliott, D. C., & Hart, T. R. (2009). Catalytic hydroprocessing of chemical models for bio-oil. Energy and Fuels, 23(2), 631–637. https://doi.org/10.1021/ef8007773
dc.relation.referencesEn, J., Rahman, A., Ng, A., Lup, K., & Kee, M. (2022). Palm fatty acid distillate derived biofuels via deoxygenation : Properties , catalysts and processes. Fuel Processing Technology, 236(March), 1–15. https://doi.org/10.1016/j.fuproc.2022.107394
dc.relation.referenceseni. (2014). Green Refinery: reinventing petroleum refineries.
dc.relation.referencesEnvironmental Protection Agency. (2010). Renewable Fuel Standard Program (RFS2) Regulatory Impact Analysis. In Program. https://doi.org/EPA-420-R-10-006., February 2010
dc.relation.referencesEPA, E. P. A. (United S. (2010). Renewable Fuel Standard Program (RFS2) Regulatory Impact Analysis.
dc.relation.referencesExxonMobil. (2021). Improving renewable diesel yield with BIDW TM dewaxing catalyst.
dc.relation.referencesFAO. (2011). El estado de los recursos de tierras y aguas del mundo para la alimentación y la agricultura. La gestión de los sistemas en situación de riesgo. In Mundi-Prensa Madrid.
dc.relation.referencesFAO, O. de las N. U. para la A. y la A. (2013). El desarrollo de los biocombustibles no debe comprometer la seguridad alimentaria.
dc.relation.referencesFeng, J., Yang, Z., Hse, C. yun, Su, Q., Wang, K., Jiang, J., & Xu, J. (2017). In situ catalytic hydrogenation of model compounds and biomass-derived phenolic compounds for bio-oil upgrading. Renewable Energy, 105, 140–148. https://doi.org/10.1016/j.renene.2016.12.054
dc.relation.referencesFossil Free Fuels F3. (2016). HEFA/HVO, Hydroprocessed Esters and Fatty Acids CnH2n+2. http://www.f3centre.se/fact-sheet/HVO
dc.relation.referencesFraga, G., Batalha, N., Kumar, A., Bhaskar, T., Konarova, M., & Perkins, G. (2022). Advances in liquefaction for the production of hydrocarbon biofuels. In Hydrocarbon Biorefinery: Sustainable Processing of Biomass for Hydrocarbon Biofuels (pp. 127–176). Elsevier Inc. https://doi.org/10.1016/B978-0-12-823306-1.00009-1
dc.relation.referencesFrench, R. J., Stunkel, J., & Baldwin, R. M. (2011). Mild hydrotreating of bio-oil: Effect of reaction severity and fate of oxygenated species. Energy and Fuels, 25(7), 3266–3274. https://doi.org/10.1021/ef200462v
dc.relation.referencesFu, J., Lu, X., & Savage, P. E. (2010). Catalytic Hydrothermal Deoxygenation of Palmitic Acid. Energy & Environmental Science, The Royal of Chemistry, 3, 311–317. https://doi.org/10.1039/c003390c
dc.relation.referencesFu, J., Lu, X., & Savage, P. E. (2011). Hydrothermal decarboxylation and hydrogenation of fatty acids over Pt/C. ChemSusChem, 4(4), 481–486. https://doi.org/10.1002/cssc.201000370
dc.relation.referencesFu, J., Shi, F., Thompson, L. T., Lu, X., & Savage, P. E. (2011). Activated Carbons for Hydrothermal Decarboxylation of Fatty Acids. 227–231.
dc.relation.referencesFu, J., Yang, C., Wu, J., Zhuang, J., Hou, Z., & Lu, X. (2015). Direct production of aviation fuels from microalgae lipids in water. Fuel, 139, 678–683. https://doi.org/10.1016/j.fuel.2014.09.025
dc.relation.referencesFurimsky, E. (2000). Catalytic hydrodeoxygenation. Applied Catalysis A: General, 199(2), 147–190. https://doi.org/10.1016/S0926-860X(99)00555-4
dc.relation.referencesFurimsky, E. (2013a). Hydroprocessing challenges in biofuels production. Catalysis Today, 217, 13–56. https://doi.org/10.1016/j.cattod.2012.11.008
dc.relation.referencesFurimsky, E. (2013b). Hydroprocessing in aqueous phase. Industrial and Engineering Chemistry Research, 52(50), 17695–17713. https://doi.org/10.1021/ie4034768
dc.relation.referencesGandarias, I., Arias, P. L., Fernández, S. G., Requies, J., El Doukkali, M., & Güemez, M. B. (2012). Hydrogenolysis through catalytic transfer hydrogenation: Glycerol conversion to 1,2-propanediol. Catalysis Today, 195(1), 22–31. https://doi.org/10.1016/j.cattod.2012.03.067
dc.relation.referencesGandarias, I., Arias, P. L., Requies, J., El Doukkali, M., & Güemez, M. B. (2011). Liquid-phase glycerol hydrogenolysis to 1,2-propanediol under nitrogen pressure using 2-propanol as hydrogen source. Journal of Catalysis, 282(1), 237–247. https://doi.org/10.1016/j.jcat.2011.06.020
dc.relation.referencesGandarias, I., Fernández, S. G., El Doukkali, M., Requies, J., & Arias, P. L. (2013). Physicochemical Study of Glycerol Hydrogenolysis Over a Ni–Cu/Al2O3 Catalyst Using Formic Acid as the Hydrogen Source. Topics in Catalysis, 56(11), 995–1007. https://doi.org/10.1007/s11244-013-0063-9
dc.relation.referencesGandarias, I., Requies, J., Arias, P. L., Armbruster, U., & Martin, A. (2012). Liquid-phase glycerol hydrogenolysis by formic acid over Ni-Cu/Al 2O 3 catalysts. Journal of Catalysis, 290, 79–89. https://doi.org/10.1016/j.jcat.2012.03.004
dc.relation.referencesGandía, L. M., Arzamendi, G., & Diéguez, P. M. (2013). Renewable Hydrogen Energy. In Renewable Hydrogen Technologies (pp. 1–17). Elsevier. https://doi.org/10.1016/B978-0-444-56352-1.00001-5
dc.relation.referencesGao, Y., Zhang, H., Han, A., Wang, J., Tan, H. R., Tok, E. S., Jaenicke, S., & Chuah, G. K. (2018). Ru/ZrO2 Catalysts for Transfer Hydrogenation of Levulinic Acid with Formic Acid/Formate Mixtures: Importance of Support Stability. ChemistrySelect, 3(5), 1343–1351. https://doi.org/10.1002/slct.201702152
dc.relation.referencesGao, Z., Yang, L., Fan, G., & Li, F. (2016). Promotional Role of Surface Defects on Carbon-Supported Ruthenium-Based Catalysts in the Transfer Hydrogenation of Furfural. ChemCatChem, 8(24), 3769–3779. https://doi.org/10.1002/cctc.201601070
dc.relation.referencesGarcía, J. R. (2016). VIAS CATALÍTICAS PARA MAXIMIZAR LA PRODUCCIÓN Y MEJORAR LA CALIDAD DEL CORTE LCO ( DIESEL ) EN EL CRAQUEO CATALÍTICO DE HIDROCARBUROS (FCC). Universidad Nacional del Litoral.
dc.relation.referencesGazsi, A., Bánsági, T., & Solymos, F. (2011). Decomposition and Reforming of Formic Acid on Supported Au Catalysts : Production of CO-Free H 2. The Journal of Physical Chemistry, 115, 15459–15466.
dc.relation.referencesGilkey, M. J., Panagiotopoulou, P., Mironenko, A. V, Jenness, G. R., Vlachos, D. G., & Xu, B. (2015). Mechanistic Insights into Metal Lewis Acid-Mediated Catalytic Transfer Hydrogenation of Furfural to 2 ‑ Methylfuran. ACS Catalysis, 5, 3988−3994. https://doi.org/10.1021/acscatal.5b00586
dc.relation.referencesGoddard, J. D., Yamaguchi, Y., & Schaefer, H. F. (1992). The decarboxylation and dehydration reactions of monomeric formic acid. The Journal of Chemical Physics, 96(2), 1158. https://doi.org/10.1063/1.462203
dc.relation.referencesGong, L.-H., Cai, Y.-Y., Li, X.-H., Zhang, Y.-N., Su, J., & Chen, J.-S. (2014). Room-temperature transfer hydrogenation and fast separation of unsaturated compounds over heterogeneous catalysts in an aqueous solution of formic acid. Green Chem., 16(8), 3746–3751. https://doi.org/10.1039/C4GC00981A
dc.relation.referencesGong, S., Shinozaki, A., & Qian, E. Q. (2012). Effect of Support on Performance of NiMo Catalyst in Hydrotreating of Jatropha Oil. Industrial & Engineering Chemistry Research, American Chemical Society, 1–26.
dc.relation.referencesGong, W., Chen, C., Zhang, Y., Zhou, H., Wang, H., Zhang, H., Zhang, Y., Wang, G., & Zhao, H. (2017). Efficient Synthesis of Furfuryl Alcohol from H2-Hydrogenation/Transfer Hydrogenation of Furfural Using Sulfonate Group Modified Cu Catalyst. In ACS Sustainable Chemistry and Engineering (Vol. 5, Issue 3). https://doi.org/10.1021/acssuschemeng.6b02343
dc.relation.referencesGosselink, R. W., Hollak, S. A. W., Chang, S. W., Van Haveren, J., De Jong, K. P., Bitter, J. H., & Van Es, D. S. (2013). Reaction pathways for the deoxygenation of vegetable oils and related model compounds. ChemSusChem, 6(9), 1576–1594. https://doi.org/10.1002/cssc.201300370
dc.relation.referencesGreen Car Congress. (2013). ConocoPhillips begins production of renewable diesel fuel at whitegate refinery at Whitegate refinery, Ireland.
dc.relation.referencesGundupalli, M. P., Gundupalli, S. P., Somavarapu Thomas, A. S., Jayakumar, M., Bhattacharyya, D., & Gurunathan, B. (2022). Hydrothermal liquefaction of lignocellulosic biomass for production of biooil and by-products: current state of the art and challenges. In Biofuels and Bioenergy (pp. 61–84). Elsevier Inc. https://doi.org/10.1016/b978-0-323-85269-2.00001-0
dc.relation.referencesHan, J., Duan, J., Chen, P., Lou, H., Zheng, X., & Hong, H. (2011). Nanostructured molybdenum carbides supported on carbon nanotubes as efficient catalysts for one-step hydrodeoxygenation and isomerization of vegetable oils. Green Chemistry, 13(9), 2561. https://doi.org/10.1039/c1gc15421d
dc.relation.referencesHan, J., Duan, J., Chen, P., Lou, H., Zheng, X., & Hong, H. (2012). Carbon-supported molybdenum carbide catalysts for the conversion of vegetable oils. ChemSusChem, 5(4), 727–733. https://doi.org/10.1002/cssc.201100476
dc.relation.referencesHansen, T. S., Barta, K., Anastas, P. T., Ford, P. C., & Riisager, A. (2012). One-pot reduction of 5-hydroxymethylfurfural via hydrogen transfer from supercritical methanol. Green Chemistry, 14(9), 2457–2461. https://doi.org/10.1039/c2gc35667h
dc.relation.referencesHarmsen, J., & Powell, J. B. (2010). Sustanaible Development in the Process Industries. Cases and Impact (Wiley-AIChe (ed.)).
dc.relation.referencesHasan, M. M., & Rahman, M. M. (2017). Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review. Renewable and Sustainable Energy Reviews, 74(October 2014), 938–948. https://doi.org/10.1016/j.rser.2017.03.045
dc.relation.referencesHe, C., Li, J., Zhang, X., Yin, L., Chen, J., & Gao, S. (2012). Highly active Pd-based catalysts with hierarchical pore structure for toluene oxidation : Catalyst property and reaction determining factor. Chemical Engineering Journal, 180, 46–56. https://doi.org/10.1016/j.cej.2011.10.099
dc.relation.referencesHe, J., Zhao, C., & Lercher, J. A. (2012). Ni-catalyzed cleavage of aryl ethers in the aqueous phase. Journal of the American Chemical Society, 134(51), 20768–20775. https://doi.org/10.1021/ja309915e
dc.relation.referencesHe, L., Yang, J., & Chen, D. (2013). Hydrogen from Biomass: Advances in Thermochemical Processes. Renewable Hydrogen Technologies: Production, Purification, Storage, Applications and Safety, 111–133. https://doi.org/10.1016/B978-0-444-56352-1.00006-4
dc.relation.referencesHe, S., Barati, B., Hu, X., & Wang, S. (2023). Carbon migration of microalgae from cultivation towards biofuel production by hydrothermal technology: A review. Fuel Processing Technology, 240(September 2022), 107563. https://doi.org/10.1016/j.fuproc.2022.107563
dc.relation.referencesHe, Z., & Wang, X. (2012). Hydrodeoxygenation of model compounds and catalytic systems for pyrolysis bio-oils upgrading. Catalysis for Sustainable Energy, Versita, 1, 28–52. https://doi.org/10.2478/cse-2012-0004
dc.relation.referencesHengsawad, T., Jindarat, T., Resasco, D. E., & Jongpatiwut, S. (2018). Synergistic effect of oxygen vacancies and highly dispersed Pd nanoparticles over Pd-loaded TiO2 prepared by a single-step sol – gel process for deoxygenation of triglycerides. Applied Catalysis A, General, 566(May), 74–86. https://doi.org/10.1016/j.apcata.2018.08.007
dc.relation.referencesHengst, K., Arend, M., Pfützenreuter, R., & Hoelderich, W. F. (2015). Deoxygenation and cracking of free fatty acids over acidic catalysts by single step conversion for the production of diesel fuel and fuel blends. Applied Catalysis B: Environmental, 174–175, 383–394. https://doi.org/10.1016/j.apcatb.2015.03.009
dc.relation.referencesHermida, L., Abdullah, A. Z., & Mohamed, A. R. (2015). Deoxygenation of fatty acid to produce diesel-like hydrocarbons: A review of process conditions, reaction kinetics and mechanism. Renewable and Sustainable Energy Reviews, 42, 1223–1233. https://doi.org/10.1016/j.rser.2014.10.099
dc.relation.referencesHerskowitz, M., Landau, M. V, Reizner, Y., & Berger, D. (2013). A commercially-viable , one-step process for production of green diesel from soybean oil on Pt / SAPO-11. Fuel, 111, 157–164. https://doi.org/10.1016/j.fuel.2013.04.044
dc.relation.referencesHoekman, S. K., Broch, A., Robbins, C., Ceniceros, E., & Natarajan, M. (2012). Review of biodiesel composition, properties, and specifications. Renewable and Sustainable Energy Reviews, 16(1), 143–169. https://doi.org/10.1016/j.rser.2011.07.143
dc.relation.referencesHollak, S. A. W., Ariëns, M. A., De Jong, K. P., & Van Es, D. S. (2014). Hydrothermal deoxygenation of triglycerides over Pd/C aided by in situ hydrogen production from glycerol reforming. ChemSusChem, 7(4), 1057–1062. https://doi.org/10.1002/cssc.201301145
dc.relation.referencesHoneywell UOP. (2016). Honeywell Green DieselTM. https://www.uop.com/processing-solutions/renewables/green-diesel/#biodiesel
dc.relation.referencesHong, D. Y., Miller, S. J., Agrawal, P. K., & Jones, C. W. (2010). Hydrodeoxygenation and coupling of aqueous phenolics over bifunctional zeolite-supported metal catalysts. Chemical Communications, 46(7), 1038–1040. https://doi.org/10.1039/b918209h
dc.relation.referencesHongloi, N., Prapainainar, P., & Prapainainar, C. (2022). Review of green diesel production from fatty acid deoxygenation over Ni-based catalysts. Molecular Catalysis, 523(September 2020), 111696. https://doi.org/10.1016/j.mcat.2021.111696
dc.relation.referencesHossain, M. Z., Chowdhury, M. B. I., Jhawar, A. K., Xu, W. Z., & Charpentier, P. A. (2018). Continuous low pressure decarboxylation of fatty acids to fuel-range hydrocarbons with in situ hydrogen production. Fuel, 212(June 2017), 470–478. https://doi.org/10.1016/j.fuel.2017.09.092
dc.relation.referencesHossain, M. Z., Jhawar, A. K., Chowdhury, M. B. I., Xu, W. Z., & Charpentier, P. A. (2018). Hydrothermal Decarboxylation of Corn Distillers Oil for Fuel-Grade Hydrocarbons. Energy Technology, 6(7), 1261–1274. https://doi.org/10.1002/ente.201700957
dc.relation.referencesHossain, Z., Jhawar, A. K., Chowdhury, M. B. I., Xu, W. Z., Wu, W., Hiscott, D., & Charpentier, P. A. (2017). Using subcritical water for decarboxylation of oleic acid into fuel range hydrocarbons. Energy & Fuels, 31(4), 4013–4023. https://doi.org/10.1021/acs.energyfuels.6b03418
dc.relation.referencesHu, C., Pulleri, J. K., Ting, S. W., & Chan, K. Y. (2014). Activity of Pd/C for hydrogen generation in aqueous formic acid solution. International Journal of Hydrogen Energy, 39(1), 381–390. https://doi.org/10.1016/j.ijhydene.2013.10.067
dc.relation.referencesHu, C., Ting, S. W., Chan, K. Y., & Huang, W. (2012). Reaction pathways derived from DFT for understanding catalytic decomposition of formic acid into hydrogen on noble metals. International Journal of Hydrogen Energy, 37(21), 15956–15965. https://doi.org/10.1016/j.ijhydene.2012.08.035
dc.relation.referencesHu, C., Ting, S. W., Chan, K. Y., & Huang, W. (2013). Insights into hydrogen generation from formic acid on PtRuBiOxin aqueous solution at room temperature. International Journal of Hydrogen Energy, 38(21), 8720–8731. https://doi.org/10.1016/j.ijhydene.2013.04.151
dc.relation.referencesHu, Z., Tan, S., Mi, R., Li, X., Bai, J., Guo, X., Hu, G., Hang, P., Li, J., Li, D., Yang, Y., & Yan, X. (2018). Formic Acid or Formate Derivatives as the In Situ Hydrogen Source in Au-Catalyzed Reduction of para-Chloronitrobenzene. ChemistrySelect, 3(10), 2850–2853. https://doi.org/10.1002/slct.201702863
dc.relation.referencesHuang, H., & Yuan, X. (2015). Recent progress in the direct liquefaction of typical biomass. Progress in Energy and Combustion Science, 49, 59–80. https://doi.org/10.1016/j.pecs.2015.01.003
dc.relation.referencesHuang, I. B., Keisler, J., & Linkov, I. (2011). Multi-criteria decision analysis in environmental sciences : Ten years of applications and trends. Science of the Total Environment, The, 409(19), 3578–3594. https://doi.org/10.1016/j.scitotenv.2011.06.022
dc.relation.referencesHuang, Y., Xu, J., Ma, X., Huang, Y., Li, Q., & Qiu, H. (2017). An effective low Pd-loading catalyst for hydrogen generation from formic acid. International Journal of Hydrogen Energy, 4–11. https://doi.org/10.1016/j.ijhydene.2017.04.138
dc.relation.referencesHuber, G. W., Shabaker, J. W., & Dumesic, J. A. (2003). Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons. Science, 300(5628), 2075–2077. https://doi.org/10.1126/science.1085597
dc.relation.referencesHwang, K., Choi, I., Choi, H., Han, J., Lee, K., & Lee, J. (2016). Bio fuel production from crude Jatropha oil; addition effect of formic acid as an in-situ hydrogen source. FUEL, 174, 107–113. https://doi.org/10.1016/j.fuel.2016.01.080
dc.relation.referencesIATA. (2018). Developing Sustainable Aviation Fuel (SAF). https://www.iata.org/en/programs/environment/sustainable-aviation-fuels/#tab-2
dc.relation.referencesIDEAM, Fundación Natura, PNUD, MADS, DNP, C. (2021). Tercer Informe Bienal de Actualización de Cambio Climático de Colombia (CMNUCC).
dc.relation.referencesIDEAM, I. de H. M. y E. A. (2012). Inventario Nacional de Emisiones de Gases de Efecto Invernadero.
dc.relation.referencesIdesh, S., Kudo, S., Norinaga, K., & Hayashi, J. I. (2013). Catalytic hydrothermal reforming of jatropha oil in subcritical water for the production of green fuels: Characteristics of reactions over Pt and Ni catalysts. Energy and Fuels, 27(8), 4796–4803. https://doi.org/10.1021/ef4011065
dc.relation.referencesIEA. (2021a). Global Hydrogen Review 2021. In Global Hydrogen Review 2021. https://doi.org/10.1787/39351842-en
dc.relation.referencesIEA. (2021b). Renewables 2021. In Publications International. www.iea.org/t&c/%0Ahttps://webstore.iea.org/download/direct/4329
dc.relation.referencesIEA. (2021c). Renewables 2021.
dc.relation.referencesIEA. (2021d). Renewables 2021 Data Explorer. https://www.iea.org/data-and-statistics/data-tools/renewables-2021-data-explorer
dc.relation.referencesIEA. (2022). Energy Statistics Data Browser. https://www.iea.org/data-and-statistics/data-tools/energy-statistics-data-browser
dc.relation.referencesImmer, J. G., Kelly, M. J., & Lamb, H. H. (2010). Catalytic reaction pathways in liquid-phase deoxygenation of C18 free fatty acids. Applied Catalysis A: General, 375(1), 134–139. https://doi.org/10.1016/j.apcata.2009.12.028
dc.relation.referencesInduplama. (2012). CATALOGO DE PRODUCTOS: ACEITE DE PALMA. In Aceite de palma (pp. 1–3). http://www.indupalma.com/aceite-de-palma
dc.relation.referencesIRC, & NAS. (2003). International Critical Tables of Numerical Data, Physics, Chemistry and Technology (E. W. Washburn (ed.); First Elec). Knovel.
dc.relation.referencesIriondo, A., Barrio, V. L., Cambra, J. F., Arias, P. L., Güemez, M. B., Navarro, R. M., Sánchez-Sánchez, M. C., & Fierro, J. L. G. (2008). Hydrogen production from glycerol over nickel catalysts supported on Al2O3 modified by Mg, Zr, Ce or La. Topics in Catalysis, 49(1–2), 46–58. https://doi.org/10.1007/s11244-008-9060-9
dc.relation.referencesIriondo, A., Cambra, J. F., Barrio, V. L., Guemez, M. B., Arias, P. L., Sanchez-Sanchez, M. C., Navarro, R. M., & Fierro, J. L. G. (2011). Glycerol liquid phase conversion over monometallic and bimetallic catalysts: Effect of metal, support type and reaction temperatures. Applied Catalysis B: Environmental, 106(1–2), 83–93. https://doi.org/10.1016/j.apcatb.2011.05.009
dc.relation.referencesIRP-ONU. (2018). Eficiencia de los Recursos para el Desarrollo Sostenible: Mensajes Clave para el Grupo de los 20.
dc.relation.referencesIsa, K. M., Abdullah, T. A. T., & Ali, U. F. M. (2018). Hydrogen donor solvents in liquefaction of biomass: A review. Renewable and Sustainable Energy Reviews, 81(October 2016), 1259–1268. https://doi.org/10.1016/j.rser.2017.04.006
dc.relation.referencesIvanova, E., Mihaylov, M., Thibault-Starzyk, F., Daturi, M., & Hadjiivanov, K. (2007). FTIR spectroscopy study of CO and NO adsorption and co-adsorption on Pt/TiO2. Journal of Molecular Catalysis A: Chemical, 274(1–2), 179–184. https://doi.org/10.1016/j.molcata.2007.05.006
dc.relation.referencesJacobson, K., Maheria, K. C., & Kumar Dalai, A. (2013). Bio-oil valorization: A review. Renewable and Sustainable Energy Reviews, 23, 91–106. https://doi.org/10.1016/j.rser.2013.02.036
dc.relation.referencesJae, J., Zheng, W., Lobo, R. F., & Vlachos, D. G. (2013). Production of dimethylfuran from hydroxymethylfurfural through catalytic transfer hydrogenation with ruthenium supported on carbon. ChemSusChem, 6(7), 1158–1162. https://doi.org/10.1002/cssc.201300288
dc.relation.referencesJagadeesh, R. V., Natte, K., Junge, H., & Beller, M. (2015). Nitrogen-doped graphene-activated iron-oxide-based nanocatalysts for selective transfer hydrogenation of nitroarenes. ACS Catalysis, 5(3), 1526–1529. https://doi.org/10.1021/cs501916p
dc.relation.referencesJaimes, L. (2008). Desulfurization of FCC Gasoline : Novel Catalytic Processes with Zeolites Desulfurization of FCC. International Journal of Chemical Reactor Enginnering, 6, 1–69.
dc.relation.referencesJanampelli, S., & Darbha, S. (2017). Promotional Effect of WO x in Pt-WO x /AlPO 4 -5 Catalyzed Deoxygenation of Fatty Acids. ChemistrySelect, 2(5), 1895–1901. https://doi.org/10.1002/slct.201700159
dc.relation.referencesJȩczmionek, Ł., & Porzycka-Semczuk, K. (2014). Hydrodeoxygenation, decarboxylation and decarbonylation reactions while co-processing vegetable oils over a NiMo hydrotreatment catalyst. Part I: Thermal effects - Theoretical considerations. Fuel, 131, 1–5. https://doi.org/10.1016/j.fuel.2014.04.055
dc.relation.referencesJeon, H. jin, & Chung, Y. M. (2017). Hydrogen production from formic acid dehydrogenation over Pd/C catalysts: Effect of metal and support properties on the catalytic performance. Applied Catalysis B: Environmental, 210, 212–222. https://doi.org/10.1016/j.apcatb.2017.03.070
dc.relation.referencesJiang, K., Xu, K., Zou, S., & Cai, W. (2014). B ‑ Doped Pd Catalyst: Boosting Room-Temperature Hydrogen Production from Formic Acid − Formate Solutions. J. Am. Chem. Soc., 136(13), 4861–4864. https://doi.org/10.1021/ja5008917
dc.relation.referencesJin, F., Yun, J., Li, G., Kishita, A., Tohji, K., & Enomoto, H. (2008). Hydrothermal conversion of carbohydrate biomass into formic acid at mild temperatures. Green Chemistry, 10(6), 612–615. https://doi.org/10.1039/b802076k
dc.relation.referencesJin, M., & Choi, M. (2019). Hydrothermal deoxygenation of triglycerides over carbon-supported bimetallic PtRe catalysts without an external hydrogen source. Molecular Catalysis, 474(March), 110419. https://doi.org/10.1016/j.mcat.2019.110419
dc.relation.referencesJin, X. (2014). Catalytic Conversion of Biomass-Derived Polyols to Value-Added Chemicals : Catalysis and Kinetics
dc.relation.referencesJoshi, N., & Lawal, A. (2012). Hydrodeoxygenation of pyrolysis oil in a microreactor. Chemical Engineering Science, 74, 1–8. https://doi.org/10.1016/j.ces.2012.01.052
dc.relation.referencesJr, R. J. M., Aughenbaugh, J. M., & Paredis, C. J. J. (2009). Multi-attribute utility analysis in set-based conceptual design. Computer-Aided Design, 41(3), 214–227. https://doi.org/10.1016/j.cad.2008.06.004
dc.relation.referencesJyoti, L., & Mikkola, J. (2022). Carbon support effects on metal (Pd, Pt and Ru) catalyzed hydrothermal decarboxylation/ deoxygenation of triglycerides. Applied Catalysis A, General, 638(January), 118611. https://doi.org/10.1016/j.apcata.2022.118611
dc.relation.referencesKaewmeesri, R., Srifa, A., Itthibenchapong, V., & Faungnawakij, K. (2015). Deoxygenation of waste chicken fats to green diesel over Ni/Al2O3: Effect of water and free fatty acid content. Energy and Fuels, 29(2), 833–840. https://doi.org/10.1021/ef5023362
dc.relation.referencesKalnes, T. N., Marker, T., Shonnard, D. R., & Koers, K. P. (2008). Green diesel production by hydrorefining renewable feedstocks. Biofiuels Technology, 7–11. www.biofuels-tech.com
dc.relation.referencesKandel, K., Anderegg, J. W., Nelson, N. C., Chaudhary, U., & Slowing, I. I. (2014). Supported iron nanoparticles for the hydrodeoxygenation of microalgal oil to green diesel. Journal of Catalysis, 314, 142–148. https://doi.org/10.1016/j.jcat.2014.04.009
dc.relation.referencesKanie, Y., Akiyama, K., & Iwamoto, M. (2011). Reaction pathways of glucose and fructose on Pt nanoparticles in subcritical water under a hydrogen atmosphere. Catalysis Today, 178(1), 58–63. https://doi.org/10.1016/j.cattod.2011.07.031
dc.relation.referencesKato, Y., & Sekine, Y. (2013). One pot direct catalytic conversion of cellulose to hydrocarbon by decarbonation using Pt/H-beta zeolite catalyst at low temperature. Catalysis Letters, 143(5), 418–423. https://doi.org/10.1007/s10562-013-0992-8
dc.relation.referencesKay Lup, A. N., Abnisa, F., Daud, W. M. A. W., & Aroua, M. K. (2017). A review on reaction mechanisms of metal-catalyzed deoxygenation process in bio-oil model compounds. Applied Catalysis A: General, 541(May), 87–106. https://doi.org/10.1016/j.apcata.2017.05.002
dc.relation.referencesKemache, N., Hamoudi, S., Arul, J., Belkacemi, K., & La, V. (2010). Activity and Selectivity of Nanostructured Sulfur-Doped Pd / SBA-15 Catalyst for Vegetable Oil Hardening. Industrial & Engineering Chemistry Research, 49, 971–979. https://doi.org/10.1021/ie9006529
dc.relation.referencesKemache, N., Hamoudi, S., Arul, J., Belkacemi, K., & La, V. (2010). Activity and Selectivity of Nanostructured Sulfur-Doped Pd / SBA-15 Catalyst for Vegetable Oil Hardening. Industrial & Engineering Chemistry Research, 49, 971–979. https://doi.org/10.1021/ie9006529
dc.relation.referencesKi, S., Brand, S., Lee, H., Kim, Y., & Kim, J. (2013). Production of renewable diesel by hydrotreatment of soybean oil : Effect of reaction parameters. Chemical Engineering Journal, 228, 114–123. https://doi.org/10.1016/j.cej.2013.04.095
dc.relation.referencesKi, S., Young, J., Lee, H., Yum, T., Kim, Y., & Kim, J. (2014). Production of renewable diesel via catalytic deoxygenation of natural triglycerides : Comprehensive understanding of reaction intermediates and hydrocarbons. Applied Energy, 116, 199–205. https://doi.org/10.1016/j.apenergy.2013.11.062
dc.relation.referencesKim, D., Vardon, D. R., Murali, D., Sharma, B. K., & Strathmann, T. J. (2016). Valorization of Waste Lipids through Hydrothermal Catalytic Conversion to Liquid Hydrocarbon Fuels with in Situ Hydrogen Production. ACS Sustainable Chemistry and Engineering, 4(3), 1775–1784. https://doi.org/10.1021/acssuschemeng.5b01768
dc.relation.referencesKim, M. S., Simanjuntak, F. S. H., Lim, S., Jae, J., Ha, J. M., & Lee, H. (2017). Synthesis of alumina–carbon composite material for the catalytic conversion of furfural to furfuryl alcohol. Journal of Industrial and Engineering Chemistry, 52, 59–65. https://doi.org/10.1016/j.jiec.2017.03.024
dc.relation.referencesKing, D. L., Zhang, L., Xia, G., Karim, A. M., Heldebrant, D. J., Wang, X., Peterson, T., & Wang, Y. (2010). Aqueous phase reforming of glycerol for hydrogen production over Pt-Re supported on carbon. Applied Catalysis B: Environmental, 99(1–2), 206–213. https://doi.org/10.1016/j.apcatb.2010.06.021
dc.relation.referencesKleinert, M., Gasson, J. R., & Barth, T. (2009). Optimizing solvolysis conditions for integrated depolymerisation and hydrodeoxygenation of lignin to produce liquid biofuel. Journal of Analytical and Applied Pyrolysis, 85(1–2), 108–117. https://doi.org/10.1016/j.jaap.2008.09.019
dc.relation.referencesKondarides, D. I., & Verykios, X. E. (2013). Photocatalytic Production of Renewable Hydrogen. In The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals (pp. 397–443). Elsevier. https://doi.org/10.1016/B978-0-444-56330-9.00012-7
dc.relation.referencesKonwar, L. J., Oliani, B., Samikannu, A., Canu, P., & Mikkola, J. (2020). Efficient hydrothermal deoxygenation of tall oil fatty acids into n-paraffinic hydrocarbons and alcohols in the presence of aqueous formic acid. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-01103-3
dc.relation.referencesKotrba, R. (2015). A Transformative Project: Total’s La Mède Conversion. Biodiesel Magazine.
dc.relation.referencesKouzu, M., Kojima, M., Mori, K., & Yamanaka, S. (2021). Catalytic deoxygenation of triglyceride into drop-in fuel under hydrothermal condition with the help of in-situ hydrogen production by APR of glycerol by-produced. Fuel Processing Technology, 217(January), 106831. https://doi.org/10.1016/j.fuproc.2021.106831
dc.relation.referencesKubacka, A. (2016). Catalytic hydrogen production through WGS or steam reforming of alcohols over Cu , Ni and Co catalysts. “Applied Catalysis A, General,” 518, 2–17. https://doi.org/10.1016/j.apcata.2016.01.027
dc.relation.referencesKubička, D., Bejblová, M., & Vlk, J. (2010). Conversion of Vegetable Oils into Hydrocarbons over CoMo/MCM-41 Catalysts. Topics in Catalysis, 53(3–4), 168–178. https://doi.org/10.1007/s11244-009-9421-z
dc.relation.referencesKubicka, D., Horacek, J., Setnicka, M., Bulanek, R., Zukal, A., & Kubicková, I. (2014). Effect of support-active phase interactions on the catalyst activity and selectivity in deoxygenation of triglycerides. Applied Catalysis B: Environmental, 145, 101–107. https://doi.org/10.1016/j.apcatb.2013.01.012
dc.relation.referencesKubicka, D., Simácek, P., & Zilkova, N. (2009). Transformation of vegetable oils into hydrocarbons over mesoporous-alumina-supported CoMo catalysts. Topics in Catalysis, 52(1–2), 161–168. https://doi.org/10.1007/s11244-008-9145-5
dc.relation.referencesKubičková, I., & Kubička, D. (2010). Utilization of triglycerides and related feedstocks for production of clean hydrocarbon fuels and petrochemicals: A review. Waste and Biomass Valorization, 1(3), 293–308. https://doi.org/10.1007/s12649-010-9032-8
dc.relation.referencesKumar, P., Verma, D., Sibi, M. G., Butolia, P., & Maity, S. K. (2022). Hydrodeoxygenation of triglycerides for the production of green diesel : Role of heterogeneous catalysis. In Hydrocarbon Biorefinery (pp. 97–126). Elsevier Inc. https://doi.org/10.1016/B978-0-12-823306-1.00013-3
dc.relation.referencesKunze, R., Deane, P., Haasz, T., Jonatan, J. G., Fraboulet, D., Fahl, U., & Mulholland, E. (2020). Perspectives on decarbonizing the transport sector in the EU-28. Energy Strategy Reviews, 20(2018), 124–132. https://doi.org/10.1016/j.esr.2017.12.007
dc.relation.referencesLaboratorium, K. O., & Section, E. D. (1973). Ni AND Co-II IODATES OF CRYSTAL STRUCTURES and the optical properties of nickel and cobalt iodate hydrates . The nickel di- hydrate is known to be a weak ferromagnet with N6el temperature TN = 3 . 08 K [ 2 ]. In an attempt to determine its magnetic struct. 35(1972), 3183–3189.
dc.relation.referencesLam, M. K., & Lee, K. T. (2011). Chapter 15 - Production of Biodiesel Using Palm Oil. In Biofuels (pp. 353–374). https://doi.org/http://dx.doi.org/10.1016/B978-0-12-385099-7.00016-4
dc.relation.referencesLane, J. (2016). Renewable jet fuel, competitive cost, at scale: The Digest’s Multi-Slide Guide to AltAir. Biofuels Digest. http://www.biofuelsdigest.com/bdigest/2016/05/19/63308/
dc.relation.referencesLaurent, E., & Delmon, B. (1994). Study of the hydrodeoxygenation of carbonyl, carboxylic and guaiacyl groups over sulfided CoMo/[gamma]-Al2O3 and NiMo/[gamma]-Al2O3 catalysts: I. Catalytic reaction schemes. Applied Catalysis A: General, 109(1), 77–96. https://doi.org/Doi 10.1016/0926-860x(94)85005-4
dc.relation.referencesLavrenov, A. V., Bogdanets, E. N., Chumachenko, Y. A., & Likholobov, V. A. (2011). Catalytic processes for the production of hydrocarbon biofuels from oil and fatty raw materials: Contemporary approaches. Catalysis in Industry, 3(3), 250–259. https://doi.org/10.1134/S2070050411030044
dc.relation.referencesLeClerc, H. O., Tompsett, G. A., Paulsen, A. D., McKenna, A. M., Niles, S. F., Reddy, C. M., Nelson, R. K., Cheng, F., Teixeira, A. R., & Timko, M. T. (2022). Hydroxyapatite catalyzed hydrothermal liquefaction transforms food waste from an environmental liability to renewable fuel. IScience, 25(9), 104916. https://doi.org/10.1016/j.isci.2022.104916
dc.relation.referencesLee, J., Xu, Y., & Huber, G. W. (2013). High-throughput screening of monometallic catalysts for aqueous-phase hydrogenation of biomass-derived oxygenates. Applied Catalysis B: Environmental, 140–141, 98–107. https://doi.org/10.1016/j.apcatb.2013.03.031
dc.relation.referencesLehnert, K., & Claus, P. (2008). Influence of Pt particle size and support type on the aqueous-phase reforming of glycerol. Catalysis Communications, 9(15), 2543–2546. https://doi.org/10.1016/j.catcom.2008.07.002
dc.relation.referencesLeifeng, G., Yuan, L. Ü., Yunjie, D., Ronghe, L. I. N., Jingwei, L. I., Wenda, D., Tao, W., & Weimiao, C. (2009). Solvent Effect on Selective Dehydroxylation of Glycerol to 1 , 3-Propanediol over a Pt/WO3/ZrO2 Catalyst. Chinese Journal of Catalysis, 30(12), 1189–1191. https://doi.org/10.1016/S1872-2067(08)60142-4
dc.relation.referencesLemonidou, A. A., Kechagiopoulos, P., Heracleous, E., & Voutetakis, S. (2013). Chapter 14: Steam Reforming of Bio-oils to Hydrogen. In The Role of Catalysis for the Sustainable Production 467 of Bio-fuels and Bio-chemicals (pp. 467–493).
dc.relation.referencesLi, F., Yuan, Y., Huang, Z., Chen, B., & Wang, F. (2015). Sustainable production of aromatics from bio-oils through combined catalytic upgrading with in situ generated hydrogen. Applied Catalysis B: Environmental, 165, 547–554. https://doi.org/10.1016/j.apcatb.2014.10.050
dc.relation.referencesLi, G., Yang, H., Zhang, H., Qi, Z., Chen, M., Hu, W., Tian, L., Nie, R., & Huang, W. (2018). Encapsulation of Nonprecious Metal into Ordered Mesoporous N-Doped Carbon for Efficient Quinoline Transfer Hydrogenation with Formic Acid. ACS Catalysis, 8(9), 8396–8405. https://doi.org/10.1021/acscatal.8b01404
dc.relation.referencesLi, G., Zhang, F., Chen, L., Zhang, C., Huang, H., & Li, X. (2015). Highly Selective Hydrodecarbonylation of Oleic Acid into n-Heptadecane over a Supported Nickel/Zinc Oxide-Alumina Catalyst. ChemCatChem, 7(17), 2646–2653. https://doi.org/10.1002/cctc.201500418
dc.relation.referencesLi, J., Chen, W., Zhao, H., Zheng, X., Wu, L., Pan, H., Zhu, J., Chen, Y., & Lu, J. (2017). Size-dependent catalytic activity over carbon-supported palladium nanoparticles in dehydrogenation of formic acid. Journal of Catalysis, 352, 371–381. https://doi.org/10.1016/j.jcat.2017.06.007
dc.relation.referencesLi, S., Li, N., Li, G., Li, L., Wang, A., Cong, Y., Wang, X., Xu, G., & Zhang, T. (2015). Protonated titanate nanotubes as a highly active catalyst for the synthesis of renewable diesel and jet fuel range alkanes. Applied Catalysis B: Environmental, 170–171, 124–134. https://doi.org/10.1016/j.apcatb.2015.01.022
dc.relation.referencesLi, S., Zhou, Y., Kang, X., Liu, D., Gu, L., & Zhang, Q. (2019). A Simple and Effective Principle for a Rational Design of Heterogeneous Catalysts for Dehydrogenation of Formic Acid. Advanced Materials, 1806781, 1–7. https://doi.org/10.1002/adma.201806781
dc.relation.referencesLindfors, L. P. (2010). High Quality Transportation Fuels From Renewable Feedstock. XXIst World Energy Congress Montreal, 1–12. http://www.worldenergy.org/documents/congresspapers/178.pdf
dc.relation.referencesLiu, C., Liu, J., Zhou, G., Tian, W., & Rong, L. (2013). A cleaner process for hydrocracking of jatropha oil into green diesel. Journal of the Taiwan Institute of Chemical Engineers, 44(2), 221–227. https://doi.org/10.1016/j.jtice.2012.10.006
dc.relation.referencesLiu, J., He, J., Wang, L., Li, R., Chen, P., Rao, X., Deng, L., & Rong, L. (2016). NiO-PTA supported on ZIF-8 as a highly effective catalyst for hydrocracking of Jatropha oil. Nature Publishing Group, 1–11. https://doi.org/10.1038/srep23667
dc.relation.referencesLiu, X., Li, S., Liu, Y., & Cao, Y. (2015). Formic acid : A versatile renewable reagent for green and sustainable chemical synthesis. Chinese Journal of Catalysis, 36(9), 1461–1475. https://doi.org/10.1016/S1872-2067(15)60861-0
dc.relation.referencesLiu, Z., Dong, W., Cheng, S., Guo, S., Shang, N., Gao, S., Feng, C., Wang, C., & Wang, Z. (2017). Pd9Ag1-N-doped-MOF-C: An efficient catalyst for catalytic transfer hydrogenation of nitro-compounds. Catalysis Communications, 95, 50–53. https://doi.org/10.1016/j.catcom.2017.02.019
dc.relation.referencesLodeng, R., Hannevold, L., Bergem, H., & Stöcker, M. (2013). Catalytic Hydrotreatment of Bio-Oils for High-Quality Fuel Production. In The Role of Catalysis for the Sustainable Production of Bio-Fuels and Bio-Chemicals (pp. 351–396). https://doi.org/10.1016/B978-0-444-56330-9.00011-5
dc.relation.referencesLöfstedt, J., Dahlstrand, C., Orebom, A., Meuzelaar, G., Sawadjoon, S., Galkin, M. V., Agback, P., Wimby, M., Corresa, E., Mathieu, Y., Sauvanaud, L., Eriksson, S., Corma, A., & Samec, J. S. M. (2016). Green Diesel from Kraft Lignin in Three Steps. ChemSusChem, 9(12), 1392–1396. https://doi.org/10.1002/cssc.201600172
dc.relation.referencesLong, F., Liu, W., Jiang, X., Zhai, Q., Cao, X., & Jiang, J. (2021). State-of-the-art technologies for biofuel production from triglycerides : A review. Renewable and Sustainable Energy Reviews, 148(April), 111269. https://doi.org/10.1016/j.rser.2021.111269
dc.relation.referencesLourenço, J., Willimann, C., Camargo, M. D. O., Duarte, R. B., Aparecida, O., Mario, L., & Jorge, D. M. (2021). A novel kinetic model applied to heterogeneous fatty acid deoxygenation. Chemical Engineering Science, 230, 1–10. https://doi.org/10.1016/j.ces.2020.116192
dc.relation.referencesLu, J., Behtash, S., Faheem, M., & Heyden, A. (2013). Microkinetic modeling of the decarboxylation and decarbonylation of propanoic acid over Pd(1 1 1) model surfaces based on parameters obtained from first principles. Journal of Catalysis, 305, 56–66. https://doi.org/10.1016/j.jcat.2013.04.026
dc.relation.referencesLu, J., Faheem, M., Behtash, S., & Heyden, A. (2015). Theoretical investigation of the decarboxylation and decarbonylation mechanism of propanoic acid over a Ru(0001) model surface. Journal of Catalysis, 324, 14–24. https://doi.org/10.1016/j.jcat.2015.01.005
dc.relation.referencesLuo, Q., Zhang, W., Fu, C. F., & Yang, J. (2018). Single Pd atom and Pd dimer embedded graphene catalyzed formic acid dehydrogenation: A first-principles study. International Journal of Hydrogen Energy, 43(14), 6997–7006. https://doi.org/10.1016/j.ijhydene.2018.02.129
dc.relation.referencesMadsen, A. T., Ahmed, E. H., Christensen, C. H., Fehrmann, R., & Riisager, A. (2011). Hydrodeoxygenation of waste fat for diesel production : Study on model feed with Pt / alumina catalyst. Fuel, 90(11), 3433–3438. https://doi.org/10.1016/j.fuel.2011.06.005
dc.relation.referencesMäki-Arvela, P., Kubickova, I., Snåre, M., Eränen, K., & Murzin, D. Y. (2007). Catalytic deoxygenation of fatty acids and their derivatives. Energy & Fuels, 21(1), 30–41. https://doi.org/10.1021/ef060455v
dc.relation.referencesMäki-Arvela, P., Kuusisto, J., Sevilla, E. M., Simakova, I., Mikkola, J. P., Myllyoja, J., Salmi, T., & Murzin, D. Y. (2008). Catalytic hydrogenation of linoleic acid to stearic acid over different Pd- and Ru-supported catalysts. Applied Catalysis A: General, 345(2), 201–212. https://doi.org/10.1016/j.apcata.2008.04.042
dc.relation.referencesMalins, C., & Sandford, C. (2022). Animal, Vegetable or Mineral (oil)? Exploring the potential impacts of new renewable diesel capacity on oil and fat markets in the United States. Cerulogy. https://doi.org/10.1080/00221345508982847
dc.relation.referencesMane, R. B., & Rode, C. V. (2012). Continuous dehydration and hydrogenolysis of glycerol over non-chromium copper catalyst: Laboratory-scale process studies. Organic Process Research and Development, 16(5), 1043–1052. https://doi.org/10.1021/op200383r
dc.relation.referencesMao, J., Jiang, D., Fang, Z., Wu, X., Ni, J., & Li, X. (2017). Efficient hydrothermal hydrodeoxygenation of triglycerides with in situ generated hydrogen for production of diesel-like hydrocarbons. Catalysis Communications, 90, 47–50. https://doi.org/10.1016/j.catcom.2016.11.017
dc.relation.referencesMardhiah, H. H., Chyuan, H., Masjuki, H. H., Lim, S., & Lee, H. V. (2017). A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils. Renewable and Sustainable Energy Reviews, 67, 1225–1236. https://doi.org/10.1016/j.rser.2016.09.036
dc.relation.referencesMartin, A., Armbruster, U., Gandarias, I., & Arias, P. L. (2013). Glycerol hydrogenolysis into propanediols using in situ generated hydrogen - A critical review. European Journal of Lipid Science and Technology, 115(1), 9–27. https://doi.org/10.1002/ejlt.201200207
dc.relation.referencesMartínez-Merino, V., Gil, M. J., & Cornejo, A. (2013). Biomass Sources for Hydrogen Production. In Renewable Hydrogen Technologies (pp. 87–110). Elsevier. https://doi.org/10.1016/B978-0-444-56352-1.00005-2
dc.relation.referencesMasel, R. I. (2001). Chemical Kinetcis and Catalysis (Wiley-Interscience (ed.)).
dc.relation.referencesMatsumura, Y. (2015). Hydrothermal Gasification of Biomass. In Recent Advances in Thermochemical Conversion of Biomass (pp. 251–267). https://doi.org/10.1016/B978-0-444-63289-0.00009-0
dc.relation.referencesMauriello, F., Ariga, H., Musolino, M. G., Pietropaolo, R., Takakusagi, S., & Asakura, K. (2015). Exploring the catalytic properties of supported palladium catalysts in the transfer hydrogenolysis of glycerol. Applied Catalysis B: Environmental, 166–167, 121–131. https://doi.org/10.1016/j.apcatb.2014.11.014
dc.relation.referencesMavrikakis, M., & Barteau, M. A. (1998). Oxygenate reaction pathways on transition metal surfaces. Journal of Molecular Catalysis A: Chemical, 131(1–3), 135–147. https://doi.org/10.1016/S1381-1169(97)00261-6
dc.relation.referencesMayorga, M. A., Cadavid, J. G., López, C. A., Suárez, O. Y., Bonilla, J. A., López, M., Trujillo, C. A., & Durán, H. A. (2020). Definition of the Catalyst Family for the Production of Green Diesel by Hydrotreatment In Situ of Triglycerides. Chemical Engineering Transactions, 80(June), 241–246. https://doi.org/10.3303/CET2080041
dc.relation.referencesMayorga, M. A., Cadavid, J. G., Suárez, O. Y., Vargas, J. C., Castellanos, C. J., Suarez, L. A., & Narváez, P. C. (2020). Bio-hydrogen production using metallic catalysts. Revista Mexicana de Ingeniería Química, 19(3), 1103–1115. https://doi.org/10.24275/rmiq/Cat652 issn-e:
dc.relation.referencesMayorga, M. A., Cadavid, J. G., Suárez Palacios, O. Y., Vargas, J. C., Narvaez, P. C., & Rodríguez, L. I. (2020). Selection of Hydrogen Donors for the Production of Renewable Diesel by In Situ Catalytic Deoxygenation of Palm Oil. Chemical Engineering Transactions, 80(June 2020), 61–66. https://doi.org/10.3303/CET2080011
dc.relation.referencesMayorga, M. A., Cadavid, J. G., Suarez Palacios, O. Y., Vargas, J., González, J., & Narváez, P. C. (2019). Production of Renewable Diesel by Hydrotreating of Palm Oil with Noble Metallic Catalysts. Chemical Engineering Transactions, 74(June 2019), 7–12. https://doi.org/10.3303/CET1974002
dc.relation.referencesMears, D. E. (1971). Tests for Transport limitations in Experimental Catalytic Reactors. Industrial & Engineering Chemistry Process Design and Development, 10(4), 541–547.
dc.relation.referencesMekhaev, A. V., Butin, F. N., Pervova, M. G., Taran, O. P., Simakova, I. L., & Parmon, V. N. (2014). Pd/Sibunit as efficient hydrogen transfer catalyst in hydrodechlorination of polychlorobiphenyls. Russian Journal of Organic Chemistry, 50(6), 900–901. https://doi.org/10.1134/S1070428014060244
dc.relation.referencesMeller, E., Green, U., Aizenshtat, Z., & Sasson, Y. (2014). Catalytic deoxygenation of castor oil over Pd / C for the production of cost effective biofuel. FUEL, 133, 89–95. https://doi.org/10.1016/j.fuel.2014.04.094
dc.relation.referencesMiller, P., & Kumar, A. (2014). Techno-economic assessment of hydrogenation-derived renewable diesel production from canola and camelina. SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 6, 105–115. https://doi.org/10.1016/j.seta.2014.01.008
dc.relation.referencesMitra, J., Zhou, X., & Rauchfuss, T. (2015). Pd/C-catalyzed reactions of HMF: Decarbonylation, hydrogenation, and hydrogenolysis. Green Chemistry, 17(1), 307–313. https://doi.org/10.1039/c4gc01520g
dc.relation.referencesMohammad, M., Kandaramath Hari, T., Yaakob, Z., Chandra Sharma, Y., & Sopian, K. (2013). Overview on the production of paraffin based-biofuels via catalytic hydrodeoxygenation. Renewable and Sustainable Energy Reviews, 22(X), 121–132. https://doi.org/10.1016/j.rser.2013.01.026
dc.relation.referencesMonnier, J., Sulimma, H., Dalai, A., & Caravaggio, G. (2010). Hydrodeoxygenation of oleic acid and canola oil over alumina-supported metal nitrides. Applied Catalysis A: General, 382(2), 176–180. https://doi.org/10.1016/j.apcata.2010.04.035
dc.relation.referencesMonteiro, R. R. C., Silvia, S. O., Cavalcante, L., Luna, F. M. T. De, Bolivar, J. M., Vieira, R. S., Fernandez-lafuente, R., & Pesquisa, G. De. (2022). Biosynthesis of alkanes / alkenes from fatty acids or derivatives ( triacylglycerols or fatty aldehydes ). 61(September). https://doi.org/10.1016/j.biotechadv.2022.108045
dc.relation.referencesMurata, K., Liu, Y., Inaba, M., & Takahara, I. (2010). Production of synthetic diesel by hydrotreatment of jatropha oils using Pt-Re/H-ZSM-5 catalyst. Energy and Fuels, 24(4), 2404–2409. https://doi.org/10.1021/ef901607t
dc.relation.referencesMusolino, M. G., Scarpino, L. A., Mauriello, F., & Pietropaolo, R. (2009). Selective transfer hydrogenolysis of glycerol promoted by palladium catalysts in absence of hydrogen. Green Chemistry, 11, 1511–1513. https://doi.org/10.1039/b915745j
dc.relation.referencesMusolino, M. G., Scarpino, L. A., Mauriello, F., & Pietropaolo, R. (2011). Glycerol hydrogenolysis promoted by supported palladium catalysts. ChemSusChem, 4(8), 1143–1150. https://doi.org/10.1002/cssc.201100063
dc.relation.referencesNagpure, A. S., Venugopal, A. K., Lucas, N., Manikandan, M., Thirumalaiswamy, R., & Chilukuri, S. (2015). Renewable fuels from biomass-derived compounds: Ru-containing hydrotalcites as catalysts for conversion of HMF to 2,5-dimethylfuran. Catalysis Science and Technology, 5(3), 1463–1472. https://doi.org/10.1039/c4cy01376j
dc.relation.referencesNakagoe, O., Furukawa, Y., & Tanabe, S. (2012). Hydrogen production from steam reforming of woody biomass with cobalt catalyst. 1th International Conference on Renewable Energy Research and Applications, ICRERA 2012, 2–5.
dc.relation.referencesNarváez, P. C., Rincón, S. M., Castañeda, L. Z., & Sánchez, F. J. (2008). Determination of Some Physical and Transport Properties of Palm Oil and of Its Methyl Esters. Latin American Applied Research, 38, 1–6.
dc.relation.referencesNeste Oil. (2013a). Neste oil’s Singapore refinery – the world’s largest and most advanced. https://www.google.ca/url?sa¼t&rct¼j&q¼&esrc¼s&source¼ web&cd¼4&ved¼0CEMQFjAD&url¼http%253A%252F%252Fwww.nesteoil.com%25 2Fbinary.asp%253Fpath%253D1%253B41%253B540%253B2384%253B18010%253B21058%25
dc.relation.referencesNeste Oil. (2013b). Production capacity. http://www.nesteoil.com/default.asp?path¼ 1,41,11991,22708,22720⟩; [accessed October 2013].
dc.relation.referencesNeste Oil. (2016). No TitNeste oil’s renewable diesel plant in Rotterdam – the largest and most advanced in Europe.
dc.relation.referencesNie, R., Peng, X., Zhang, H., Yu, X., Lu, X., Zhou, D., & Xia, Q. (2017). Transfer hydrogenation of bio-fuel with formic acid over biomass-derived N-doped carbon supported acid-resistant Pd catalyst. Catalysis Science and Technology, 7(3), 627–634. https://doi.org/10.1039/c6cy02461k
dc.relation.referencesNie, R., Tao, Y., Nie, Y., Lu, T., Wang, J., Zhang, Y., Lu, X., & Xu, C. C. (2021). Recent Advances in Catalytic Transfer Hydrogenation with Formic Acid over Heterogeneous Transition Metal Catalysts. ACS Catalysis, 11(3), 1071–1095. https://doi.org/10.1021/acscatal.0c04939
dc.relation.referencesNigam, P. S., & Singh, A. (2011). Production of liquid biofuels from renewable resources. Progress in Energy and Combustion Science, 37(1), 52–68. https://doi.org/10.1016/j.pecs.2010.01.003
dc.relation.referencesNuñez Isaza, M. L., & ECOPETROL. (2009). Proceso para obtencion de Diesel a Partir de Aceites Vegetales o Animales por Hidrotratamiento con Tiempos de Residencia Reducidos y Productos Obtenidos a Partir del Mismo (Patent No. WO 2009068981 A1).
dc.relation.referencesOECD. (2012). OECD Environmental Outlook to 2050. https://doi.org/10.1787/9789264122246-en
dc.relation.referencesOh, Y. K., Hwang, K. R., Kim, C., Kim, J. R., & Lee, J. S. (2018). Recent developments and key barriers to advanced biofuels: A short review. Bioresource Technology, 257(December 2017), 320–333. https://doi.org/10.1016/j.biortech.2018.02.089
dc.relation.referencesOhta, H., Kobayashi, H., Hara, K., & Fukuoka, A. (2011). Hydrodeoxygenation of phenols as lignin models under acid-free conditions with carbon-supported platinum catalysts. Chemical Communications, 47(44), 12209–12211. https://doi.org/10.1039/c1cc14859a
dc.relation.referencesOi, L. E., Choo, M. Y., Lee, H. V., Taufiq-Yap, Y. H., Cheng, C. K., & Juan, J. C. (2020). Catalytic deoxygenation of triolein to green fuel over mesoporous TiO2 aided by in situ hydrogen production. International Journal of Hydrogen Energy, 45(20), 11605–11614. https://doi.org/10.1016/j.ijhydene.2019.07.172
dc.relation.referencesOndrey, G. (2014). Making renewable diesel and biopropane from vegetable oil. Chemical Engineering, 11. www.chemengonline.com
dc.relation.referencesOnishi, N., Laurenczy, G., Beller, M., & Himeda, Y. (2018). Recent progress for reversible homogeneous catalytic hydrogen storage in formic acid and in methanol. Coordination Chemistry Reviews, 373, 317–332. https://doi.org/10.1016/j.ccr.2017.11.021
dc.relation.referencesONU. (2015). Objetivo 7: Garantizar el acceso a una energía asequible, segura, sostenible y moderna. Objetivos y Metas de Desarrollo Sostenible. https://www.un.org/sustainabledevelopment/es/energy
dc.relation.referencesONU. (2021). La COP26 termina con un acuerdo, pero se queda corta en acción climática. UNEP. https://www.unep.org/es/noticias-y-reportajes/reportajes/la-cop26-termina-con-un-acuerdo-pero-se-queda-corta-en-accion
dc.relation.referencesONU. (2022). Informe de los Objetivos de Desarrollo Sostenible 2022. https://acortar.link/ZD8YID
dc.relation.referencesOudenhuijzen, M. K., Kooyman, P. J., Tappel, B., Van Bokhoven, J. A., & Koningsberger, D. C. (2002). Understanding the influence of the pretreatment procedure on platinum particle size and particle-size distribution for SiO2impregnated with [Pt2+(NH3)4](NO3−)2: A combination of HRTEM, mass spectrometry, and quick EXAFS. Journal of Catalysis, 205(1), 135–146. https://doi.org/10.1006/jcat.2001.3433
dc.relation.referencesPan, Z., Wang, R., & Chen, J. (2018). Deoxygenation of methyl laurate as a model compound on Ni-Zn alloy and intermetallic compound catalysts: Geometric and electronic effects of oxophilic Zn. Applied Catalysis B: Environmental, 224(October 2017), 88–100. https://doi.org/10.1016/j.apcatb.2017.10.040
dc.relation.referencesPan, Z., Wang, R., Nie, Z., & Chen, J. (2015). Effect of a second metal (Co, Fe, Mo and W) on performance of Ni2P/SiO2 for hydrodeoxygenation of methyl laurate. Journal of Energy Chemistry, 25, 418–426. https://doi.org/10.1016/j.jechem.2016.02.007
dc.relation.referencesPanagiotopoulou, P., Martin, N., & Vlachos, D. G. (2014). Effect of hydrogen donor on liquid phase catalytic transfer hydrogenation of furfural over a Ru/RuO2/C catalyst. Journal of Molecular Catalysis A: Chemical, 392, 223–228. https://doi.org/10.1016/j.molcata.2014.05.016
dc.relation.referencesParyjczak, T., & Szymura, J. A. (1979). Electron Microscopic and Chemisorption Comparison Studies on the Metal Dispersion of Pd , Rh , and I r Supported Catalysts. Zeitschrift Für Anorganische Und Allgemeine Chemie (ZAAC), 449(1), 105–114.
dc.relation.referencesPatel, M., & Kumar, A. (2016). Production of renewable diesel through the hydroprocessing of lignocellulosic biomass-derived bio-oil : A review. Renewable and Sustainable Energy Reviews, 58, 1293–1307. https://doi.org/10.1016/j.rser.2015.12.146
dc.relation.referencesPatil, P. T., Armbruster, U., Richter, M., & Martin, A. (2011). Heterogeneously catalyzed hydroprocessing of organosolv lignin in sub- and supercritical solvents. Energy and Fuels, 25(10), 4713–4722. https://doi.org/10.1021/ef2009875
dc.relation.referencesPerego, C., & Peratello, S. (1999). Experimental methods in catalytic kinetics. Catalysis Today, 52, 133–145.
dc.relation.referencesPérez-cisneros, E. S., Sales-cruz, M., & Ochoa-tapia, A. (2016). A Systematic Approach For The Hydrotreating of Biodiesel and Petroleum-Diesel Blends. Computer Aided Process Engineering - ESCAPE 26, 38, 1756–1761. https://doi.org/10.1016/B978-0-444-63428-3.50297-6
dc.relation.referencesPerkins, G., Batalha, N., Kumar, A., Bhaskar, T., & Konarova, M. (2019). Recent advances in liquefaction technologies for production of liquid hydrocarbon fuels from biomass and carbonaceous wastes. Renewable and Sustainable Energy Reviews, 115(March), 109400. https://doi.org/10.1016/j.rser.2019.109400
dc.relation.referencesPestman, R., Koster, R. M., Pieterse, J. A. Z., & Ponec, V. (1997). Reactions of Carboxylic Acids on Oxides: 1. Selective Hydrogenation of Acetic Acid to Acetaldehyde. Journal of Cataly, 168, 255–264
dc.relation.referencesPipitone, G., Zoppi, G., Pirone, R., & Bensaid, S. (2022). A critical review on catalyst design for aqueous phase reforming. International Journal of Hydrogen Energy, 47(1), 151–180. https://doi.org/10.1016/j.ijhydene.2021.09.206
dc.relation.referencesPoling, B. E., Prausnitz, J. M., & O’Connell, J. P. (2001). THE PROPERTIES OF GASES AND LIQUIDS (McGRAW-HILL (ed.); Fifth
dc.relation.referencesPopov, S., & Kumar, S. (2015). Rapid hydrothermal deoxygenation of oleic acid over activated carbon in a continuous flow process. Energy and Fuels, 29(5), 3377–3384. https://doi.org/10.1021/acs.energyfuels.5b00308
dc.relation.referencesQin, Y., Chen, P., Duan, J., Han, J., Lou, H., Zheng, X., & Hong, H. (2013). Carbon Nanofibers Supported Molybdenum Carbide Catalysts for Hydrodeoxygenation of Vegetable Oils. RSC Advances, 3(38), 17485. https://doi.org/10.1039/c3ra42434k
dc.relation.referencesQuiroga, I. G. (2004). Introducción al Equilibrio Termodinámico y de Fases (U. N. de Colombia (ed.))
dc.relation.referencesRabaev, M., Landau, M. V., Vidruk-Nehemya, R., Goldbourt, A., & Herskowitz, M. (2015). Improvement of hydrothermal stability of Pt/SAPO-11 catalyst in hydrodeoxygenation-isomerization-aromatization of vegetable oil. Journal of Catalysis, 332, 164–176. https://doi.org/10.1016/j.jcat.2015.10.005
dc.relation.referencesRahman, M. M., Liu, R., & Cai, J. (2018). Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oil – A review. Fuel Processing Technology, 180(June), 32–46. https://doi.org/10.1016/j.fuproc.2018.08.002
dc.relation.referencesRaikova, S., Le, C. D., Wagner, J. L., Ting, V. P., & Chuck, C. J. (2016). Towards an Aviation Fuel Through the Hydrothermal Liquefaction of Algae. In Biofuels for Aviation (pp. 217–239). Elsevier. https://doi.org/10.1016/B978-0-12-804568-8.00009-3
dc.relation.referencesRambabu, K., Bharath, G., Sivarajasekar, N., Velu, S., Sudha, P. N., Wongsakulphasatch, S., & Banat, F. (2023). Sustainable production of bio-jet fuel and green gasoline from date palm seed oil via hydroprocessing over tantalum phosphate. Fuel, 331(P1), 125688. https://doi.org/10.1016/j.fuel.2022.125688
dc.relation.referencesRamirez-Corredores, M. M. (2013). Pathways and Mechanisms of Fast Pyrolysis: Impact on Catalyst Research. The Role of Catalysis for the Sustainable Production of Bio-Fuels and Bio-Chemicals, 161–216. https://doi.org/10.1016/B978-0-444-56330-9.00006-1
dc.relation.referencesRana, B. S., Kumar, R., Tiwari, R., Kumar, R., Joshi, R. K., Garg, M. O., & Sinha, A. K. (2013). Transportation fuels from co-processing of waste vegetable oil and gas oil mixtures. Biomass and Bioenergy, 56, 43–52. https://doi.org/10.1016/j.biombioe.2013.04.029
dc.relation.referencesRichardson, J. T. (1992). Principles of Catalyst Development (Springer Science+Business (ed.); Second).
dc.relation.referencesRobin, T., Jones, J. M., & Ross, A. B. (2017). Catalytic hydrothermal processing of lipids using metal doped zeolites. Biomass and Bioenergy, 98, 26–36. https://doi.org/10.1016/j.biombioe.2017.01.012
dc.relation.referencesRobinson, A. M., Hensley, J. E., & Will Medlin, J. (2016). Bifunctional Catalysts for Upgrading of Biomass-Derived Oxygenates: A Review. ACS Catalysis, 6(8), 5026–5043. https://doi.org/10.1021/acscatal.6b00923
dc.relation.referencesRoquero, P. (2011). Carbon-Supported Platinum Molybdenum Electro-Catalysts and Their Electro-Activity Toward Ethanol Oxidation. June.
dc.relation.referencesRuddy, D. A., Schaidle, J. A., Ferrell III, J. R., Wang, J., Moens, L., & Hensley, J. E. (2014). Recent advances in heterogeneous catalysts for bio-oil upgrading via “ex situ catalytic fast pyrolysis”: catalyst development through the study of model compounds. Green Chem., 16(2), 454–490. https://doi.org/10.1039/C3GC41354C
dc.relation.referencesSaha, B., & Abu-Omar, M. M. (2015). Current Technologies, Economics, and Perspectives for 2,5-Dimethylfuran Production from Biomass-Derived Intermediates. ChemSusChem, 8(7), 1133–1142. https://doi.org/10.1002/cssc.201403329
dc.relation.referencesSahu, R., Song, B. J., Im, J. S., Jeon, Y. P., & Lee, C. W. (2015). A review of recent advances in catalytic hydrocracking of heavy residues. Journal of Industrial and Engineering Chemistry, 27, 12–24. https://doi.org/10.1016/j.jiec.2015.01.011
dc.relation.referencesSantillan-Jimenez, E., & Crocker, M. (2012a). Catalytic deoxygenation of fatty acids and their derivatives to hydrocarbon fuels via decarboxylation / decarbonylation. Journal of Chemical Technology and Biotechnology, February, 1–10. https://doi.org/10.1002/jctb.3775
dc.relation.referencesSantillan-Jimenez, E., & Crocker, M. (2012b). Catalytic deoxygenation of fatty acids and their derivatives to hydrocarbon fuels via decarboxylation / decarbonylation. Journal of Chemical Technology and Biotechnology, February, 1–10. https://doi.org/10.1002/jctb.3775
dc.relation.referencesSantillan-jimenez, E., Morgan, T., Lacny, J., Mohapatra, S., & Crocker, M. (2013). Catalytic deoxygenation of triglycerides and fatty acids to hydrocarbons over carbon-supported nickel. Fuel, 103, 1010–1017. https://doi.org/10.1016/j.fuel.2012.08.035
dc.relation.referencesSantis, L. (2017). Reformado catalítico en fase acuosa de glicerina, sobre catalizadores: Pt, Rh y Pt-Rh, soportados en óxidos mixtos Ce-Zr-Co. Universidad Nacional de Colombia.
dc.relation.referencesSari, E., Kim, M., Salley, S. O., & Ng, K. Y. S. (2013). A highly active nanocomposite silica-carbon supported palladium catalyst for decarboxylation of free fatty acids for green diesel production: Correlation of activity and catalyst properties. Applied Catalysis A: General, 467, 261–269. https://doi.org/10.1016/j.apcata.2013.07.053
dc.relation.referencesSatyarthi, J. K., Chiranjeevi, T., Gokak, D. T., & Viswanathan, P. S. (2013). An overview of catalytic conversion of vegetable oils/fats into middle distillates. Catalysis Science & Technology, 3(70), 70–80. https://doi.org/10.1039/c2cy20415k
dc.relation.referencesSavage, P. E., Duan, P., & Savage, P. E. (2011). Hydrothermal Liquefaction of a Microalga with Heterogeneous Catalysts. Industrial & Engineering Chemistry Research, 50(January 2011), 52–61.
dc.relation.referencesSawangkeaw, R., & Ngamprasertsith, S. (2013). A review of lipid-based biomasses as feedstocks for biofuels production. Renewable and Sustainable Energy Reviews, 25, 97–108. https://doi.org/10.1016/j.rser.2013.04.007
dc.relation.referencesScaldaferri, C. A., Márcia, V., & Pasa, D. (2019). Production of jet fuel and green diesel range biohydrocarbons by hydroprocessing of soybean oil over niobium phosphate catalyst. Fuel, 245(December 2018), 458–466. https://doi.org/10.1016/j.fuel.2019.01.179
dc.relation.referencesScholz, D., Aellig, C., & Hermans, I. (2014). Catalytic transfer hydrogenation/hydrogenolysis for reductive upgrading of furfural and 5-(hydroxymethyl)furfural. ChemSusChem, 7(1), 268–275. https://doi.org/10.1002/cssc.201300774
dc.relation.referencesScott Fogler, H. (2021). Elements of chemical reaction engineering (Pearson (ed.); Sixth). https://doi.org/10.1016/0009-2509(87)80130-6
dc.relation.referencesSerrano-Ruiz, J. C., Luque, R., & Clark, J. H. (2013). Chapter 17 - The Role of Heterogeneous Catalysis in the Biorefinery of the Future. In The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals: Vol. #volume# (pp. 557–576). © 2013 Elsevier B.V. All rights reserved. https://doi.org/10.1016/B978-0-444-56330-9.00017-6
dc.relation.referencesShi, N., Liu, Q. Y., Jiang, T., Wang, T. J., Ma, L. L., Zhang, Q., & Zhang, X. H. (2012). Hydrodeoxygenation of vegetable oils to liquid alkane fuels over Ni/HZSM-5 catalysts: Methyl hexadecanoate as the model compound. Catalysis Communications, 20, 80–84. https://doi.org/10.1016/j.catcom.2012.01.007
dc.relation.referencesSimakova, I. L., & Murzin, D. Y. (2016). Transformation of bio-derived acids into fuel-like alkanes via ketonic decarboxylation and hydrodeoxygenation: Design of multifunctional catalyst, kinetic and mechanistic aspects. Journal of Energy Chemistry, 25(2), 208–224. https://doi.org/10.1016/j.jechem.2016.01.004
dc.relation.referencesSingh, R., Prakash, A., Balagurumurthy, B., & Bhaskar, T. (2015). Hydrothermal Liquefaction of Biomass. In Elsevier B.V. (Ed.), Recent Advances in Thermochemical Conversion of Biomass (pp. 269–291). https://doi.org/10.1016/B978-0-444-63289-0.00010-7
dc.relation.referencesSinha, A. K., Anand, M., & Farooqui, S. A. (2016). Chapter 5 – Aviation Biofuels Through Lipid Hydroprocessing. In Biofuels for Aviation. Elsevier Inc. https://doi.org/10.1016/B978-0-12-804568-8.00005-6
dc.relation.referencesSkoda, F., Astier, M. P., & Paj, G. M. (1994). Surface characterization of palladium--copper bimetallic catalysts by FTIR spectroscopy and test reactions. Catalysis Letters, 29, 159–168.
dc.relation.referencesSlinn, M., Kendall, K., Mallon, C., & Andrews, J. (2008). Steam reforming of biodiesel by-product to make renewable hydrogen. Bioresource Technology, 99(13), 5851–5858. https://doi.org/10.1016/j.biortech.2007.10.003
dc.relation.referencesSmirnova, M. Y., Kikhtyanin, O. V., Smirnov, M. Y., Kalinkin, A. V., Titkov, A. I., Ayupov, A. B., & Ermakov, D. Y. (2015). Effect of calcination temperature on the properties of Pt/SAPO-31 catalyst in one-stage transformation of sunflower oil to green diesel. Applied Catalysis A: General, 505, 524–531. https://doi.org/10.1016/j.apcata.2015.06.019
dc.relation.referencesSnåre, M., Kubičková, I., Mäki-Arvela, P., Eränen, K., & Murzin, D. Y. (2006). Heterogeneous Catalytic Deoxygenation of Stearic Acid for Production of Biodiesel. Industrial & Engineering Chemistry Research, 45(16), 5708–5715. https://doi.org/10.1021/ie060334i
dc.relation.referencesSon, P. A., Nishimura, S., & Ebitani, K. (2014). Production of γ-valerolactone from biomass-derived compounds using formic acid as a hydrogen source over supported metal catalysts in water solvent. RSC Advances, 4(21), 10525–10530. https://doi.org/10.1039/c3ra47580h
dc.relation.referencesSotelo-boyás, R., Trejo-zárraga, F., & Hernández-loyo, F. D. J. (2012). Hydroconversion of Triglycerides into Green Liquid Fuels. In InTech (Ed.), Hydrogenation (pp. 187–216).
dc.relation.referencesSpeight, J. G. (2005). Petroleum and Petrochemicals. In McGraw-Hill (Ed.), Handbook of Industrial Chemistry: Organic Chemicals (First, p. 628).
dc.relation.referencesSpeight, J. G. (2005). Petroleum and Petrochemicals. In McGraw-Hill (Ed.), Handbook of Industrial Chemistry: Organic Chemicals (First, p. 628). Srifa, A., Faungnawakij, K., Itthibenchapong, V., & Viriya-empikul, N. (2014). Production of bio-hydrogenated diesel by catalytic hydrotreating of palm oil over NiMoS2/c-Al2O3 catalys. BIORESOURCE TECHNOLOGY, 158, 81–90. https://doi.org/10.1016/j.biortech.2014.01.100
dc.relation.referencesSuarez Palacios, O. Y. (2011). Producción y modelamiento de gliceril-ésteres como plastificantes para PVC. [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/4241/%0A
dc.relation.referencesSuárez Palacios, O. Y. (2011). Producción y Modelamiento de Gliceril-Ésteres como Plastificantes para PVC [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/4241/%0A
dc.relation.referencesSun, H. J., Pan, Y. J., Jiang, H. B., Li, S. H., Zhang, Y. X., Liu, S. C., & Liu, Z. Y. (2013). Effect of transition metals (Cr, Mn, Fe, Co, Ni, Cu and Zn) on the hydrogenation properties of benzene over Ru-based catalyst. Applied Catalysis A: General, 464–465, 464–465. https://doi.org/10.1016/j.apcata.2013.05.021
dc.relation.referencesSuresh, M., Jawahar, C. P., & Richard, A. (2018). A review on biodiesel production , combustion , performance , and emission characteristics of non-edible oils in variable compression ratio diesel engine using biodiesel and its blends. Renewable and Sustainable Energy Reviews, 92(March), 38–49. https://doi.org/10.1016/j.rser.2018.04.048
dc.relation.referencesSutton, J. E., Panagiotopoulou, P., Verykios, X. E., & Vlachos, D. G. (2013). Combined DFT, Microkinetic, and Experimental Study of Ethanol Steam Reforming on Pt. 3.
dc.relation.referencesSzeto, W., & Leung, D. Y. C. (2022). Is hydrotreated vegetable oil a superior substitute for fossil diesel ? A comprehensive review on physicochemical properties , engine performance and emissions. Fuel, 327(July), 125065. https://doi.org/10.1016/j.fuel.2022.125065
dc.relation.referencesTai, L., Caprariis, B. De, Filippis, P. De, & Hamidi, R. (2021). In Situ Hydrodeoxygenation of Guaiacol using Magnetic Catalysts and Heterogeneous Hydrogen Producer. 86(April), 85–90. https://doi.org/10.3303/CET2186015
dc.relation.referencesTan, Z., Xu, X., Liu, Y., Zhang, C., Zhai, Y., Liu, P., Li, Y., & Zhang, R. (2014). Upgrading bio-oil model compounds phenol and furfural with in situ generated hydrogen. Environmental Progress and Sustainable Energy, 33(3), 751–755. https://doi.org/10.1002/ep.11915
dc.relation.referencesTang, X., Zeng, X., Li, Z., Hu, L., Sun, Y., Liu, S., Lei, T., & Lin, L. (2014). Production of γ-valerolactone from lignocellulosic biomass for sustainable fuels and chemicals supply. Renewable and Sustainable Energy Reviews, 40, 608–620. https://doi.org/10.1016/j.rser.2014.07.209
dc.relation.referencesTazli, M., Ahmad, K., Husainni, M., & Ameen, M. (2016). Thermodynamic Equilibrium Analysis of Triolein Hydrodeoxygenation for Green Diesel Production. Procedia Engineering, 148, 1369–1376. https://doi.org/10.1016/j.proeng.2016.06.603
dc.relation.referencesTedsree, K., Chan, C. W. A., Jones, S., Cuan, Q., Li, W.-K., Gong, X.-Q., & Tsang, S. C. E. (2014). 13C NMR Guides Rational Design of Nanocatalysts via Chemisorption Evaluation in Liquid Phase. Sciencie, 332(2011), 224–228. https://doi.org/10.1126/science.1202364
dc.relation.referencesG. D. W., & Tsang, S. C. E. (2011). Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst. Nature Nanotechnology, 6(5), 302–307. https://doi.org/10.1038/nnano.2011.42
dc.relation.referencesThananatthanachon, T., & Rauchfuss, T. B. (2010). Efficient Production of the Liquid Fuel 2,5-Dimethylfuran from Fructose Using Formic Acid as a Reagent. Angewandte Chemie, 122(37), 6766–6768. https://doi.org/10.1002/ange.201002267
dc.relation.referencesThe European Parliament and the Council of the European Union. (2009). Directive 2009/28/EC. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:%0AL:2009:140:0016:0062:en:PDF.
dc.relation.referencesThe European Parliament and the Council of the European Union. (2018). DIRECTIVE (EU) 2018/2001 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 11 December 2018 on the promotion of the use of energy from renewable sources. Official Journal of the European Union, 2001, 82–209. https://eur-lex.europa.eu/%0Alegal-content/EN/TXT/?uri=uriserv:OJ.L_.2018.328.01.0082.01.%0AENG.
dc.relation.referencesThe European Parliament and the Council of the European Union. (2019). Quality of petrol and diesel fuel used for road transport in the European Union (Vol. 15, Issue 2)
dc.relation.referencesThe European Parliament and the Council of the European Union. (2021). European Climate Law. In Official Journal of the European Union (Vol. 2021, Issue June). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32021R1119
dc.relation.referencesThomas, J. M., & Thomas, W. J. (1997). Principles and Practice of Heterogenous Catalysis (VCH (ed.); First).
dc.relation.referencesTian, Q., Qiao, K., Zhou, F., Chen, K., Wang, T., Fu, J., Lu, X., & Ouyang, P. (2016). Direct Production of Aviation Fuel Range Hydrocarbons and Aromatics from Oleic Acid without an Added Hydrogen Donor. Energy and Fuels, 30(9), 7291–7297. https://doi.org/10.1021/acs.energyfuels.6b00978
dc.relation.referencesTian, Q., Zhang, Z., Zhou, F., Chen, K., Fu, J., Lu, X., & Ouyang, P. (2017). Role of Solvent in Catalytic Conversion of Oleic Acid to Aviation Biofuels. Energy Fuels, 31, 6163−6172. https://doi.org/10.1021/acs.energyfuels.7b00586
dc.relation.referencesTimilsina, G. R., & Shrestha, A. (2011). How much hope should we have for biofuels? Energy, 36(4), 2055–2069. https://doi.org/10.1016/j.energy.2010.08.023
dc.relation.referencesToba, M., Abe, Y., Kuramochi, H., Osako, M., Mochizuki, T., & Yoshimura, Y. (2011). Hydrodeoxygenation of waste vegetable oil over sulfide catalysts. Catalysis Today, 164(1), 533–537. https://doi.org/10.1016/j.cattod.2010.11.049
dc.relation.referencesToledano, A., Serrano, L., Labidi, J., Pineda, A., Balu, A. M., & Luque, R. (2013). Heterogeneously Catalysed Mild Hydrogenolytic Depolymerisation of Lignin Under Microwave Irradiation with Hydrogen-Donating Solvents. ChemCatChem, 5(4), 977–985. https://doi.org/10.1002/cctc.201200616
dc.relation.referencesTrimm, D. L. (1980). Design of Industrial Catalysts (E. S. P. Company (ed.); First)
dc.relation.referencesTuteja, J., Choudhary, H., Nishimura, S., & Ebitani, K. (2014). Direct synthesis of 1,6-hexanediol from HMF over a heterogeneous Pd/ZrP catalyst using formic acid as hydrogen source. ChemSusChem, 7(1), 96–100. https://doi.org/10.1002/cssc.201300832
dc.relation.referencesU.S. Congress. (2007). Energy independence and security act of 2007. In Public Law. https://doi.org/papers2://publication/uuid/364DB882-E966-450B-959F-AEAD6E702F42
dc.relation.referencesU.S. Government Accountability Office. (2016). RENEWABLE FUEL STANDARD Program Unlikely to Meet Its Targets for Reducing Greenhouse Gas Emissions.
dc.relation.referencesUNEP. (2017). Resource Efficiency: Potential and Economic Implications. In P. Ekins, N. Hughes, S. Bringezu, C. Arden Clarke, M. Fischer-Kowalski, T. Graedel, M. Hajer, S. Hashimoto, S. Hatfield-Dodds, P. Havlik, E. Hertwich, J. Ingram, K. Kruit, B. Milligan, Y. Moriguchi, N. Nasr, D. Newth, M. Obersteiner, A. Ramaswami, … A. Pedroza (Eds.), A report of the International Resource Panel (UNEP). http://www.resourcepanel.org/sites/default/files/documents/document/media/resource_efficiency_report_march_2017_web_res.pdf
dc.relation.referencesUnited Nations Industrial Development Organization. (1976). Catalyst Manual : a User’s Guide to Calysts for the Petrochemical and Fertilizer Industrie (J. U.-R. Centre (ed.)).
dc.relation.referencesUPME. (2019). Plan Energético Nacional 2020-2050. In Handbook of Pediatric Retinal OCT and the Eye-Brain Connection. PEN 2050 www.upme.gov.co /
dc.relation.referencesUSDA. (2020). Biofuels Annual - Colombia. In CO2022-0012 (Issue August 01). https://www.fas.usda.gov/data/colombia-biofuels-annual-8
dc.relation.referencesUSDA. (2021a). Biofuels Annual China. In United States Department of Agriculture: Foreign Agricultural Service.
dc.relation.referencesUSDA. (2021b). Report Name : Biofuels Annual. In GAIN Global Agricultural Information Network. USDA. (2022a). Biofuels Annual - Brazil (Vols. BR2021-003, Issue April 2020).
dc.relation.referencesUSDA. (2022a). Biofuels Annual - Brazil (Vols. BR2021-003, Issue April 2020).
dc.relation.referencesUSDA. (2022b). Biofuels Annual European Union (Vols. E42022-004).
dc.relation.referencesUSDA. (2022c). Report Name : Biofuels Annual India. In Unites States Department of Agriculture Foreign Agriculture Service (Issue May). https://www.fas.usda.gov/data/malaysia-biofuels-annual-3
dc.relation.referencesValencia, D., García-cruz, I., Hugo, V., Ramírez-verduzco, L. F., Amezcua-allieri, M. A., & Aburto, J. (2018). Unravelling the chemical reactions of fatty acids and triacylglycerides under hydrodeoxygenation conditions based on a comprehensive thermodynamic analysis. Biomass and Bioenergy, 112(August 2017), 37–44. https://doi.org/10.1016/j.biombioe.2018.02.014
dc.relation.referencesVallinayagam, R., Vedharaj, S., Yang, W. M., Lee, P. S., Chua, K. J. E., & Chou, S. K. (2014). Pine oil-biodiesel blends: A double biofuel strategy to completely eliminate the use of diesel in a diesel engine. Applied Energy, 130, 466–473. https://doi.org/10.1016/j.apenergy.2013.11.025
dc.relation.referencesVannice, M. A. (2005). Kinetics of Catalytic Reactions (Springer Science+Business Media (ed.)).
dc.relation.referencesVardon, D. R., Sharma, B. K., Jaramillo, H., Kim, D., Choe, J. K., Ciesielski, P. N., & Strathmann, T. J. (2014). Hydrothermal catalytic processing of saturated and unsaturated fatty acids to hydrocarbons with glycerol for in situ hydrogen production. Green Chemistry, 16(3), 1507. https://doi.org/10.1039/c3gc41798k
dc.relation.referencesVasiliadou, E., & Lemonidou, A. (2014). Catalytic Glycerol Hydrodeoxygenation under Inert Atmosphere: Ethanol as a Hydrogen Donor. Catalysts, 4(4), 397–413. https://doi.org/10.3390/catal4040397
dc.relation.referencesVeriansyah, B., Young, J., Ki, S., Hong, S., Jun, Y., Sung, J., Shu, Y., Oh, S., & Kim, J. (2012). Production of renewable diesel by hydroprocessing of soybean oil : Effect of catalysts. Fuel, 94, 578–585. https://doi.org/10.1016/j.fuel.2011.10.057
dc.relation.referencesViêgas, C. V., Hachemi, I., Freitas, S. P., Mäki-Arvela, P., Aho, A., Hemming, J., Smeds, A., Heinmaa, I., Fontes, F. B., Da Silva Pereira, D. C., Kumar, N., Aranda, D. A. G., & Murzin, D. Y. (2015). A route to produce renewable diesel from algae: Synthesis and characterization of biodiesel via in situ transesterification of Chlorella alga and its catalytic deoxygenation to renewable diesel. Fuel, 155, 144–154. https://doi.org/10.1016/j.fuel.2015.03.064
dc.relation.referencesVillaverde, M. M., Garetto, T. F., & Marchi, A. J. (2015). Liquid-phase transfer hydrogenation of furfural to furfuryl alcohol on Cu-Mg-Al catalysts. Catalysis Communications, 58, 6–10. https://doi.org/10.1016/j.catcom.2014.08.021
dc.relation.referencesVutolkina, A. V., Baigildin, I. G., Glotov, A. P., Pimerzin, A. A., Akopyan, A. V., Maximov, A. L., & Karakhanov, E. A. (2022). Hydrodeoxygenation of guaiacol via in situ H2 generated through a water gas shift reaction over dispersed NiMoS catalysts from oil-soluble precursors: Tuning the selectivity towards cyclohexene. Applied Catalysis B: Environmental, 312(April), 121403. https://doi.org/10.1016/j.apcatb.2022.121403
dc.relation.referencesWai, K., Yusup, S., Chun, A., Loy, M., Shen, B., Skoulou, V., & Taylor, M. J. (2022). Recent advances in the catalytic deoxygenation of plant oils and prototypical fatty acid models compounds : Catalysis , process , and kinetics. Molecular Catalysis, 523(September 2020), 111469. https://doi.org/10.1016/j.mcat.2021.111469
dc.relation.referencesWan, H., Chaudhari, R. V., & Subramaniam, B. (2012). Catalytic hydroprocessing of p-cresol: Metal, solvent and mass-transfer effects. Topics in Catalysis, 55(3–4), 129–139. https://doi.org/10.1007/s11244-012-9782-6
dc.relation.referencesWan, H., Chaudhari, R. V., & Subramaniam, B. (2013). Aqueous phase hydrogenation of acetic acid and its promotional effect on p-cresol hydrodeoxygenation. Energy and Fuels, 27(1), 487–493. https://doi.org/10.1021/ef301400c
dc.relation.referencesWang, B., Hou, H., & Gu, Y. (2000). New mechanism for the catalyzed thermal decomposition of formic acid. Journal of Physical Chemistry A, 104(45), 10526–10528. https://doi.org/10.1021/jp001173d
dc.relation.referencesWang, D., & Astruc, D. (2015). The Golden Age of Transfer Hydrogenation. Chemical Reviews, 115(13), 6621–6686. https://doi.org/10.1021/acs.chemrev.5b00203
dc.relation.referencesWang, F., Xu, H., Yu, S., Zhu, H., Du, Y., Zhang, Z., You, C., Jiang, X., & Jiang, J. (2022). Fe-promoted Ni catalyst with extremely high loading and oxygen vacancy for lipid deoxygenation into green diesel. Renewable Energy, 197(July), 40–49. https://doi.org/10.1016/j.renene.2022.07.079
dc.relation.referencesWang, F., & Zhang, Z. (2017). Catalytic Transfer Hydrogenation of Furfural into Furfuryl Alcohol over Magnetic γ-Fe2O3@HAP Catalyst. ACS Sustainable Chemistry and Engineering, 5(1), 942–947. https://doi.org/10.1021/acssuschemeng.6b02272
dc.relation.referencesWang, H., Chi, Y., Gao, D., Wang, Z., Wang, C., & Wang, L. (2019). Applied Catalysis B : Environmental Enhancing formic acid dehydrogenation for hydrogen production with the metal / organic interface. Applied Catalysis B: Environmental, 255(April), 117776. https://doi.org/10.1016/j.apcatb.2019.117776
dc.relation.referencesWang, H., Male, J., & Wang, Y. (2013). Recent advances in hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds. ACS Catalysis, 3(5), 1047–1070. https://doi.org/10.1021/cs400069z
dc.relation.referencesWang, H., Yan, S., Salley, S. O., & Ng, K. Y. S. (2013). Support effects on hydrotreating of soybean oil over NiMo carbide catalyst. Fuel, 111, 81–87. https://doi.org/10.1016/j.fuel.2013.04.066
dc.relation.referencesWang, J., Li, X., Zheng, J., Cao, J., Hao, X., Wang, Z., Abudula, A., & Guan, G. (2018). Non-precious molybdenum-based catalyst derived from biomass: CO-free hydrogen production from formic acid at low temperature. Energy Conversion and Management, 164(December 2017), 122–131. https://doi.org/10.1016/j.enconman.2018.02.092
dc.relation.referencesWang, J., Xu, L., Nie, R., Lyu, X., & Lu, X. (2020). Bifunctional CuNi / CoO x catalyst for mild-temperature in situ hydrodeoxygenation of fatty acids to alkanes using isopropanol as hydrogen source. Fuel, 265(December 2019), 116913. https://doi.org/10.1016/j.fuel.2019.116913
dc.relation.referencesWang, L., Liu, Q., Jing, C., Mominou, N., Li, S., & Wang, H. (2018). In-situ hydrodeoxygenation of a mixture of oxygenated compounds with hydrogen donor over ZrNi / Ir-ZSM-5 þ Pd / C. Journal of Alloys and Compounds, 753, 664–672. https://doi.org/10.1016/j.jallcom.2018.03.356
dc.relation.referencesWang, L., Zhang, B., Meng, X., Su, D. S., & Xiao, F. S. (2014). Hydrogenation of biofuels with formic acid over a palladium-based ternary catalyst with two types of active sites. ChemSusChem, 7(6), 1537–1541. https://doi.org/10.1002/cssc.201400039
dc.relation.referencesWang, Q., Sun, G. Q., Jiang, L. H., Xin, Q., Sun, S. G., Jiang, Y. X., Chen, S. P., Jusysb, Z., & Behm, R. J. (2007). Adsorption and oxidation of ethanol on colloid-based Pt/C, PtRu/C and Pt3Sn/C catalysts: In situ FTIR spectroscopy and on-line DEMS studiesw. Physical Chemistry Chemical Physics, 9, 2686–2696. https://doi.org/10.1039/b700676b
dc.relation.referencesWang, T., Du, J., Sun, Y., Tang, X., Wei, Z. J., Zeng, X., Liu, S. J., & Lin, L. (2021). Catalytic transfer hydrogenation of biomass-derived furfural to furfuryl alcohol with formic acid as hydrogen donor over CuCs-MCM catalyst. Chinese Chemical Letters, 32(3), 1186–1190. https://doi.org/10.1016/j.cclet.2020.07.044
dc.relation.referencesWang, T., Zhang, J., Xie, W., Tang, Y., Guo, D., & Ni, Y. (2017). Catalytic transfer hydrogenation of biobased HMF to 2,5-bis-(hydroxymethyl)furan over Ru/Co3O4. Catalysts, 7(3), 1–8. https://doi.org/10.3390/catal7030092
dc.relation.referencesWang, W., Thapaliya, N., Campos, A., Stikeleather, L. F., & Roberts, W. L. (2012). Hydrocarbon fuels from vegetable oils via hydrolysis and thermo-catalytic decarboxylation. Fuel, 95, 622–629. https://doi.org/10.1016/j.fuel.2011.12.041
dc.relation.referencesWang, X., Meng, Q., Gao, L., Jin, Z., Ge, J., Liu, C., & Xing, W. (2018). Recent progress in hydrogen production from formic acid decomposition. International Journal of Hydrogen Energy, 43(14), 7055–7071. https://doi.org/10.1016/j.ijhydene.2018.02.146
dc.relation.referencesWang, X., Qi, G., Tan, C., Li, Y., Guo, J., Pang, X., & Zhang, S. (2014). Pd/C nanocatalyst with high turnover frequency for hydrogen generation from the formic acid–formate mixtures. International Journal of Hydrogen Energy, 39(2), 837–843. https://doi.org/10.1016/j.ijhydene.2013.10.154
dc.relation.referencesWang, X., Qiu, Z., Liu, Q., Chen, X., Tao, S., Shi, C., Pang, M., & Liang, C. (2017). Heterogeneous Catalytic Transfer Partial-Hydrogenation with Formic Acid as Hydrogen Source Over the Schiff-Base Modified Gold Nano-Catalyst. Catalysis Letters, 147(2), 517–524. https://doi.org/10.1007/s10562-016-1929-9
dc.relation.referencesWang, Z. L., Yan, J. M., Wang, H. L., Ping, Y., & Jiang, Q. (2012). Pd/C synthesized with citric acid: An efficient catalyst for hydrogen generation from formic acid/sodium formate. Scientific Reports, 2, 1–6. https://doi.org/10.1038/srep00598
dc.relation.referencesWang, Z., Zeng, Y., Lin, W., & Song, W. (2017a). In-situ hydrodeoxygenation of phenol by supported Ni catalyst – explanation for catalyst performance. International Journal of Hydrogen Energy, 42(33), 21040–21047. https://doi.org/10.1016/j.ijhydene.2017.07.053
dc.relation.referencesWang, Z., Zeng, Y., Lin, W., & Song, W. (2017b). In-situ hydrodeoxygenation of phenol by supported Ni catalyst – explanation for catalyst performance. International Journal of Hydrogen Energy, 42(33), 21040–21047. https://doi.org/10.1016/j.ijhydene.2017.07.053
dc.relation.referencesWatanabe, M., Iida, T., & Inomata, H. (2006). Decomposition of a long chain saturated fatty acid with some additives in hot compressed water. Energy Conversion and Management, 47(18–19), 3344–3350. https://doi.org/10.1016/j.enconman.2006.01.009
dc.relation.referencesWiener, H., Sasson, Y., & Blum, J. (1986). Palladium-catalyzed decomposition of aqueous alkali metal formate solutions. Journal of Molecular Catalysis, 35(3), 277–284. https://doi.org/10.1016/0304-5102(86)87075-4
dc.relation.referencesWilches Flórez, Á. M. (2011). Biocombustibles: ¿son realmente amigables con el medio ambiente? Revista Colombiana de Bioética, 6(1), 89–102. http://www.redalyc.org/articulo.oa?id=55140109
dc.relation.referencesWilliams, R., Crandall, R. S., & Bloom, A. (1978). Use of carbon dioxide in energy storage. Applied Physics Letters, 33(5), 381–383. https://doi.org/10.1063/1.90403
dc.relation.referencesWind, J., Auckett, J. E., Withers, R. L., Piltz, R. O., & Ling, C. D. (2015). commensurate modulation that stabilizes the fast- ion conducting delta phase of bismuth oxide. 679–687. https://doi.org/10.1107/S2052520615018351
dc.relation.referencesWMO. (2022). State of the Global Climate 2021 (Issue WMO-No. 1290). https://library.wmo.int/index.php?lvl=notice_display&id=21880#.YHg0ABMzZR0
dc.relation.referencesWu, J., Wang, T., Fu, J., Hou, Z., & Lu, X. (2016). Mechanism for the Controllable Production of Heptadecane by Hydrothermal In-Situ Hydrogenation and Decarboxylation of Oleic Acid with Methanol. Energy and Environment Focus, 5(3), 163-168(6). https://doi.org/10.1166/eef.2016.1208
dc.relation.referencesXia, S., Yuan, Z., Wang, L., Chen, P., & Hou, Z. (2011). Applied Catalysis A : General Hydrogenolysis of glycerol on bimetallic Pd-Cu / solid-base catalysts prepared via layered double hydroxides precursors. “Applied Catalysis A, General,” 403(1–2), 173–182. https://doi.org/10.1016/j.apcata.2011.06.026
dc.relation.referencesXia, S., Zheng, L., Wang, L., Chen, P., & Hou, Z. (2013). Hydrogen-free synthesis of 1,2-propanediol from glycerol over Cu–Mg–Al catalysts. RSC Advances, 3(37), 16569. https://doi.org/10.1039/c3ra42543f
dc.relation.referencesXie, S., Jia, C., Prakash, A., Palafox, M. I., Pfaendtner, J., & Lin, H. (2019). Generic Biphasic Catalytic Approach for Producing Renewable Diesel from Fatty Acids and Vegetable Oils [Research-article]. ACS Catalysis, 9, 3753–3763. https://doi.org/10.1021/acscatal.9b00215
dc.relation.referencesXiong, W., Fu, Y., Zeng, F., & Guo, Q. (2011). An in situ reduction approach for bio-oil hydroprocessing. Fuel Processing Technology, 92(8), 1599–1605. https://doi.org/10.1016/j.fuproc.2011.04.005
dc.relation.referencesXu, L., Nie, R., Lyu, X., Wang, J., & Lu, X. (2020). Selective hydrogenation of furfural to furfuryl alcohol without external hydrogen over N-doped carbon confined Co catalysts. Fuel Processing Technology, 197(May 2019), 106205. https://doi.org/10.1016/j.fuproc.2019.106205
dc.relation.referencesXu, X., Luo, J., Li, L., Zhang, D., Wang, Y., & Li, G. (2018). Unprecedented catalytic performance in amine syntheses: Via Pd/g-C3N4 catalyst-assisted transfer hydrogenation. Green Chemistry, 20(9), 2038–2046. https://doi.org/10.1039/c8gc00144h
dc.relation.referencesXu, Y., Li, Y., Wang, C., Wang, C., Ma, L., & Wang, T. (2017). In-situ hydrogenation of model compounds and raw bio-oil over Ni / CMK-3 catalyst. Fuel Processing Technology, 161, 226–231. https://doi.org/10.1016/j.fuproc.2016.08.018
dc.relation.referencesXu, Y., Long, J., Liu, Q., Li, Y., Wang, C., Zhang, Q., Lv, W., Zhang, X., Qiu, S., Wang, T., & Ma, L. (2015). In situ hydrogenation of model compounds and raw bio-oil over Raney Ni catalyst. Energy Conversion and Management, 89, 188–196. https://doi.org/10.1016/j.enconman.2014.09.017
dc.relation.referencesYanase, S., & Oi, T. (2008). Lithium Isotope Effect Accompanying Electrochemical Insertion of Lithium into Liquid Gallium. May 2014. https://doi.org/10.1016/j.pnucene.2007.11.034
dc.relation.referencesYang, C., Nie, R., Fu, J., Hou, Z., & Lu, X. (2013). Production of aviation fuel via catalytic hydrothermal decarboxylation of fatty acids in microalgae oil. Bioresource Technology, 146, 569–573. https://doi.org/10.1016/j.biortech.2013.07.131
dc.relation.referencesYang, P., Xia, Q., Liu, X., & Wang, Y. (2017). Catalytic transfer hydrogenation/hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over Ni-Co/C catalyst. Fuel, 187, 159–166. https://doi.org/10.1016/j.fuel.2016.09.026
dc.relation.referencesYang, Y., Ochoa-Hernández, C., Pizarro, P., de la Peña O’Shea, V. A., Coronado, J. M., & Serrano, D. P. (2015). Influence of the Ni/P ratio and metal loading on the performance of NixPy/SBA-15 catalysts for the hydrodeoxygenation of methyl oleate. Fuel, 144, 60–70. https://doi.org/10.1016/j.fuel.2014.12.008
dc.relation.referencesYang, Y., Wang, Q., Chen, H., & Zhang, X. (2014). Enhancing selective hydroconversion of C 18 fatty acids into hydrocarbons by hydrogen-donors. FUEL, 133, 241–244. https://doi.org/10.1016/j.fuel.2014.05.044
dc.relation.referencesYang, Z., Huang, Y. B., Guo, Q. X., & Fu, Y. (2013). Raney® Ni catalyzed transfer hydrogenation of levulinate esters to γ-valerolactone at room temperature. Chemical Communications, 49(46), 5328–5330. https://doi.org/10.1039/c3cc40980e
dc.relation.referencesYeh, T. M., Dickinson, J. G., Franck, A., Linic, S., Thompson, L. T., & Savage, P. E. (2013). Hydrothermal catalytic production of fuels and chemicals from aquatic biomass. Journal of Chemical Technology and Biotechnology, 88(1), 13–24. https://doi.org/10.1002/jctb.3933
dc.relation.referencesYenumala, S. R., Maity, S. K., & Shee, D. (2017). Reaction mechanism and kinetic modeling for the hydrodeoxygenation of triglycerides over alumina supported nickel catalyst. Reaction Kinetics, Mechanisms and Catalysis, 120(1), 109–128. https://doi.org/10.1007/s11144-016-1098-2
dc.relation.referencesYigezu, Z. D., & Muthukumar, K. (2014). Catalytic cracking of vegetable oil with metal oxides for biofuel production. Energy Conversion and Management, 84, 326–333. https://doi.org/10.1016/j.enconman.2014.03.084
dc.relation.referencesYou, S. J., Baek, I. G., & Park, E. D. (2013). Hydrogenolysis of cellulose into polyols over Ni/W/SiO2 catalysts. Applied Catalysis A: General, 466, 161–168. https://doi.org/10.1016/j.apcata.2013.06.053
dc.relation.referencesYu, J. L., & Savage, P. E. (1998). Decomposition of formic acid under hydrothermal conditions. Industrial & Engineering Chemistry Research, 37(1), 2–10. https://doi.org/10.1021/ie970182e
dc.relation.referencesYuan, J., Li, S. S., Yu, L., Liu, Y. M., Cao, Y., He, H. Y., & Fan, K. N. (2013). Copper-based catalysts for the efficient conversion of carbohydrate biomass into γ-valerolactone in the absence of externally added hydrogen. Energy and Environmental Science, 6(11), 3308–3313. https://doi.org/10.1039/c3ee40857d
dc.relation.referencesYuan, J., Li, S., Yu, L., Liu, Y., & Cao, Y. (2013). Efficient catalytic hydrogenolysis of glycerol using formic acid as hydrogen source. Cuihua Xuebao/Chinese Journal of Catalysis, 34(11), 2066–2074. https://doi.org/10.1016/S1872-2067(12)60656-1
dc.relation.referencesYuan, M., Long, Y., Yang, J., Hu, X., Xu, D., Zhu, Y., & Dong, Z. (2018). Biomass Sucrose-Derived Cobalt@Nitrogen-Doped Carbon for Catalytic Transfer Hydrogenation of Nitroarenes with Formic Acid. ChemSusChem, 11(23), 4156–4165. https://doi.org/10.1002/cssc.201802163
dc.relation.referencesZarchin, R., Rabaev, M., Vidruk-Nehemya, R., Landau, M. V., & Herskowitz, M. (2015). Hydroprocessing of soybean oil on nickel-phosphide supported catalysts. Fuel, 139, 684–691. https://doi.org/10.1016/j.fuel.2014.09.053
dc.relation.referencesZeng, Y., Wang, Z., Lin, W., Song, W., Christensen, J. M., & Jensen, A. D. (2016). Hydrodeoxygenation of phenol over Pd catalysts by in-situ generated hydrogen from aqueous reforming of formic acid. Catalysis Communications, 82, 46–49. https://doi.org/10.1016/j.catcom.2016.04.018
dc.relation.referencesZhang, C., Leng, Y., Jiang, P., Li, J., & Du, S. (2017). Immobilizing Palladium Nanoparticles on Nitrogen-Doped Carbon for Promotion of Formic Acid Dehydrogenation and Alkene Hydrogenation. ChemistrySelect, 2(20), 5469–5474. https://doi.org/10.1002/slct.201701176
dc.relation.referencesZhang, G., Peng, Z., & Li, C. (2016). A study of thermal behavior of cesium phosphate. Journal of Thermal Analysis and Calorimetry, 124(2), 1063–1070. https://doi.org/10.1007/s10973-015-5192-x
dc.relation.referencesZhang, H., Lin, H., Wang, W., Zheng, Y., & Hu, P. (2014). Hydroprocessing of waste cooking oil over a dispersed nano catalyst: Kinetics study and temperature effect. Applied Catalysis B: Environmental, 150–151, 238–248. https://doi.org/10.1016/j.apcatb.2013.12.006
dc.relation.referencesZhang, J., Huo, X., Li, Y., & Strathmann, T. J. (2019). Catalytic Hydrothermal Decarboxylation and Cracking of Fatty Acids and Lipids over Ru/C. ACS Sustainable Chemistry & Engineering, 7, 14400−14410. https://doi.org/10.1021/acssuschemeng.9b00215
dc.relation.referencesZhang, J., & Zhao, C. (2015). A new approach for bio-jet fuel generation from palm oil and limonene in the absence of hydrogen. Chemical Communications, 51(97), 17249–17252. https://doi.org/10.1039/c5cc06601h
dc.relation.referencesZhang, L., Wu, W., Jiang, Z., & Fang, T. (2018). A review on liquid ‑ phase heterogeneous dehydrogenation of formic acid : recent advances and perspectives. Chemical Papers. https://doi.org/10.1007/s11696-018-0469-8
dc.relation.referencesZhang, S., Yan, Y., Li, T., & Ren, Z. (2005). Upgrading of liquid fuel from the pyrolysis of biomass. Bioresource Technology, 96(5), 545–550. https://doi.org/10.1016/j.biortech.2004.06.015
dc.relation.referencesZhang, Y., Gyngazova, M. S., Lolli, A., Grazia, L., Tabanelli, T., Cavani, F., & Albonetti, S. (2019a). Hydrogen Transfer Reaction as an Alternative Reductive Process for the Valorization of Biomass-Derived Building Blocks. In Studies in Surface Science and Catalysis (1st ed., Vol. 178). Elsevier B.V. https://doi.org/10.1016/B978-0-444-64127-4.00010-0
dc.relation.referencesZhang, Y., Gyngazova, M. S., Lolli, A., Grazia, L., Tabanelli, T., Cavani, F., & Albonetti, S. (2019b). Hydrogen Transfer Reaction as an Alternative Reductive Process for the Valorization of Biomass-Derived Building Blocks. In Studies in Surface Science and Catalysis (1st ed., Vol. 178, pp. 195–214). Elsevier B.V. https://doi.org/10.1016/B978-0-444-64127-4.00010-0
dc.relation.referencesZhang, Z., Chen, H., Wang, C., Chen, K., Lu, X., Ouyang, P., & Fu, J. (2018). Efficient and stable Cu-Ni/ZrO2 catalysts for in situ hydrogenation and deoxygenation of oleic acid into heptadecane using methanol as a hydrogen donor. Fuel, 230(May), 211–217. https://doi.org/10.1016/j.fuel.2018.05.018
dc.relation.referencesZhang, Z., Wang, F., Jiang, J., Zhu, H., Du, Y., Feng, J., Li, H., & Jiang, X. (2023). LDH derived Co-Al nanosheet for lipid hydrotreatment to produce green diesel. Fuel, 333(P1), 126341. https://doi.org/10.1016/j.fuel.2022.126341
dc.relation.referencesZhang, Z., Yang, Q., Chen, H., Chen, K., Lu, X., Ouyang, P., Fu, J., & Chen, J. G. (2018). In situ hydrogenation and decarboxylation of oleic acid into heptadecane over a Cu-Ni alloy catalyst using methanol as a hydrogen carrier. Green Chemistry, 20(1), 197–206. https://doi.org/10.1039/c7gc02774e
dc.relation.referencesZhao, C., He, J., Lemonidou, A. A., Li, X., & Lercher, J. A. (2011). Aqueous-phase hydrodeoxygenation of bio-derived phenols to cycloalkanes. Journal of Catalysis, 280(1), 8–16. https://doi.org/10.1016/j.jcat.2011.02.001
dc.relation.referencesZhao, C., Kou, Y., Lemonidou, A. A., Li, X., & Lercher, J. A. (2009). Highly selective catalytic conversion of phenolic bio-oil to alkanes. Angewandte Chemie - International Edition, 48(22), 3987–3990. https://doi.org/10.1002/anie.200900404
dc.relation.referencesZhao, C., Kou, Y., Lemonidou, A. A., Li, X., & Lercher, J. A. (2010). Hydrodeoxygenation of bio-derived phenols to hydrocarbons using RANEY® Ni and Nafion/SiO2 catalysts. Chemical Communications, 46(3), 412–414. https://doi.org/10.1039/b916822b
dc.relation.referencesZhao, C., & Lercher, J. A. (2013). Catalytic Depolymerization and Deoxygenation of Lignin. 289–320.
dc.relation.referencesZhao, Z., Zhang, L., Tan, Q., Faria, J., & Resasco, D. (2019). Synergistic Bimetallic Ru – Pt Catalysts for the Low-Temperature Aqueous Phase Reforming of Ethanol. 65(1), 151–160. https://doi.org/10.1002/aic.16430
dc.relation.referencesZhou, L., & Lawal, A. (2014). Evaluation of Presulfided NiMo/γ-Al2O3 for Hydrodeoxygenation of Microalgae Oil To Produce Green Diesel. Energy & Fuels, American Chemical Sociesty, xxx, xxx–xxx. https://doi.org/10.1021/ef502258q
dc.relation.referencesZhou, L., & Lawal, A. (2017). Kinetic study of hydrodeoxygenation of palmitic acid as a model compound for microalgae oil over Pt/γ-Al2O3. Applied Catalysis A: General, 532, 40–49. https://doi.org/10.1016/j.apcata.2016.12.014
dc.relation.referencesZhou, M., Tian, L., Niu, L., Li, C., Xiao, G., & Xiao, R. (2014). Upgrading of liquid fuel from fast pyrolysis of biomass over modi fi ed Ni / CNT catalysts. Fuel Processing Technology, 126, 12–18. https://doi.org/10.1016/j.fuproc.2014.04.015
dc.relation.referencesZhou, W., Xin, H., Yang, H., Du, X., Yang, R., Li, D., & Hu, C. (2018). The Deoxygenation Pathways of Palmitic Acid into Hydrocarbons on Silica-Supported Ni12P5 and Ni2P Catalysts. Catalysts, 153(8), 1–20. https://doi.org/10.3390/catal8040153
dc.relation.referencesZhou, X., Huang, Y., Xing, W., Liu, C., Liao, J., & Lu, T. (2008). High-quality hydrogen from the catalyzed decomposition of formic acid by Pd-Au/C and Pd-Ag/C. Chemical Communications (Cambridge, England), 30, 3540–3542. https://doi.org/10.1039/b803661f
dc.relation.referencesZhu, S., Qiu, Y., Zhu, Y., Hao, S., Zheng, H., & Li, Y. (2013). Hydrogenolysis of glycerol to 1,3-propanediol over bifunctional catalysts containing Pt and heteropolyacids. Catalysis Today, 212, 120–126. https://doi.org/10.1016/j.cattod.2012.09.011
dc.relation.referencesZoppi, G., Pipitone, G., Pirone, R., & Bensaid, S. (2022). Aqueous phase reforming process for the valorization of wastewater streams: Application to different industrial scenarios. Catalysis Today, 387, 224–236. https://doi.org/10.1016/j.cattod.2021.06.002
dc.relation.referencesŽula, M., Grilc, M., & Likozar, B. (2022). Hydrocracking, hydrogenation and hydro-deoxygenation of fatty acids, esters and glycerides: Mechanisms, kinetics and transport phenomena. Chemical Engineering Journal, 444(February), 1–25. https://doi.org/10.1016/j.cej.2022.136564
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembEnergía biomásica
dc.subject.lembVital force
dc.subject.lembBiomass energy
dc.subject.proposalDiésel renovable
dc.subject.proposalDonante
dc.subject.proposalDesoxigenación catalítica
dc.subject.proposalGeneración de hidrógeno in situ
dc.subject.proposalAceite de palma
dc.subject.proposalHidrogenación por transferencia catalítica
dc.subject.proposalReformado en fase acuosa
dc.subject.proposalGreen diesel
dc.subject.proposalDonor
dc.subject.proposalCatalytic deoxygenation
dc.subject.proposalOn-site hydrogen generation
dc.subject.proposalPalm oil
dc.subject.proposalCatalytic transfer hydrogenation (CTH)
dc.subject.proposalAqueous phase reforming (APR)
dc.title.translatedNon-ester biodiesel production by catalytic deoxygenation of palm oil with in situ hydrogen generation
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentDataPaper
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleProducción de Biodiésel No Éster Mediante Desoxigenación Catalítica de Aceite de Palma con Generación de Hidrógeno In Situ - Convocatoria Nacional de Proyectos para el Fortalecimiento de la Investigación, Creación e Innovación de la Universidad Nacional de Colombia 2016-20 (Código Hermes 37622)
oaire.awardtitleProducción de Biodiésel No Éster Mediante Desoxigenación Catalítica de Aceite de Palma con Generación de Hidrógeno In Situ - crédito-beca de la Convocatoria Doctorado Nacional 647 de 2014 (asignado mediante la Resolución 23 de 2015 de la Vicerrectoría Académica de la Universidad Nacional de Colombia)
oaire.fundernameMinisterio de Ciencia, Tecnología e Innovación
oaire.fundernameUniversidad Nacional de Colombia
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dc.contributor.orcidMayorga, Manuel A. [0000-0001-6207-8338]
dc.contributor.cvlacMayorga Betancourt, Manuel Alejandro [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000947229]
dc.contributor.scopusMayorga Betancourt, Manuel Alejandro [57209243312]
dc.contributor.researchgateManuel Alejandro Mayorga Betancourt [https://www.researchgate.net/profile/Manuel-Mayorga-Betancourt-2/stats]
dc.contributor.googlescholarManuel Alejandro Mayorga Betancourt [https://scholar.google.com/citations?user=wyQTSPEAAAAJ&hl=es]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito