Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorCarrero, Javier Ignacio
dc.contributor.authorLondoño Arango, Jorge Eduardo
dc.date.accessioned2023-10-02T16:13:26Z
dc.date.available2023-10-02T16:13:26Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84737
dc.descriptiongraficas, tablas
dc.description.abstractThe use of traditional models such asthemodifiedDebye-Hückelmodel, the Pitzer model, MSE (MixedSolvent Electrolyte), or e-NRTL (Non-Random Two Liquid - Electrolyte) for predicting colligative effects in the Water + NaCl system is challenging. While these models have shown good results in terms of predictions, their statistical and computational implementation has required significant effort. On the other hand, certain Machine Learning algorithms have been studied for phase equilibrium prediction in systems with dissolved electrolytes. In this study, the implementation of three Machine Learning algorithms (Neural Networks, Least Squares Support Vector Machines, and Regression Decision Trees) was evaluated for predicting the decrease in melting temperature and saturation pressure of the Water + NaCl system. The results were compared with the prediction provided by an empirical variant of the Debye-Hückel model. Zero mean, normality, and residual independence tests were conducted for all models to statistically evaluate the regression results. It was found that machine learning models have the potential to predict colligative effects in electrolyte solutions, particularly the Regression Decision Tree model, which met all the assumptions studied for both effects and proved to be a reliable prediction tool. Finally, it was demonstrated that computationally, the implementation of machine learning models was straightforward, and their implementation for new studies in property prediction is a promising research area. (Texto tomado de la fuente)
dc.description.abstractEl uso de los modelos tradicionales como el modelo modificado de Debye-Hückel, el modelo de Pitzer, MSE (Mixed-Solvent Electrolyte) o e-NRTL (Non-Random Two Liquid - Electrolyte) para la predicción de los efectos coligativos del sistema Agua + NaC es díficil porque aunque han tenido buenos resultados en términos predicciones, su implementación de forma estadística y computacional ha requerido diferentes esfuerzos. Por otro lado, se ha estudiado la aplicación de algoritmos de Machine Learning para la predicción de equilibrios de fase en sistemas con electrolitos disueltos. En este trabajo se evaluó la implementación de 3 algoritmos de Machine Learning (Redes Neuronales, Máquinas de Soporte de Vectores de Mínimos Cuadrados y Árboles de Decisión de Regresión) para la predicción de la disminución en la temperatura de fusión y la presión de saturación del sistema Agua + NaCl. Los resultados se compararon con la predicción dada por una variante empírica del modelo de Debye-Hückel. Para todos los modelos se realizaron pruebas de media cero, normalidad e independencia de residuales con el objetivo de evaluar estadísticamente los resultados de regresión. Se comprobó que los modelos de aprendizaje de máquina tienen potencial para la predicción de los efectos coligativos de soluciones de electrolitos; especialmente se encontró que el modelo árbol de decisión de regresión cumplio con todos los supuestos estudiados para ambos efectos, y es una herramienta de precisión fiable. Finalmente, se mostró que computacionalmente los modelos de aprendizaje automático fueron sencillos de implementar y que su implementación para nuevos estudios en la predicción de propiedades es un área de estudios prometedora.
dc.format.extentxi, 52 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
dc.titlePrediction of colligatives effects in the system Water + NaCl through Machine Learning
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Química
dc.contributor.researchgroupGrupo de Fisicoquímica Computacional
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería Química
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería y Arquitectura
dc.publisher.placeManizales, Caldas
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizales
dc.relation.referencesGómez G, M. Á.; Ibarra T, H. N., Equilibrio de fases para sistemas electrolíticos. Universidad Nacional de Colombia: Manizales, Col, 2015.
dc.relation.referencesLoehe, J. R.; Donohue, M. D. AIChE Journal 1997, 43, 180–195.
dc.relation.referencesMay, P. M.; Rowland, D. Journal of Chemical & Engineering Data 2017, 62, 2481–2495.
dc.relation.referencesLee, J. H.; Shin, J.; Realff, M. J. Computers & Chemical Engineering 2018, 114, 111–121.
dc.relation.referencesBrunton, S. L.; Noack, B. R.; Koumoutsakos, P. Annual Review of Fluid Mechanics 2020, 52, 477–508.
dc.relation.referencesLund, H.; Østergaard, P. A.; Connolly, D.; Mathiesen, B. V. Energy 2017, 137, 556–565.
dc.relation.referencesO’Dwyer, E.; Pan, I.; Acha, S.; Shah, N. Applied Energy 2019, 237, 581–597.
dc.relation.referencesFlah, M.; Nunez, I.; Ben Chaabene, W.; Nehdi, M. L. Archives of Computational Methods in Engineering 2021, 28, 2621–2643.
dc.relation.referencesEslamimanesh, A.; Gharagheizi, F.; Mohammadi, A.H.; Richon,D.; Illbeigi, M.; Fazlali, A.; Forghani, A. A.; Yazdizadeh, M. Industrial & Engineering Chemistry Research 2011, 50, 12807–12814.
dc.relation.referencesGharagheizi, F.; Eslamimanesh, A.; Farjood, F.; Mohammadi, A. H.; Richon, D. Industrial & Engineering Chemistry Research 2011, 50, 11382–11395.
dc.relation.referencesRafiee-Taghanaki, S.; Arabloo, M.; Chamkalani, A.; Amani, M.; Zargari, M. H.; Adelzadeh, M. R. Fluid Phase Equilibria 2013, 346, 25–32.
dc.relation.referencesShokrollahi, A.; Arabloo, M.; Gharagheizi, F.; Mohammadi, A. H. Fuel 2013, 112, 375–384.
dc.relation.referencesGhiasi, M. M.; Bahadori, A.; Zendehboudi, S. Fuel 2014, 117, 33–42.
dc.relation.referencesKakkar, S.; Kwapinski, W.; Howard, C. A.; Kumar, K. V. Education for Chemical Engineers 2021, 36, 115–127.
dc.relation.referencesNing, C.; You, F. Computers & Chemical Engineering 2019, 125, 434–448.
dc.relation.referencesQin, S. J.; Chiang, L. H. Computers & Chemical Engineering 2019, 126, 465–473.
dc.relation.referencesQin, S. J.; Dong, Y. IFAC-PapersOnLine 2020, 53, 11325–11331.
dc.relation.referencesThon, C.; Finke, B.; Kwade, A.; Schilde, C. Advanced Intelligent Systems 2021, 3, 2000261.
dc.relation.referencesUdugama, I. A.; Gargalo, C. L.; Yamashita, Y.; Taube, M. A.; Palazoglu, A.; Young, B. R.; Gernaey, K. V.; Kulahci, M.; Bayer, C. Industrial & Engineering Chemistry Research 2020, 59, 15283–15297.
dc.relation.referencesVenkatasubramanian, V. AIChE Journal 2019, 65, 466–478.
dc.relation.referencesYarveicy, H.; Moghaddam, A. K.; Ghiasi, M. M. Journal of Natural Gas Science and Engineering 2014, 20, 414–421.
dc.relation.referencesDebye V, P. Phisikalische Zeeitschrift 1923, 24, 185.
dc.relation.referencesMourouga, G.; Chery, D.; Baudrin, E.; Randriamahazaka, H.; Schmidt, T. J.; Schumacher, J. O. iScience 2022, 25, 104901.
dc.relation.referencesSandler, S. I., Chemical, biochemical, and engineering thermodynamics, Fifth edition; Wiley: Hoboken, NJ, 2017.
dc.relation.referencesVasilyev, F.; Virolainen, S.; Sainio, T. Chemical Engineering Science 2018, 175, 267–277.
dc.relation.referencesJaime-Leal, J.; Bonilla-Petriciolet, A.; Bhargava, V.; Fateen, S. Chemical Engineering Research and Design 2015, 93, 464–472.
dc.relation.referencesJohansson, R., Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib, 2nd ed; Apress: 2019.
dc.relation.referencesMachado Cavalcanti, F.; Emilia Kozonoe, C.; André Pacheco, K.; Maria de Brito Alves, R. In Deep Learning Applications, Luigi Mazzeo, P., Spagnolo, P., Eds.; IntechOpen: 2021.
dc.relation.referencesAcharya, P. V.; Bahadur, V. Fluid Phase Equilibria 2021, 530, 112894.
dc.relation.referencesDing, J.; Xu, N.; Nguyen, M. T.; Qiao, Q.; Shi, Y.; He, Y.; Shao, Q. Chinese Journal of Chemical Engineering 2021, 31, 227–239.
dc.relation.referencesKoksal, E. S.; Aydin, E. Computers & Chemical Engineering 2023, 174, 108244.
dc.relation.referencesManavi, S.; Becker, T.; Fattahi, E. International Communications in Heat and Mass Transfer 2023, 142, 106662.
dc.relation.referencesPoort, J. P.; Ramdin, M.; van Kranendonk, J.; Vlugt, T. J. Fluid Phase Equilibria 2019, 490, 39–47.
dc.relation.referencesDel-Mazo-Alvarado, O.; Bonilla-Petriciolet, A. Fluid Phase Equilibria 2022, 561, 113537.
dc.relation.referencesRittig, J. G.; Ben Hicham, K.; Schweidtmann, A. M.; Dahmen, M.; Mitsos, A. Computers & Chemical Engineering 2023, 171, 108153.
dc.relation.referencesMasi, F.; Stefanou, I.; Vannucci, P.; Maffi-Berthier, V. Journal of the Mechanics and Physics of Solids 2021, 147, 104277.
dc.relation.referencesLondon, H. K. Neural Networks, Springer-Verlag 1996.
dc.relation.referencesCardona, A. C. Inteligencia artificial 2012, 194.
dc.relation.referencesKhosravi, R.; Rabiei, S.; Bahiraei, M.; Teymourtash, A. International Communications in Heat and Mass Transfer 2019, 109, 104351.
dc.relation.referencesTafarroj, M. M.; Mahian, O.; Kasaeian, A.; Sakamatapan, K.; Dalkilic, A. S.; Wongwises, S. International Communications in Heat and Mass Transfer 2017, 86, 25–31.
dc.relation.referencesDüğenci, M.; Aydemir, A.; Esen, İ.; Aydın, M. E. Engineering Applications of Artificial Intelligence 2015, 45, 71–79.
dc.relation.referencesKurt, H.; Atik, K.; Özkaymak, M.; Recebli, Z. International Journal of Thermal Sciences 2008, 47, 192–200.
dc.relation.referencesÇolak, A. B.; Açıkgöz, Ö.; Mercan, H.; Dalkılıç, A. S.; Wongwises, S. Case Studies in Thermal Engineering 2022, 39, 102391.
dc.relation.referencesAli, A.; Abdulrahman, A.; Garg, S.; Maqsood, K.; Murshid, G. Greenhouse Gases: Science and Technology 2019, 9, 67–78.
dc.relation.referencesAlrashed, A. A.; Karimipour, A.; Bagherzadeh, S. A.; Safaei, M. R.; Afrand, M. International Journal of Heat and Mass Transfer 2018, 127, 925–935.
dc.relation.referencesCarranza-Abaid, A.; Svendsen, H. F.; Jakobsen, J. P. Fluid Phase Equilibria 2023, 564, 113597.
dc.relation.referencesChamkalani, A.; Mohammadi, A. H.; Eslamimanesh, A.; Gharagheizi, F.; Richon, D. Chemical Engineering Science 2012, 81, 202–208.
dc.relation.referencesChamkalani, A. Petroleum Science and Technology 2015, 33, 31–38.
dc.relation.referencesSuykens, J. A. K.; Vandewalle, J. Kluwer Academic Publishers 1999.
dc.relation.referencesChamkalani, A.; Zendehboudi, S.; Chamkalani, R.; Lohi, A.; Elkamel, A.; Chatzis, I. Fluid Phase Equilibria 2013, 358, 189–202.
dc.relation.referencesAbe, S., Support vector machines for pattern classification; Springer: 2005; Vol. 2.
dc.relation.referencesBurges, C. J. C. Data Mining and Knowledge Discovery 1998.
dc.relation.referencesArabloo, M.; Shokrollahi, A.; Gharagheizi, F.; Mohammadi, A.H. Fuel Processing Technology 2013, 116, 317–324.
dc.relation.referencesPelckmans, K.; Suykens, J. A. K.; Gestel, T. V.; Brabanter, J. D.; Lukas, L.; Hamers, B.; Moor, B. D.; Vandewalle, J. Kasteelpark Arenberg 10 2002.
dc.relation.referencesEslamimanesh, A.; Gharagheizi, F.; Illbeigi, M.; Mohammadi, A. H.; Fazlali, A.; Richon, D. Fluid Phase Equilibria 2012, 316, 34–45.
dc.relation.referencesFord, D. M.; Dendukuri, A.; Kalyoncu, G.; Luu, K.; Patitz, M. J. Computers & Chemical Engineering 2020, 141, 106989.
dc.relation.referencesSerfidan, A. C.; Uzman, F.; Türkay, M. Computers & Chemical Engineering 2020, 134, 106711.
dc.relation.referencesNarayana Moorthy, N. S. H.; Martins, S. A.; Sousa, S. F.; Ramos, M. J.; Fernandes, P. A. RSC Advances. 2014, 4, 61624–61630.
dc.relation.referencesDi Caprio, U.; Wu, M.; Vermeire, F.; Van Gerven, T.; Hellinckx, P.; Waldherr, S.; Kayahan, E.; Leblebici, M. E. Journal of CO2 Utilization 2023, 70, 102452.
dc.relation.referencesSomvanshi, M.; Chavan, P.; Tambade, S.; Shinde, S. International Conference on Computing Communication Control and automation (ICCUBEA) 2016, 1–7.
dc.relation.referencesLi, L.; Zhang, X. International Conference On Computer Design and Applications 2010, 1, V1–155.
dc.relation.referencesGupta, A.; Bansal, A.; Roy, K., et al. 5th International Conference on Intelligent Computing and Control Systems (ICICCS) 2021, 489–495.
dc.relation.referencesSingh Kushwah, J.; Kumar, A.; Patel, S.; Soni, R.; Gawande, A.; Gupta, S. Materials Today: Proceedings 2022, 56, First International Conference on Design and Materials, 3571–3576.
dc.relation.referencesChauhan, V. K.; Shukla, S. K.; Tirkey, J. V.; Singh Rathore, P. K. Journal of Cleaner Production 2021, 284, 124719.
dc.relation.referencesLiu, X.; Zhang, J.; Pei, Z. Progress in Materials Science 2023, 131, 101018.
dc.relation.referencesJohnson, N.; Vulimiri, P.; To, A.; Zhang, X.; Brice, C.; Kappes, B.; Stebner, A. Additive Manufacturing 2020, 36, 101641.
dc.relation.referencesKarkouch, A.; Mousannif, H.; Al Moatassime, H.; Noel, T. Journal of Network and Computer Applications 2016, 73, 57–81.
dc.relation.referencesAl Samara, M.; Bennis, I.; Abouaissa, A.; Lorenz, P. Journal of Network and Computer Applications 2023, 211, 103563.
dc.relation.referencesHao, X.; Zhang, Z.; Xu, Q.; Huang, G.; Wang, K. Chemometrics and Intelligent Laboratory Systems 2022, 220, 104461.
dc.relation.referencesBanus, J.; Lorenzi, M.; Camara, O.; Sermesant, M. Medical Image Analysis 2021, 72, 102089.
dc.relation.referencesGould, B. A. The Astronomical Journal 1855, 4, 81.
dc.relation.referencesRoss, S. M. et al. Journal of engineering technology 2003, 20, 38–41.
dc.relation.referencesMahalanobis, P. C. Proceedings of the National Institute of Sciences of India 1936, 2, 49–55.
dc.relation.referencesBeaulieu St-Laurent, P.; Gosselin, L.; Duchesne, C. International Journal of Refrigeration 2018, 90, 132–144.
dc.relation.referencesRousseeuw, P. J.; Driessen, K. V. Technometrics 1999, 41, 212–223.
dc.relation.referencesHardin, J.; Rocke, D. M. Computational Statistics & Data Analysis 2004, 44, 625–638.
dc.relation.referencesFernández, Á.; Bella, J.; Dorronsoro, J. R. Neurocomputing 2022, 486, 77–92.
dc.relation.referencesHundi, P.; Shahsavari, R. Applied Energy 2020, 265, 114775.
dc.relation.referencesHoyle, B.; Rau, M. M.; Paech, K.; Bonnett, C.; Seitz, S.; Weller, J. Monthly Notices of the Royal Astronomical Society 2015, 452, 4183–4194.
dc.relation.referencesTsutsui, K.; Moriguchi, K. Calphad 2021, 74, 102303.
dc.relation.referencesDrapper Norman R. Smith, H., Applied Regression Analysis, Third edition; Wiley: New York, NY, 1998.
dc.relation.referencesCarrero-Mantilla, J. I.; Ramírez-Ramírez, D. d. J.; Súarez-Cifuentes, J. F. Fluid Phase Equilibria 2016, 412, 158–167.
dc.relation.referencesDurbin, J.; Watson, G. S. In Breakthroughs in Statistics: Methodology and Distribution, Kotz, S., Johnson, N. L., Eds.; Springer New York: New York, NY, 1992, pp 260–266.
dc.relation.referencesWisniak, J.; Polishuk, A. Fluid Phase Equilibria 1999, 164, 61–82.
dc.relation.referencesKim, H. Applied Economics 2022, 54, 3197–3205.
dc.relation.referencesSingh, S.; Kulshreshtha, N. M.; Goyal, S.; Brighu, U.; Bezbaruah, A. N.; Gupta, A. B. Journal of Water Process Engineering 2022, 50, 103264.
dc.relation.referencesSwed, F. S.; Eisenhart, C. The Annals of Mathematical Statistics 1943, 14, 66–87.
dc.relation.referencesDraper Norman R.;Smith, H., Applied Regression Analysis, 3rd edition; Wiley: 2014.
dc.relation.referencesMara, U. T. Journal of Statistical Modeling and Analytics 2011.
dc.relation.referencesUba, G.; Zandam, N. D.; Mansur, A.; Shukor, M. Y. Bioremediation Science and Technology Research 2021, 9, 13–19.
dc.relation.referencesD’Agostino Ralph B. Sthepens, M. A., Goodness-of-fit techniques; Marcel Dekker, INC: New York, NY, 1986.
dc.relation.referencesPrausnitz, J. M.; Lichtenthaler, R. N.; Azevedo, E. G. d., Molecular thermodynamics of fluid-phase equilibria, 2nd ed; Prentice-Hall: Englewood Cliffs, N.J, 1986.
dc.relation.referencesRodebush, W. H. Journal of the American Chemical Society 1918, 40, 1204–1213.
dc.relation.referencesGibbard, H. F.; Gossmann, A. F. Journal of Solution Chemistry 1974, 3, 385–393.
dc.relation.referencesHall, D. L.; Sterner, S. M.; Bodnar, R. J. Economic Geology 1988, 83, 197–202.
dc.relation.referencesHaghighi, H.; Chapoy, A.; Tohidi, B. Industrial & Engineering Chemistry Research 2008, 47, 3983–3989.
dc.relation.referencesGel, Y. R.; Miao, W.; Gastwirth, J. L. Computational Statistics & Data Analysis 2007, 51, 2734–2746.
dc.relation.referencesLi, G.-L.; Sato, O. Acta Crystallographica Section E Crystallographic Communications 2017, 73, 993–995.
dc.relation.referencesZhang, N.; Yang, Z.; Chen, Z.; Li, Y.; Liao, Y.; Li, Y.; Gong, M.; Chen, Y. Catalysts 2018, 8, 246.
dc.relation.referencesHsu, C.-W.; Chang, C.-C.; Lin, C.-J. Department of Computer Science National Taiwan University.
dc.relation.referencesJabbar, M. A.; Deekshatulu, B.; Chandra, P. Procedia Technology 2013, 10, 85–94.
dc.relation.referencesHastie, T.; Tibshirani, R.; Friedman, J., The Elements of Statistical Learning; Springer Series in Statistics; Springer New York: New York, 2009.
dc.relation.referencesAlMutawa, J. Journal of Process Control 2009, 19, 879–887.
dc.relation.referencesDescamps, C.; Coquelet, C.; Bouallou, C.; Richon, D. Thermochimica Acta 2005, 430, 1–7.
dc.relation.referencesErdős, M.; Frangou, M.; Vlugt, T. J.; Moultos, O. A. Fluid Phase Equilibria 2021, 528, 112842.
dc.relation.referencesKim, Y. S. Expert Systems with Applications 2008, 34, 1227–1234.
dc.relation.referencesPoling, B. E.; Prausnitz,J. M.; O’Connell,J. P., The properties of gases and liquids, 5th ed; McGrawHill: New York, 2001.
dc.relation.referencesGrundl, G.; Tsurko, E.; Neueder, R.; Kunz, W. The Journal of Chemical Thermodynamics 2019, 139, 105878.
dc.relation.referencesGibbard, H. F.; Scatchard, G.; Rousseau, R. A.; Creek, J. L. Journal of Chemical & Engineering Data 1974, 19, 281–288.
dc.relation.referencesEngels, H., Phase Equilibria and Phase Diagrams of Electrolytes; Schön Wetzel GmbH: Frankfurt/-Main, FR, 1990.
dc.relation.referencesHang, P.; Zhou, L.; Liu, G. Journal of Cleaner Production 2021, 296, 126615.
dc.relation.referencesDohnal, V.; Fenclová, D. Fluid Phase Equilibria 1985, 19, 1–12.
dc.relation.referencesDieudonné, N. T.; Armel, T. K. F.; Hermann, D. T.; Vidal, A. K. C.; René, T. Technological Forecasting and Social Change 2023, 187, 122212.
dc.relation.referencesSriananthakumar, S. Economic Modelling 2013, 33, 126–136.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalPrediction
dc.subject.proposalColligative effects
dc.subject.proposalCryoscopic effect
dc.subject.proposalBoiling point elevation
dc.subject.proposalWater + NaCl
dc.subject.proposalEmpirical Model
dc.subject.proposalDebue-Hückel model
dc.subject.proposalMachine Learning
dc.subject.proposalNeural networks
dc.subject.proposalLeast-Squares Support Vector Machine
dc.subject.proposalRegression Decision Trees
dc.subject.proposalElectrolyte solution
dc.subject.proposalMelting temperature
dc.subject.proposalSaturation pressure
dc.subject.proposalPredicción
dc.subject.proposalEfectos coligativos
dc.subject.proposalEfecto crioscópico
dc.subject.proposalEfecto ebulloscópico
dc.subject.proposalAgua + NaCl
dc.subject.proposalModelos empíricos
dc.subject.proposalModelo de Debye-Hückel
dc.subject.proposalRedes neuronales
dc.subject.proposalMáquinas de soporte de vectores de mínimos cuadrados
dc.subject.proposalÁrboles de decisión de regresión
dc.subject.proposalSolución electrolítica
dc.subject.proposalTemperatura de fusión
dc.subject.proposalPresión de saturación
dc.title.translatedPredicción de los efectos coligativos en el sistema Agua + NaCl mediante Machine Learning
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito