Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorCardona Alzate, Carlos Ariel
dc.contributor.authorOrtiz-Sanchez, Mariana
dc.date.accessioned2023-10-06T19:30:37Z
dc.date.available2023-10-06T19:30:37Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84780
dc.descriptiongraficas, tablas
dc.description.abstractFood residues have generated several issues at an economic, environmental, and social level. the Food and Agriculture Organization (FAO) has established the concept of Food Loss and Food Waste based on the links of the value chain. The first is generated in the agricultural production, transportation, and processing stages, while the second is generated in the retail and consumption stage. Food Losses have been investigated from different perspectives to determine potential applications through the implementation of biotechnological processes. The main advantage of this raw material is related to the uniform composition. On the other hand, food waste recovery has been studied to generate value-added products and energy vectors. However, problems related to the standardization have been identified as the composition varies depending on the generation site. Therefore, there are a series of methodological and research gaps that must be studied before proposing transformation routes for both food losses and food waste. Then, the recovery of this waste is a potential alternative to help mitigate the impact caused by the high generation in recent years. In this way, the objetictive of this doctoral thesis was to evaluate the potential of Food Losses and Food Waste for the generation of added-value products through the biorefinery concept. The raw materials analyzed were orange peels, sugar cane bagasse, organic kitchen food waste and organic retail food waste. First, a strategy was proposed to define biomass valorization routes considering restrictions such as the industrial context and the technological readiness level of the bioprocess, among others. For the selection of valorization routes, a portfolio of 33 bioprocesses based on the main biomass fractions (i.e., extractives, fat, cellulose, hemicellulose, lignin, pectin, starch) was proposed, where technical, economic, and environmental indicators were evaluated. The bioprocess strategy and portfolio were carried out considering the experience in biomass recovery of the Chemical, Catalytic, and Biotechnological Processes Research Group (PQCB). Due to the complexity of food waste, other aspects were included to propose different biorefinery schemes. Some factors considered were the link and the actor of the value chain that generates the waste, the raw materials integration, the temporality of waste generation, and the heterogeneity of food waste. In this sense, two composition models were proposed for organic kitchen and retail food waste, considering government statistics on food consumption in Colombia. The four raw materials were characterized by chemical composition, proximal analysis, and total and volatile solids content. The biorefinery design strategy was applied to the four raw materials to define the biorefinery configurations with the highest feasibility. The biorefineries were experimentally evaluated up to the fermentable sugar production stage. According to the results obtained in the design strategy, the levulinic acid, polylactic acid, ethanol, butanol, and lactic acid production for using fermentable sugars were evaluated. The Aspen Plus v.9.0 software simulated the process for obtaining these products. The material and energy balances were used to estimate technical, economic, environmental, and social indicators that allowed for estimating the sustainability index of the proposed biorefinery configurations for each raw material. In conclusion, the contributions of this doctoral thesis were: (i) Establishing a biorefinery design strategy for food losses and waste recovery. (ii) A composition model for organic kitchen and retail food waste. (iii) Comprehensive analysis of the sustainability of different configurations of biorefineries. (Texto tomado de la fuente)
dc.description.abstractLos residuos de alimentos han generado diversas problemáticas a nivel económico, ambiental y social. La Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO) ha establecido el concepto de pérdida y desperdicios de alimentos según el eslabón de la cadena de valor que lo genera. El primero se genera en las etapas de producción agrícola, transporte y producción, mientras que el segundo se genera en la etapa de venta y consumo. Las pérdidas de alimentos han sido investigadas desde diferentes perspectivas con el fin de determinar aplicaciones potenciales a través de la implementación de procesos biotecnológicos. La principal ventaja de este tipo de materia prima está relacionada con su composición homogénea. Por otro lado, la valorización de los desperdicios de alimentos ha sido estudiado para generar vectores energéticos (principalmente biogás). No obstante, problemas relacionados con la estandarización de la materia prima han sido identificados pues está varía dependiendo del contexto socio-económico y cultural. Por tanto, existen una serie de vacíos metodológicos e investigativos que deben ser estudiados antes de proponer rutas de transformación tanto para las pérdidas de alimentos como los residuos de alimentos. Además, el estudio de aplicaciones potenciales es clave para determinar el portafolio de productos que pueden ser generados a partir de las pérdidas y residuos de alimentos. De esta forma, el objetivo de esta tesis doctoral fue evaluar el potencial de la perdida y desperdicios de alimentos considerando su composición para la generación de bioproductos a través del concepto de biorrefinería. Las materias primas analizadas fueron cáscaras de naranja, bagazo de caña panelera, residuos orgánicos de cocina y residuos de centrales de abastecimiento orgánicos. En primer lugar, se propuso una estrategia para definir las rutas de valorización de biomasa considerando restricciones como la industrialización del contexto, el índice de madurez tecnológica del bioproceso, entre otras. Para la selección de las rutas de valorización se propuso un portafolio de 33 bioprocesos basados en las principales fracciones de la biomasa (i.e., extractivos, grasa, celulosa, hemicelulosa, lignina, pectina, almidón) donde se evaluaron indicadores técnicos, económicos y ambientales. La estrategia y el portafolio de bioprocesos se realizó considerando la experiencia en valorización de biomasa del Grupo de Investigación de Procesos Químicos, Catalíticos y Biotecnológicos (PQCB). Debido a la complejidad de los residuos de alimentos, se incluyeron otros aspectos para proponer diferentes esquemas de biorrefinerías. Algunos factores considerados fueron el eslabón y el actor de la cadena de valor que genera el residuo, la integración de materias primas, las etapas de generación del residuo y la heterogeneidad de los desperdicios de alimentos. En este sentido, se propusieron dos modelos de composición para los residuos orgánicos de cocina y residuos orgánicos de centros de abastecimiento considerando las estadísticas gubernamentales de consumo de alimentos en Colombia. Las cuatro materias primas fueron caracterizadas en términos de composición química, análisis proximal y contenido de solidos totales y volátiles. La estrategia de diseño de biorrefinerías fue aplicada para las cuatro materias primas con el fin de definir las configuraciones de biorrefinerías con mayor viabilidad de ser analizadas. Las biorrefinerías fueron evaluadas experimentalmente hasta la etapa de producción de azucares fermentables. Según los resultados obtenidos en la estrategia de diseño se evaluó la obtención de ácido levulínico, ácido poli-láctico, etanol, butanol y ácido láctico para el uso de los azucares fermentables. Los procesos para la obtención de estos productos fueron simulados en el software Aspen Plus v.9.0. Los balances de materia y energía fueron empleados para la estimación de indicadores técnicos, económicos, ambientales y sociales que permitieron estimar el índice de sostenibilidad de las configuraciones de biorrefinerías propuestas para cada uno de las materias primas. En conclusión, los aportes de esta tesis doctoral fueron: (i) El establecimiento de una estrategia de diseño de biorrefinerías para la valorización de pérdidas y desperdicios de alimentos. (ii) Un modelo de composición para los residuos orgánicos de cocina y los residuos orgánicos de centros de abastecimiento. (iii) El análisis integral de la sostenibilidad de diferentes configuraciones de biorrefinerías.
dc.format.extent460 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc660 - Ingeniería química
dc.titleFood loss and waste valorization through sustainable biorefineries
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Ingeniería Química
dc.contributor.researchgroupProcesos Químicos Catalíticos y Biotecnológicos
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ingeniería
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería y Arquitectura
dc.publisher.placeManizales, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizales
dc.relation.referencesZ. Allam, S. E. Bibri, and S. A. Sharpe, “The Rising Impacts of the COVID-19 Pandemic and the Russia–Ukraine War: Energy Transition, Climate Justice, Global Inequality, and Supply Chain Disruption,” Resources, vol. 11, pp. 1–17, 2022.
dc.relation.referencesFAO, “food security and nutrition in the world the state of repurposing food and agricultural policies to make healthy diets more affordable,” 2022, doi: 10.4060/cc0639en.
dc.relation.referencesC. M. Pollard and S. Booth, “Food insecurity and hunger in rich countries—it is time for action against inequality,” International Journal of Environmental Research and Public Health, vol. 16, no. 10. 2019. doi: 10.3390/ijerph16101804.
dc.relation.referencesUN, “The Sustainable Development Goals Report”, 2015.
dc.relation.referencesR. Kumar et al., “Impacts of plastic pollution on ecosystem services, sustainable development goals, and need to focus on circular economy and policy interventions,” Sustainability (Switzerland), vol. 13, no. 17. 2021. doi: 10.3390/su13179963.
dc.relation.referencesM. J. B. Kabeyi and O. A. Olanrewaju, “Sustainable Energy Transition for Renewable and Low Carbon Grid Electricity Generation and Supply,” Frontiers in Energy Research, vol. 9. 2022. doi: 10.3389/fenrg.2021.743114.
dc.relation.references“The State of Food Security and Nutrition in the World 2022,” The State of Food Security and Nutrition in the World 2022, Jul. 2022, doi: 10.4060/CC0639EN.
dc.relation.references“Food loss and waste and the right to adequate food: Making the connection Right to Food Discussion Paper”, Accessed: Feb. 14, 2023. [Online]. Available: www.fao.org/publications
dc.relation.referencesO. Calicioglu, A. Flammini, S. Bracco, L. Bellù, and R. Sims, “The future challenges of food and agriculture: An integrated analysis of trends and solutions,” Sustainability (Switzerland), vol. 11, no. 1, 2019, doi: 10.3390/su11010222.
dc.relation.referencesH. Hermanussen, J.-P. Loy, and B. Egamberdiev, “Determinants of Food Waste from Household Food Consumption: A Case Study from Field Survey in Germany,” Environmental Research and Public Health, vol. 19, no. 14253, 2022.
dc.relation.referencesT. A. Trabold and V. Nair, “Conventional food waste management methods,” in Sustainable Food Waste-to-Energy Systems, 2018. doi: 10.1016/B978-0-12-811157-4.00003-6.
dc.relation.referencesR. Ishangulyyev, S. Kim, and S. H. Lee, “Understanding food loss and waste-why are we losing and wasting food?,” Foods, vol. 8, no. 8, 2019, doi: 10.3390/foods8080297.
dc.relation.referencesK. L. P. Nguyen, Y. H. Chuang, H. W. Chen, and C. C. Chang, “Impacts of socioeconomic changes on municipal solid waste characteristics in Taiwan,” Resour Conserv Recycl, vol. 161, 2020, doi: 10.1016/j.resconrec.2020.104931.
dc.relation.referencesA. Sarker et al., “Sustainable Food Waste Recycling for the Circular Economy in Developing Countries, with Special Reference to Bangladesh,” Sustainability, vol. 14, p. 12035, 22AD.
dc.relation.referencesFAO, “Food Loss and Food Waste,” 2021. http://www.fao.org/food-loss-and-food-waste/flw-data) (accessed Mar. 02, 2021).
dc.relation.referencesS. Isah and G. Ozbay, “Valorization of Food Loss and Wastes: Feedstocks for Biofuels and Valuable Chemicals,” Frontiers in Sustainable Food Systems, vol. 4. 2020. doi: 10.3389/fsufs.2020.00082.
dc.relation.referencesAdvances in Food and By-Products Processing Towards a Sustainable Bioeconomy. 2020. doi: 10.3390/books978-3-03921-753-3.
dc.relation.referencesG. L. Russo, A. L. Langellotti, M. Oliviero, R. Sacchi, and P. Masi, “Sustainable production of food grade omega-3 oil using aquatic protists: Reliability and future horizons,” New Biotechnology, vol. 62. 2021. doi: 10.1016/j.nbt.2021.01.006.
dc.relation.referencesF. H. Pour and Y. T. Makkawi, “A review of post-consumption food waste management and its potentials for biofuel production,” Energy Reports, vol. 7. 2021. doi: 10.1016/j.egyr.2021.10.119.
dc.relation.referencesA. T. Hoang et al., “Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability,” Fuel Processing Technology, vol. 223, p. 106997, Dec. 2021, doi: 10.1016/J.FUPROC.2021.106997.
dc.relation.referencesQ. Wang, H. Li, K. Feng, and J. Liu, “Oriented fermentation of food waste towards high-value products: A review,” Energies, vol. 13, no. 21. 2020. doi: 10.3390/en13215638.
dc.relation.referencesC. Sabater, L. Ruiz, S. Delgado, P. Ruas-Madiedo, and A. Margolles, “Valorization of Vegetable Food Waste and By-Products Through Fermentation Processes,” Frontiers in Microbiology, vol. 11. 2020. doi: 10.3389/fmicb.2020.581997.
dc.relation.referencesG. S. Murthy, Systems analysis frameworks for biorefineries, 2nd ed. Elsevier Inc., 2019. doi: 10.1016/B978-0-12-816856-1.00003-8.
dc.relation.referencesL. Mencarelli, Q. Chen, A. Pagot, and I. E. Grossmann, “A review on superstructure optimization approaches in process system engineering,” Comput Chem Eng, vol. 136, p. 106808, May 2020, doi: 10.1016/J.COMPCHEMENG.2020.106808.
dc.relation.referencesB. Bao, D. K. S. Ng, D. H. S. Tay, A. Jim??nez-Guti??rrez, and M. M. El-Halwagi, “A shortcut method for the preliminary synthesis of process-technology pathways: An optimization approach and application for the conceptual design of integrated biorefineries,” Comput Chem Eng, vol. 35, no. 8, pp. 1374–1383, 2011, doi: 10.1016/j.compchemeng.2011.04.013.
dc.relation.referencesM. Ortiz-Sanchez, J. C. Solarte-Toro, and C. A. Cardona Alzate, “A comprehensive approach for biorefineries design based on experimental data, conceptual and optimization methodologies: The orange peel waste case,” Bioresour Technol, vol. 325, no. October 2020, p. 124682, 2021, doi: 10.1016/j.biortech.2021.124682.
dc.relation.referencesM. N. Rao, R. Sultana, and S. H. Kota, “Municipal Solid Waste,” in Solid and Hazardous Waste Management, Elsevier Inc., 2017, pp. 1–120. doi: 10.1016/B978-0-12-809734-2.00002-X.
dc.relation.references“Trends in Solid Waste Management.” https://datatopics.worldbank.org/what-a-waste/trends_in_solid_waste_management.html (accessed Feb. 17, 2021).
dc.relation.references“National Overview: Facts and Figures on Materials, Wastes and Recycling | Facts and Figures about Materials, Waste and Recycling | US EPA.” https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/national-overview-facts-and-figures-materials (accessed Feb. 17, 2021).
dc.relation.referencesM. Tantrige, O. V. Peiris, G. Lalithri, and N. Dayarathne, “Application of Life Cycle Framework for Municipal Solid Waste Management: a Circular Economy Perspective from Developing Countries,” Circular Economy and Sustainability 2022, pp. 1–20, Aug. 2022, doi: 10.1007/S43615-022-00200-X.
dc.relation.references“Municipal Solid Waste | Wastes | US EPA.” https://archive.epa.gov/epawaste/nonhaz/municipal/web/html/ (accessed Feb. 18, 2021).
dc.relation.referencesD. Wilson, L. Rodic, A. Scheinberg, C. Velis, and G. Alabaster, “Comparative analysis of solid waste management in 20 cities,” Waste Management and Research, pp. 237–254, 2012.
dc.relation.references“Greenhouse Gases Equivalencies Calculator - Calculations and References | Energy and the Environment | US EPA.” https://www.epa.gov/energy/greenhouse-gases-equivalencies-calculator-calculations-and-references (accessed Feb. 18, 2021).
dc.relation.referencesN. Pap, E. Pongrácz, L. Myllykoski, and R. Keiski, “Waste Minimization and Utilization in the Food Industry: Valorization of Food Industry Wastes and Byproducts,” in Introduction to Advanced Food Process Engineering, CRC Press, 2014, pp. 609–644. doi: 10.1201/b16696-23.
dc.relation.referencesT. Zotta, L. Solieri, L. Iacumin, C. Picozzi, and M. Gullo, “Valorization of cheese whey using microbial fermentations,” Applied Microbiology and Biotechnology, vol. 104, no. 7. Springer, pp. 2749–2764, Apr. 01, 2020. doi: 10.1007/s00253-020-10408-2.
dc.relation.referencesR. Campos-Vega, G. Loarca-Piña, H. A. Vergara-Castañeda, and B. Dave Oomah, “Spent coffee grounds: A review on current research and future prospects,” Trends in Food Science and Technology, vol. 45, no. 1. Elsevier Ltd, pp. 24–36, Sep. 01, 2015. doi: 10.1016/j.tifs.2015.04.012.
dc.relation.referencesM. Ortiz-Sanchez, J. C. Solarte-Toro, C. E. Orrego-Alzate, C. D. Acosta-Medina, and C. A. Cardona-Alzate, “Integral use of orange peel waste through the biorefinery concept: an experimental, technical, energy, and economic assessment,” Biomass Convers Biorefin, pp. 1–15, 2020, doi: 10.1007/s13399-020-00627-y.
dc.relation.referencesM. Duque-Acevedo, L. J. Belmonte-Ureña, F. J. Cortés-García, and F. Camacho-Ferre, “Agricultural waste: Review of the evolution, approaches and perspectives on alternative uses,” Global Ecology and Conservation, vol. 22. Elsevier B.V., p. e00902, Jun. 01, 2020. doi: 10.1016/j.gecco.2020.e00902.
dc.relation.referencesFAO, Food loss and waste and the right to adequate food: Making the connection. Rome, Italy, 2018.
dc.relation.referencesFabre Pierre, Dabat Marie-Hélene, and Orlandoni Olimpia, Methodological brief for agri-based value chain analysis. Frame and Tools, Key Features, vol. Version. Agrinatura EEIG, 2021. [Online]. Available: https://agrinatura-eu.eu
dc.relation.referencesFAO, “Developing Sustainable Food Value Chains: Guiding Principles,” Roma, pp. 1–89, 2014, Accessed: Mar. 17, 2023. [Online]. Available: https://www.fao.org/sustainable-food-value-chains/library/details/en/c/265156/
dc.relation.referencesFAO, “Food Loss and Food Waste. Food and Agriculture Organization of the United Nations.” http://www.fao.org/food-loss-and-food-waste/ flw-data (accessed Feb. 18, 2021).
dc.relation.referencesK. Kumar, A. N. Yadav, V. Kumar, P. Vyas, and H. S. Dhaliwal, “Food waste: a potential bioresource for extraction of nutraceuticals and bioactive compounds,” Bioresour Bioprocess, vol. 4, no. 1, 2017, doi: 10.1186/s40643-017-0148-6.
dc.relation.referencesM. M. de Oliveira, A. Lago, and G. P. Dal’ Magro, “Food loss and waste in the context of the circular economy: a systematic review,” Journal of Cleaner Production, vol. 294. 2021. doi: 10.1016/j.jclepro.2021.126284.
dc.relation.referencesN. Lucifero, “Food Loss and Waste in the EU Law between Sustainability of Well-being and the Implications on Food System and on Environment,” Agriculture and Agricultural Science Procedia, vol. 8, 2016, doi: 10.1016/j.aaspro.2016.02.022.
dc.relation.referencesJ. Aschemann-Witzel, D. Asioli, M. Banovic, M. A. Perito, A. O. Peschel, and V. Stancu, “Defining upcycled food: The dual role of upcycling in reducing food loss and waste,” Trends Food Sci Technol, vol. 132, pp. 132–137, 2023.
dc.relation.referencesH. Kazemi Shariat Panahi et al., “Bioethanol production from food wastes rich in carbohydrates,” Current Opinion in Food Science, vol. 43. 2022. doi: 10.1016/j.cofs.2021.11.001.
dc.relation.referencesM. Jones, S. Schwartz, and J. Barnard, “Reducing Post-Harvest Loss with Multi-Sectoral Solutions | Agrilinks,” 2018. https://www.agrilinks.org/post/reducing-post-harvest-loss-multi-sectoral-solutions (accessed Mar. 02, 2021).
dc.relation.referencesFAO, Food loss and waste and the right to adequate food: Making the connection Right to Food Discussion Paper. 2018.
dc.relation.referencesH. El Bilali and T. Ben Hassen, “Food waste in the countries of the gulf cooperation council: A systematic review,” Foods, vol. 9, no. 4, pp. 7–9, 2020, doi: 10.3390/foods9040463.
dc.relation.referencesFAO, “Food Loss and Food Waste. Food and Agriculture Organization of the United Nations.” http://www.fao.org/food-loss-and-food-waste/ flw-data (accessed Feb. 17, 2021).
dc.relation.referencesK. L. Thyberg and D. J. Tonjes, “Drivers of food waste and their implications for sustainable policy development,” Resources, Conservation and Recycling, vol. 106. Elsevier, pp. 110–123, Jan. 01, 2016. doi: 10.1016/j.resconrec.2015.11.016.
dc.relation.referencesJ. Aschemann-Witzel, I. de Hooge, P. Amani, T. Bech-Larsen, and M. Oostindjer, “Consumer-Related Food Waste: Causes and Potential for Action,” Sustainability, vol. 7, no. 6, pp. 6457–6477, May 2015, doi: 10.3390/su7066457.
dc.relation.referencesWaste Minimization and Utilization in the Food Industry: Valorization of Food Industry Wastes and Byproducts,” in Introduction to Advanced Food Process Engineering, CRC Press, 2014, pp. 609–644. doi: 10.1201/b16696-23.
dc.relation.referencesC. Cicatiello and C. Giordano, “Measuring household food waste at national level: A systematic review on methods and results,” CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, vol. 13, no. 56, pp. 1–8, 2018, doi: 10.1079/PAVSNNR201813056.
dc.relation.referencesK. Abeliotis, K. Lasaridi, and C. Chroni, “Attitudes and behaviour of Greek households regarding food waste prevention,” Waste Management and Research, vol. 32, no. 3, pp. 237–240, 2014, doi: 10.1177/0734242X14521681.
dc.relation.referencesC. Caldeira, A. Vlysidis, G. Fiore, V. De Laurentiis, G. Vignali, and S. Sala, “Sustainability of food waste biorefinery: A review on valorisation pathways, techno-economic constraints, and environmental assessment,” Bioresour Technol, vol. 312, no. March, p. 123575, 2020, doi: 10.1016/j.biortech.2020.123575.
dc.relation.referencesA. A. Koutinas et al., “Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers,” Chemical Society Reviews, vol. 43, no. 8. Royal Society of Chemistry, pp. 2587–2627, Apr. 2014. doi: 10.1039/c3cs60293a.
dc.relation.referencesFAO, “Food wastage footprint. Full-cost accounting,” Final report, pp. 1–98, 2014.
dc.relation.referencesRethink Food Waste Through Economics and Data (ReFED) 2016. A roadmap to reduce U.S. foodwaste by 20 percent. Rep. Berkeley, CA, 2016.
dc.relation.referencesJ. C. Buzby, H. F. Wells, and J. Hyman, “The Estimated Amount, Value, and Calories of Postharvest Food Losses at the Retail and Consumer Levels in the United States,” Economic Information Bulletin, pp. 1–39, 2014.
dc.relation.referencesE. Spang and B. Stevens, “Estimating the Blue Water Footprint of In-Field Crop Losses: A Case Study of U.S. Potato Cultivation,” Sustainability, vol. 10, no. 8, p. 2854, Aug. 2018, doi: 10.3390/su10082854.
dc.relation.referencesZ. Conrad, M. T. Niles, D. A. Neher, E. D. Roy, N. E. Tichenor, and L. Jahns, “Relationship between food waste, diet quality, and environmental sustainability,” PLoS One, vol. 13, no. 4, p. e0195405, Apr. 2018, doi: 10.1371/journal.pone.0195405.
dc.relation.referencesFAO, “Food Loss and Food Waste,” 2021. http://www.fao.org/food-loss-and-food-waste/flw-data) (accessed Mar. 01, 2021).
dc.relation.referencesFAO, “Global initiative on food loss and waste,” 2018.
dc.relation.referencesR. Ishangulyyev, S. Kim, and S. H. Lee, “Understanding Food Loss and Waste—Why Are We Losing and Wasting Food?,” Foods, vol. 8, no. 8, 2019, doi: 10.3390/FOODS8080297.
dc.relation.referencesC. Reynolds et al., “Review: Consumption-stage food waste reduction interventions – What works and how to design better interventions,” Food Policy, vol. 83, pp. 7–27, Feb. 2019, doi: 10.1016/J.FOODPOL.2019.01.009.
dc.relation.referencesQ. Wang, H. Ma, W. Xu, L. Gong, W. Zhang, and D. Zou, “Ethanol production from kitchen garbage using response surface methodology,” Biochem Eng J, vol. 39, no. 3, 2008, doi: 10.1016/j.bej.2007.12.018.
dc.relation.referencesT. Edwiges et al., “Influence of chemical composition on biochemical methane potential of fruit and vegetable waste,” Waste Management, vol. 71, 2018, doi: 10.1016/j.wasman.2017.05.030.
dc.relation.referencesS. Rodríguez-Valderrama, C. Escamilla-Alvarado, P. Rivas-García, J. P. Magnin, M. Alcalá-Rodríguez, and R. B. García-Reyes, “Biorefinery concept comprising acid hydrolysis, dark fermentation, and anaerobic digestion for co-processing of fruit and vegetable wastes and corn stover,” Environmental Science and Pollution Research, vol. 27, no. 23, 2020, doi: 10.1007/s11356-020-08580-z.
dc.relation.referencesL. Zhang and D. Jahng, “Long-term anaerobic digestion of food waste stabilized by trace elements,” Waste Management, vol. 32, no. 8, 2012, doi: 10.1016/j.wasman.2012.03.015.
dc.relation.referencesS. Dhiman and G. Mukherjee, “Present scenario and future scope of food waste to biofuel production,” Journal of Food Process Engineering, vol. 44, no. 2. 2021. doi: 10.1111/jfpe.13594.
dc.relation.referencesY. Q. Tang et al., “Ethanol production from kitchen waste using the flocculating yeast Saccharomyces cerevisiae strain KF-7,” Biomass Bioenergy, vol. 32, no. 11, 2008, doi: 10.1016/j.biombioe.2008.01.027.
dc.relation.referencesG. Lissens, H. Klinke, W. Verstraete, B. Ahring, and A. B. Thomsen, “Wet oxidation treatment of organic household waste enriched with wheat straw for simultaneous saccharification and fermentation into ethanol,” Environ Technol, vol. 25, no. 6, 2004, doi: 10.1080/09593330.2004.9619354.
dc.relation.referencesO. N. Aǧdaǧ and D. T. Sponza, “Effect of alkalinity on the performance of a simulated landfill bioreactor digesting organic solid wastes,” Chemosphere, vol. 59, no. 6, 2005, doi: 10.1016/j.chemosphere.2004.11.017.
dc.relation.referencesG. Carucci, F. Carrasco, K. Trifoni, M. Majone, and M. Beccari, “Anaerobic Digestion of Food Industry Wastes: Effect of Codigestion on Methane Yield,” Journal of Environmental Engineering, vol. 131, no. 7, 2005, doi: 10.1061/(asce)0733-9372(2005)131:7(1037).
dc.relation.referencesK. Vijayaraghavan, D. Ahmad, and C. Soning, “Bio-hydrogen generation from mixed fruit peel waste using anaerobic contact filter,” Int J Hydrogen Energy, vol. 32, no. 18, 2007, doi: 10.1016/j.ijhydene.2007.07.001.
dc.relation.referencesZ. N. Abudi et al., “Batch anaerobic co-digestion of OFMSW (organic fraction of municipal solid waste), TWAS (thickened waste activated sludge) and RS (rice straw): Influence of TWAS and RS pretreatment and mixing ratio,” Energy, vol. 107, 2016, doi: 10.1016/j.energy.2016.03.141.
dc.relation.referencesJ. D. Browne, E. Allen, and J. D. Murphy, “Assessing the variability in biomethane production from the organic fraction of municipal solid waste in batch and continuous operation,” Appl Energy, vol. 128, 2014, doi: 10.1016/j.apenergy.2014.04.097.
dc.relation.referencesR. T. Xiguang Chen and R. Z. Romano, “Anaerobic digestion of food wastes for biogas production,” Int J Agric & Biol Eng, vol. 3, pp. 4–3, 2010.
dc.relation.referencesL. Zhang, Y. W. Lee, and D. Jahng, “Anaerobic co-digestion of food waste and piggery wastewater: Focusing on the role of trace elements,” Bioresour Technol, vol. 102, no. 8, 2011, doi: 10.1016/j.biortech.2011.01.082.
dc.relation.referencesC. Zhang, H. Su, and T. Tan, “Batch and semi-continuous anaerobic digestion of food waste in a dual solid-liquid system,” Bioresour Technol, vol. 145, 2013, doi: 10.1016/j.biortech.2013.03.030.
dc.relation.referencesR. Zhang et al., “Characterization of food waste as feedstock for anaerobic digestion,” Bioresour Technol, vol. 98, no. 4, 2007, doi: 10.1016/j.biortech.2006.02.039.
dc.relation.referencesC. Zhang, G. Xiao, L. Peng, H. Su, and T. Tan, “The anaerobic co-digestion of food waste and cattle manure,” Bioresour Technol, vol. 129, 2013, doi: 10.1016/j.biortech.2012.10.138.
dc.relation.referencesA. Nawirska and M. Kwaśniewska, “Dietary fibre fractions from fruit and vegetable processing waste,” Food Chem, vol. 91, no. 2, 2005, doi: 10.1016/j.foodchem.2003.10.005.
dc.relation.referencesA. K. Mukherjee, H. Adhikari, and S. K. Rai, “Production of alkaline protease by a thermophilic Bacillus subtilis under solid-state fermentation (SSF) condition using Imperata cylindrica grass and potato peel as low-cost medium: Characterization and application of enzyme in detergent formulation,” Biochem Eng J, vol. 39, no. 2, 2008, doi: 10.1016/j.bej.2007.09.017.
dc.relation.referencesC. F. Triana, J. A. Quintero, R. A. Agudelo, C. A. Cardona, and J. C. Higuita, “Analysis of coffee cut-stems (CCS) as raw material for fuel ethanol production,” Energy, vol. 36, no. 7, 2011, doi: 10.1016/j.energy.2011.04.025.
dc.relation.referencesJ. C. Solarte-Toro, “Oil palm rachis gasification for synthesis gas production Oil palm rachis gasification for synthesis gas production,” Universidad Nacional de Colombia, Manizales, 2017.
dc.relation.referencesL. A. Alonso-Gómez, J. C. Solarte-Toro, L. A. Bello-Pérez, and C. A. Cardona-Alzate, “Performance evaluation and economic analysis of the bioethanol and flour production using rejected unripe plantain fruits (Musa paradisiaca L.) as raw material,” Food and Bioproducts Processing, vol. 121, 2020, doi: 10.1016/j.fbp.2020.01.005.
dc.relation.referencesM. C. García-Vargas, M. D. M. Contreras, and E. Castro, “Avocado-derived biomass as a source of bioenergy and bioproducts,” Applied Sciences (Switzerland), vol. 10, no. 22. 2020. doi: 10.3390/app10228195.
dc.relation.referencesM. del Valle, M. Cámara, and M. E. Torija, “Chemical characterization of tomato pomace,” J Sci Food Agric, vol. 86, no. 8, 2006, doi: 10.1002/jsfa.2474.
dc.relation.referencesS. Haghdan, S. Renneckar, and G. D. Smith, “Sources of Lignin,” in Lignin in Polymer Composites, 2016. doi: 10.1016/B978-0-323-35565-0.00001-1.
dc.relation.referencesO. S. Mariana, S. T. J. Camilo, and C. A. C. Ariel, “A comprehensive approach for biorefineries design based on experimental data, conceptual and optimization methodologies: The orange peel waste case,” Bioresour Technol, vol. 325, 2021, doi: 10.1016/j.biortech.2021.124682.
dc.relation.referencesG. L. Russo et al., “Formulation of new media from dairy and brewery wastes for a sustainable production of dha-rich oil by aurantiochytrium mangrovei,” Mar Drugs, vol. 20, no. 1, 2022, doi: 10.3390/md20010039.
dc.relation.referencesT. Raj et al., “Physical and chemical characterization of various indian agriculture residues for biofuels production,” Energy and Fuels, vol. 29, no. 5, 2015, doi: 10.1021/ef5027373.
dc.relation.referencesW. J. JEWELL and R. J. CUMMINGS, “Apple Pomace Energy and Solids Recovery,” J Food Sci, vol. 49, no. 2, 1984, doi: 10.1111/j.1365-2621.1984.tb12433.x.
dc.relation.referencesA. U. Mahmood, J. Greenman, and A. H. Scragg, “Orange and potato peel extracts: Analysis and use as Bacillus substrates for the production of extracellular enzymes in continuous culture,” Enzyme Microb Technol, vol. 22, no. 2, 1998, doi: 10.1016/S0141-0229(97)00150-6.
dc.relation.referencesL. Neves, R. Oliveira, and M. M. Alves, “Anaerobic co-digestion of coffee waste and sewage sludge,” Waste Management, vol. 26, no. 2, 2006, doi: 10.1016/j.wasman.2004.12.022.
dc.relation.referencesM. L. L. Aubrey, C. F. S. Chin, J. S. S. Seelan, F. Y. Chye, H. H. Lee, and Mohd. R. Mohd. Rakib, “Conversion of Oil Palm By-Products into Value-Added Products through Oyster Mushroom (Pleurotus ostreatus) Cultivation,” Horticulturae, vol. 8, no. 11, p. 1040, Nov. 2022, doi: 10.3390/horticulturae8111040.
dc.relation.referencesN. Bardiya, D. Somayaji, and S. Khanna, “Biomethanation of banana peel and pineapple waste,” Bioresour Technol, vol. 58, no. 1, 1996, doi: 10.1016/S0960-8524(96)00107-1.
dc.relation.referencesJ. C. Solarte-Toro, “Sustainability assessment of different biorefinery schemes to enhance the development of post-conflict areas in the Colombian context: The Montes de Maria case,” Universidad Nacional de Colombia, Manizales, 2022.
dc.relation.referencesL. Deressa, S. Libsu, R. B. Chavan, D. Manaye, and A. Dabassa, “Production of Biogas from Fruit and Vegetable Wastes Mixed with Different Wastes,” Environment and Ecology Research, vol. 3, no. 3, 2015, doi: 10.13189/eer.2015.030303.
dc.relation.referencesD. Verrier, F. Roy, and G. Albagnac, “Two-phase methanization of solid vegetable wastes,” Biological Wastes, vol. 22, no. 3, 1987, doi: 10.1016/0269-7483(87)90022-X.
dc.relation.referencesN. Vats, A. A. Khan, and K. Ahmad, “Observation of biogas production by sugarcane bagasse and food waste in different composition combinations,” Energy, vol. 185, 2019, doi: 10.1016/j.energy.2019.07.080.
dc.relation.referencesM. A. Martín, J. A. Siles, A. F. Chica, and A. Martín, “Biomethanization of orange peel waste,” Bioresour Technol, vol. 101, no. 23, 2010, doi: 10.1016/j.biortech.2010.06.133.
dc.relation.referencesM. Carlini, S. Castellucci, and M. Moneti, “Biogas production from poultry manure and cheese whey wastewater under mesophilic conditions in batch reactor,” in Energy Procedia, 2015. doi: 10.1016/j.egypro.2015.11.817.
dc.relation.referencesM. Jabeen, Zeshan, S. Yousaf, M. R. Haider, and R. N. Malik, “High-solids anaerobic co-digestion of food waste and rice husk at different organic loading rates,” Int Biodeterior Biodegradation, vol. 102, 2015, doi: 10.1016/j.ibiod.2015.03.023.
dc.relation.referencesM. Kennedy et al., “Apple Pomace and Products Derived from Apple Pomace: Uses, Composition and Analysis,” 1999. doi: 10.1007/978-3-662-03887-1_4.
dc.relation.referencesS. Liang and A. G. McDonald, “Anaerobic digestion of pre-fermented potato peel wastes for methane production,” Waste Management, vol. 46, 2015, doi: 10.1016/j.wasman.2015.09.029.
dc.relation.referencesA. Colantoni et al., “Spent coffee ground characterization, pelletization test and emissions assessment in the combustion process,” Sci Rep, vol. 11, no. 1, 2021, doi: 10.1038/s41598-021-84772-y.
dc.relation.referencesF. Sánchez, K. Araus, M. P. Domínguez, and G. S. Miguel, “Thermochemical Transformation of Residual Avocado Seeds: Torrefaction and Carbonization,” Waste Biomass Valorization, vol. 8, no. 7, 2017, doi: 10.1007/s12649-016-9699-6.
dc.relation.referencesI. ROUSSIS, I. KAKABOUKI, A. FOLINA, A. KONSTANTAS, I. TRAVLOS, and D. BILALIS, “Effects of Tomato Pomace Composts on Yield and Quality of Processing Tomato (Lycopersicon esculentum Mill.),” Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Horticulture, vol. 76, no. 2, 2019, doi: 10.15835/buasvmcn-hort:2019.0019.
dc.relation.referencesP. Kaur, G. Ghoshal, and A. Jain, “Bio-utilization of fruits and vegetables waste to produce β-carotene in solid-state fermentation: Characterization and antioxidant activity,” Process Biochemistry, vol. 76, 2019, doi: 10.1016/j.procbio.2018.10.007.
dc.relation.referencesP. D. Pathak, S. A. Mandavgane, and B. D. Kulkarni, “Fruit peel waste: Characterization and its potential uses,” Curr Sci, vol. 113, no. 3, 2017, doi: 10.18520/cs/v113/i03/444-454.
dc.relation.referencesK. Kumar, A. N. Yadav, V. Kumar, P. Vyas, and H. S. Dhaliwal, “Food waste: a potential bioresource for extraction of nutraceuticals and bioactive compounds,” Bioresources and Bioprocessing, vol. 4, no. 1. Springer, p. 18, Dec. 01, 2017. doi: 10.1186/s40643-017-0148-6.
dc.relation.referencesP. K. Ajikumar, K. Tyo, S. Carlsen, O. Mucha, T. H. Phon, and G. Stephanopoulos, “Terpenoids: Opportunities for biosynthesis of natural product drugs using engineered microorganisms,” Molecular Pharmaceutics, vol. 5, no. 2. pp. 167–190, Mar. 2008. doi: 10.1021/mp700151b.
dc.relation.referencesM. Ashraf-Khorassani and L. T. Taylor, “Sequential Fractionation of Grape Seeds into Oils, Polyphenols, and Procyanidins via a Single System Employing CO2-Based Fluids,” J Agric Food Chem, vol. 52, no. 9, pp. 2440–2444, May 2004, doi: 10.1021/jf030510n.
dc.relation.referencesA. Baiano, “Recovery of biomolecules from food wastes - A review,” Molecules, vol. 19, no. 9. MDPI AG, pp. 14821–14842, Sep. 17, 2014. doi: 10.3390/molecules190914821.
dc.relation.referencesL. Day, R. B. Seymour, K. F. Pitts, I. Konczak, and L. Lundin, “Incorporation of functional ingredients into foods,” Trends Food Sci Technol, vol. 20, no. 9, pp. 388–395, Sep. 2009, doi: 10.1016/j.tifs.2008.05.002.
dc.relation.referencesM. Ortiz-Sanchez, J.-C. Solarte-Toro, J.-A. González-Aguirre, K. E. Peltonen, P. Richard, and C. A. Cardona-Alzate, “Pre-feasibility analysis of the production of mucic acid from Orange Peel Waste under the biorefinery concept,” Biochem Eng J, p. 107680, Jun. 2020, doi: 10.1016/j.bej.2020.107680.
dc.relation.referencesE. M. Barampouti, S. Mai, D. Malamis, K. Moustakas, and M. Loizidou, “Liquid biofuels from the organic fraction of municipal solid waste: A review,” Renewable and Sustainable Energy Reviews, vol. 110, pp. 298–314, Aug. 2019, doi: 10.1016/j.rser.2019.04.005.
dc.relation.referencesO. N. Uncu and D. Cekmecelioglu, “Cost-effective approach to ethanol production and optimization by response surface methodology,” Waste Management, vol. 31, no. 4, pp. 636–643, Apr. 2011, doi: 10.1016/j.wasman.2010.12.007.
dc.relation.referencesH. S. Hafid, N. A. A. Rahman, U. K. M. Shah, A. S. Baharuddin, and A. B. Ariff, “Feasibility of using kitchen waste as future substrate for bioethanol production: A review,” Renewable and Sustainable Energy Reviews, vol. 74. Elsevier Ltd, pp. 671–686, 2017. doi: 10.1016/j.rser.2017.02.071.
dc.relation.referencesR. Uma Rani, J. Rajesh Banu, D. C. W. Tsang, and C.-H. Lay, “Thermochemical conversion of food waste for bioenergy generation,” in Food Waste to Valuable Resources, Elsevier, 2020, pp. 97–118. doi: 10.1016/b978-0-12-818353-3.00005-5.
dc.relation.referencesR. A. Sheldon, “Green and sustainable manufacture of chemicals from biomass: State of the art,” Green Chemistry, vol. 16, no. 3. Royal Society of Chemistry, pp. 950–963, 2014. doi: 10.1039/c3gc41935e.
dc.relation.referencesL. A. Pfaltzgraff, M. De Bruyn, E. C. Cooper, V. Budarin, and J. H. Clark, “Food waste biomass: A resource for high-value chemicals,” Green Chemistry, vol. 15, no. 2. Royal Society of Chemistry, pp. 307–314, 2013. doi: 10.1039/c2gc36978h.
dc.relation.referencesA. Corma Canos, S. Iborra, and A. Velty, “Chemical routes for the transformation of biomass into chemicals,” Chemical Reviews, vol. 107, no. 6. pp. 2411–2502, Jun. 2007. doi: 10.1021/cr050989d.
dc.relation.referencesL. F. Gutiérrez, Ó. J. Sánchez, and C. A. Cardona, “Process integration possibilities for biodiesel production from palm oil using ethanol obtained from lignocellulosic residues of oil palm industry,” Bioresour Technol, vol. 100, no. 3, pp. 1227–1237, Feb. 2009, doi: 10.1016/J.BIORTECH.2008.09.001.
dc.relation.referencesS. Yan et al., “Enzymatical hydrolysis of food waste and ethanol production from the hydrolysate,” Renew Energy, vol. 36, no. 4, pp. 1259–1265, Apr. 2011, doi: 10.1016/j.renene.2010.08.020.
dc.relation.referencesA. Deepanraj, S. Vijayalakshmi, and J. Ranjitha, “Production of Bio Gas from Vegetable and Flowers Wastes Using Anaerobic Digestion,” Applied Mechanics and Materials, vol. 787, pp. 803–808, 2015, doi: 10.4028/www.scientific.net/amm.787.803.
dc.relation.referencesC. Rodriguez, A. Alaswad, J. Mooney, T. Prescott, and A. G. Olabi, “Pre-treatment techniques used for anaerobic digestion of algae,” Fuel Processing Technology, vol. 138, pp. 765–779, 2015, doi: 10.1016/j.fuproc.2015.06.027.
dc.relation.referencesD. Tonini, G. Dorini, and T. F. Astrup, “Bioenergy, material, and nutrients recovery from household waste: Advanced material, substance, energy, and cost flow analysis of a waste refinery process,” Appl Energy, vol. 121, pp. 64–78, May 2014, doi: 10.1016/j.apenergy.2014.01.058.
dc.relation.referencesA. T. W. M. Hendriks and G. Zeeman, “Pretreatments to enhance the digestibility of lignocellulosic biomass,” Bioresour Technol, vol. 100, no. 1, pp. 10–18, 2009, doi: 10.1016/j.biortech.2008.05.027.
dc.relation.referencesZ. Ahmadian-Kouchaksaraie, R. Niazmand, and M. N. Najafi, “Optimization of the subcritical water extraction of phenolic antioxidants from Crocus sativus petals of saffron industry residues: Box-Behnken design and principal component analysis,” Innovative Food Science and Emerging Technologies, vol. 36, pp. 234–244, Aug. 2016, doi: 10.1016/j.ifset.2016.07.005.
dc.relation.referencesJ. Esteban and M. Ladero, “Food waste as a source of value-added chemicals and materials: a biorefinery perspective,” International Journal of Food Science and Technology, vol. 53, no. 5. Blackwell Publishing Ltd, pp. 1095–1108, May 01, 2018. doi: 10.1111/ijfs.13726.
dc.relation.referencesH. S. Hafid, N. A. Rahman, U. K. Md Shah, and A. S. Baharudin, “Enhanced fermentable sugar production from kitchen waste using various pretreatments,” J Environ Manage, vol. 156, pp. 290–298, Jun. 2015, doi: 10.1016/j.jenvman.2015.03.045.
dc.relation.referencesR. A. Chávez-Santoscoy, M. A. Lazo-Vélez, S. O. Serna-Sáldivar, and J. A. Gutiérrez-Uribe, “Delivery of flavonoids and saponins from black bean (Phaseolus vulgaris) seed coats incorporated into whole wheat bread,” Int J Mol Sci, vol. 17, no. 2, p. 222, Feb. 2016, doi: 10.3390/ijms17020222.
dc.relation.referencesY. Li, S. Y. Park, and J. Zhu, “Solid-state anaerobic digestion for methane production from organic waste,” Renewable and Sustainable Energy Reviews, vol. 15, no. 1, pp. 821–826, 2011, doi: 10.1016/j.rser.2010.07.042.
dc.relation.referencesP. B. Subhedar and P. R. Gogate, “Intensification of enzymatic hydrolysis of lignocellulose using ultrasound for efficient bioethanol production: A review,” Industrial and Engineering Chemistry Research, vol. 52, no. 34. pp. 11816–11828, Aug. 28, 2013. doi: 10.1021/ie401286z.
dc.relation.referencesF. Monlau, C. Sambusiti, E. Ficara, A. Aboulkas, A. Barakat, and H. Carrère, “New opportunities for agricultural digestate valorization: current situation and perspectives,” Energy Environ. Sci., vol. 8, no. 9, pp. 2600–2621, 2015, doi: 10.1039/C5EE01633A.
dc.relation.referencesR. Dharma Patria et al., “Bioconversion of food and lignocellulosic wastes employing sugar platform: A review of enzymatic hydrolysis and kinetics,” Bioresource Technology, vol. 352. 2022. doi: 10.1016/j.biortech.2022.127083.
dc.relation.referencesM. Gallego-García, A. D. Moreno, P. Manzanares, M. J. Negro, and A. Duque, “Recent advances on physical technologies for the pretreatment of food waste and lignocellulosic residues,” Bioresour Technol, vol. 369, p. 128397, Feb. 2023, doi: 10.1016/j.biortech.2022.128397.
dc.relation.referencesO. Parthiba Karthikeyan, E. Trably, S. Mehariya, N. Bernet, J. W. C. Wong, and H. Carrere, “Pretreatment of food waste for methane and hydrogen recovery: A review,” Bioresource Technology, vol. 249. 2018. doi: 10.1016/j.biortech.2017.09.105.
dc.relation.referencesM. Fisgativa, M. Saoudi, and A. Tremier, “IMPACT OF AN AEROBIC PRE-TREATMENT ON THE ANAEROBIC BIODEGRADABILITY OF FOOD WASTE,” in 6 th International Conference on Engineering for Waste and Biomass Valorisation, Albi, Frace, May 2016.
dc.relation.referencesH. Carrere et al., “Review of feedstock pretreatment strategies for improved anaerobic digestion: From lab-scale research to full-scale application,” Bioresource Technology, vol. 199. 2016. doi: 10.1016/j.biortech.2015.09.007.
dc.relation.references. P. Karthikeyan, R. Balasubramanian, and J. W. C. Wong, “Pretreatment of Organic Solid Substrates for Bioenergy and Biofuel Recovery,” in Current Developments in Biotechnology and Bioengineering: Solid Waste Management, 2017. doi: 10.1016/B978-0-444-63664-5.00007-1.
dc.relation.references. H. L. Alino et al., “Alkaline Pretreatment and Pre-Hydrolysis Using Acidic Biowastes to Increase Methane Production from Sugarcane Bagasse,” Methane, vol. 1, no. 3, pp. 189–200, Aug. 2022, doi: 10.3390/methane1030015.
dc.relation.referencesM. P. Gundupalli and D. Bhattacharyya, “Recovery of Reducing Sugar from Food Waste: Optimization of Pretreatment Parameters Using Response Surface Methodology,” 2017. doi: 10.1007/978-3-319-47257-7_15.
dc.relation.referencesC. Torres-León et al., “Recent advances on the microbiological and enzymatic processing for conversion of food wastes to valuable bioproducts,” Current Opinion in Food Science, vol. 38. 2021. doi: 10.1016/j.cofs.2020.11.002.
dc.relation.referencesV. Radenkovs, K. Juhnevica-Radenkova, P. Górnaś, and D. Seglina, “Non-waste technology through the enzymatic hydrolysis of agro-industrial by-products,” Trends in Food Science and Technology, vol. 77. 2018. doi: 10.1016/j.tifs.2018.05.013.
dc.relation.referencesM. Bilal and H. M. N. Iqbal, “Sustainable bioconversion of food waste into high-value products by immobilized enzymes to meet bio-economy challenges and opportunities – A review,” Food Research International, vol. 123. 2019. doi: 10.1016/j.foodres.2019.04.066.
dc.relation.referencesN. A. Mazlan, K. A. Samad, H. Wan Yussof, S. M. Saufi, and J. Jahim, “Xylooligosaccharides from potential agricultural waste: Characterization and screening on the enzymatic hydrolysis factors,” Ind Crops Prod, vol. 129, 2019, doi: 10.1016/j.indcrop.2018.12.042.
dc.relation.referencesE. Balaguer Moya et al., “Evaluation of Enzymatic Hydrolysis of Sugarcane Bagasse Using Combination of Enzymes or Co-Substrate to Boost Lytic Polysaccharide Monooxygenases Action,” Catalysts, vol. 12, no. 10, p. 1158, Oct. 2022, doi: 10.3390/catal12101158.
dc.relation.referencesF. Talebnia, M. Pourbafrani, M. Lundin, and M. J. Taherzadeh, “Optimization study of citrus wastes saccharification by dilute-acid hydrolysis,” Bioresources, vol. 3, no. 1, 2008.
dc.relation.referencesL. R. F. Souto, M. Caliari, M. S. Soares Júnior, F. A. Fiorda, and M. C. Garcia, “Utilization of residue from cassava starch processing for production of fermentable sugar by enzymatic hydrolysis,” Food Science and Technology (Brazil), vol. 37, no. 1, 2017, doi: 10.1590/1678-457X.0023.
dc.relation.referencesH. S. Hafid, N. A. Rahman, U. K. Md Shah, and A. S. Baharudin, “Enhanced fermentable sugar production from kitchen waste using various pretreatments,” J Environ Manage, vol. 156, 2015, doi: 10.1016/j.jenvman.2015.03.045
dc.relation.referencesK. R. Chew et al., “Effects of anaerobic digestion of food waste on biogas production and environmental impacts: a review,” Environmental Chemistry Letters, vol. 19, no. 4. 2021. doi: 10.1007/s10311-021-01220-z.
dc.relation.referencesT. P. T. Pham, R. Kaushik, G. K. Parshetti, R. Mahmood, and R. Balasubramanian, “Food waste-to-energy conversion technologies: Current status and future directions,” Waste Management, vol. 38, no. 1. 2015. doi: 10.1016/j.wasman.2014.12.004.
dc.relation.referencesS. M. Hunter, E. Blanco, and A. Borrion, “Expanding the anaerobic digestion map: A review of intermediates in the digestion of food waste,” Science of the Total Environment, vol. 767. 2021. doi: 10.1016/j.scitotenv.2020.144265.
dc.relation.referencesM. C. D. Salangsang, M. Sekine, S. Akizuki, H. D. Sakai, N. Kurosawa, and T. Toda, “Effect of carbon to nitrogen ratio of food waste and short resting period on microbial accumulation during anaerobic digestion,” Biomass Bioenergy, vol. 162, p. 106481, Jul. 2022, doi: 10.1016/j.biombioe.2022.106481.
dc.relation.referencesF. Xu, Y. Li, X. Ge, L. Yang, and Y. Li, “Anaerobic digestion of food waste – Challenges and opportunities,” Bioresource Technology, vol. 247. 2018. doi: 10.1016/j.biortech.2017.09.020.
dc.relation.referencesH. Bouallagui, B. Rachdi, H. Gannoun, and M. Hamdi, “Mesophilic and thermophilic anaerobic co-digestion of abattoir wastewater and fruit and vegetable waste in anaerobic sequencing batch reactors,” Biodegradation, vol. 20, no. 3, 2009, doi: 10.1007/s10532-008-9231-1.
dc.relation.referencesW. Parawira, M. Murto, R. Zvauya, and B. Mattiasson, “Anaerobic batch digestion of solid potato waste alone and in combination with sugar beet leaves,” Renew Energy, vol. 29, no. 11, 2004, doi: 10.1016/j.renene.2004.02.005.
dc.relation.referencesG. Srisowmeya, M. Chakravarthy, and G. Nandhini Devi, “Critical considerations in two-stage anaerobic digestion of food waste – A review,” Renewable and Sustainable Energy Reviews, vol. 119. 2020. doi: 10.1016/j.rser.2019.109587.
dc.relation.referencesG. Lytras, C. Lytras, D. Mathioudakis, K. Papadopoulou, and G. Lyberatos, “Food Waste Valorization Based on Anaerobic Digestion,” Waste and Biomass Valorization, vol. 12, no. 4. 2021. doi: 10.1007/s12649-020-01108-z.
dc.relation.referencesR. Dalke, D. Demro, Y. Khalid, H. Wu, and M. Urgun-Demirtas, “Current status of anaerobic digestion of food waste in the United States,” Renewable and Sustainable Energy Reviews, vol. 151. 2021. doi: 10.1016/j.rser.2021.111554.
dc.relation.referencesM. V. Reddy, K. Chandrasekhar, and S. V. Mohan, “Influence of carbohydrates and proteins concentration on fermentative hydrogen production using canteen based waste under acidophilic microenvironment,” J Biotechnol, vol. 155, no. 4, 2011, doi: 10.1016/j.jbiotec.2011.07.030.
dc.relation.referencesR. Kothari, D. P. Singh, V. v. Tyagi, and S. K. Tyagi, “Fermentative hydrogen production - An alternative clean energy source,” Renewable and Sustainable Energy Reviews, vol. 16, no. 4. 2012. doi: 10.1016/j.rser.2012.01.002.
dc.relation.referencesL. Zhang, J. Li, Q. Ban, J. He, and A. K. Jha, “Metabolic pathways of hydrogen production in fermentative acidogenic microflora,” J Microbiol Biotechnol, vol. 22, no. 5, 2012, doi: 10.4014/jmb.1110.10076.
dc.relation.referencesC. F. Chu, K. Q. Xu, Y. Y. Li, and Y. Inamori, “Hydrogen and methane potential based on the nature of food waste materials in a two-stage thermophilic fermentation process,” Int J Hydrogen Energy, vol. 37, no. 14, 2012, doi: 10.1016/j.ijhydene.2012.04.048.
dc.relation.referencesS. V. Mohan, G. Mohanakrishna, R. K. Goud, and P. N. Sarma, “Acidogenic fermentation of vegetable based market waste to harness biohydrogen with simultaneous stabilization,” Bioresour Technol, vol. 100, no. 12, 2009, doi: 10.1016/j.biortech.2008.12.059.
dc.relation.referencesM. S. Kim and D. Y. Lee, “Fermentative hydrogen production from tofu-processing waste and anaerobic digester sludge using microbial consortium,” in Bioresource Technology, 2010. doi: 10.1016/j.biortech.2009.03.040.
dc.relation.referencesN. H. M. Yasin, T. Mumtaz, M. A. Hassan, and N. Abd Rahman, “Food waste and food processing waste for biohydrogen production: A review,” Journal of Environmental Management, vol. 130. 2013. doi: 10.1016/j.jenvman.2013.09.009.
dc.relation.referencesE. Elbeshbishy, H. Hafez, B. R. Dhar, and G. Nakhla, “Single and combined effect of various pretreatment methods for biohydrogen production from food waste,” Int J Hydrogen Energy, vol. 36, no. 17, 2011, doi: 10.1016/j.ijhydene.2011.02.067.
dc.relation.referencesRena et al., “Bio-hydrogen and bio-methane potential analysis for production of bio-hythane using various agricultural residues,” Bioresour Technol, vol. 309, 2020, doi: 10.1016/j.biortech.2020.123297.
dc.relation.referencesR. A. A. Meena, J. Rajesh Banu, R. Yukesh Kannah, K. N. Yogalakshmi, and G. Kumar, “Biohythane production from food processing wastes – Challenges and perspectives,” Bioresource Technology, vol. 298. 2020. doi: 10.1016/j.biortech.2019.122449.
dc.relation.referencesS. Shanmugam et al., “Biohythane production from organic waste: Recent advancements, technical bottlenecks and prospects,” Int J Hydrogen Energy, vol. 46, no. 20, 2021, doi: 10.1016/j.ijhydene.2020.10.132.
dc.relation.referencesM. Anwar Saeed, H. Ma, S. Yue, Q. Wang, and M. Tu, “Concise review on ethanol production from food waste: development and sustainability,” Environmental Science and Pollution Research, vol. 25, no. 29. 2018. doi: 10.1007/s11356-018-2972-4.
dc.relation.referencesM. Bibra, D. Samanta, N. K. Sharma, G. Singh, G. R. Johnson, and R. K. Sani, “Food Waste to Bioethanol: Opportunities and Challenges,” Fermentation, vol. 9, no. 1, p. 8, Dec. 2022, doi: 10.3390/fermentation9010008.
dc.relation.referencesB. O. Abo, M. Gao, C. Wu, W. Zhu, and Q. Wang, “A review on characteristics of food waste and their use in butanol production,” Reviews on Environmental Health. 2019. doi: 10.1515/reveh-2019-0037.
dc.relation.referencesM. Magyar, L. da Costa Sousa, S. Jayanthi, and V. Balan, “Pie waste – A component of food waste and a renewable substrate for producing ethanol,” Waste Management, vol. 62, 2017, doi: 10.1016/j.wasman.2017.02.013.
dc.relation.referencesM. X. He et al., “Zymomonas mobilis: A novel platform for future biorefineries,” Biotechnology for Biofuels, vol. 7, no. 1. 2014. doi: 10.1186/1754-6834-7-101.
dc.relation.referencesI. Ntaikou, N. Menis, M. Alexandropoulou, G. Antonopoulou, and G. Lyberatos, “Valorization of kitchen biowaste for ethanol production via simultaneous saccharification and fermentation using co-cultures of the yeasts Saccharomyces cerevisiae and Pichia stipitis,” Bioresour Technol, vol. 263, 2018, doi: 10.1016/j.biortech.2018.04.109.
dc.relation.references. Ranganathan, S. Dutta, J. A. Moses, and C. Anandharamakrishnan, “Utilization of food waste streams for the production of biopolymers,” Heliyon, vol. 6, no. 9. 2020. doi: 10.1016/j.heliyon.2020.e04891.
dc.relation.referencesS. S. Mohanty et al., “A critical review on various feedstocks as sustainable substrates for biosurfactants production: a way towards cleaner production,” Microbial Cell Factories, vol. 20, no. 1. 2021. doi: 10.1186/s12934-021-01613-3.
dc.relation.referencesL. A. Sarubbo et al., “Biosurfactants: Production, properties, applications, trends, and general perspectives,” Biochemical Engineering Journal, vol. 181. 2022. doi: 10.1016/j.bej.2022.108377.
dc.relation.referencesG. Chakrapani, M. Zare, and S. Ramakrishna, “Biomaterials from the value-added food wastes,” Bioresour Technol Rep, vol. 19, p. 101181, Sep. 2022, doi: 10.1016/j.biteb.2022.101181.
dc.relation.referencesB. McAdam, M. B. Fournet, P. McDonald, and M. Mojicevic, “Production of polyhydroxybutyrate (PHB) and factors impacting its chemical and mechanical characteristics,” Polymers, vol. 12, no. 12. 2020. doi: 10.3390/polym12122908.
dc.relation.referencesE. Drioli and L. Giorno, “Membrane Contactors and Integrated Membrane Operations,” in Comprehensive Membrane Science and Engineering, 2010.
dc.relation.referencesJ. Merrylin, R. Y. Kannah, J. R. Banu, and I. T. Yeom, “Production of organic acids and enzymes/biocatalysts from food waste,” in Food Waste to Valuable Resources: Applications and Management, 2020. doi: 10.1016/B978-0-12-818353-3.00006-7.
dc.relation.referencesS. Wang, C. Xu, L. Song, and J. Zhang, “Anaerobic Digestion of Food Waste and Its Microbial Consortia: A Historical Review and Future Perspectives,” Int J Environ Res Public Health, vol. 19, no. 15, p. 9519, Aug. 2022, doi: 10.3390/ijerph19159519.
dc.relation.referencesT. Ghaffar et al., “Recent trends in lactic acid biotechnology: A brief review on production to purification,” J Radiat Res Appl Sci, vol. 7, no. 2, 2014, doi: 10.1016/j.jrras.2014.03.002.
dc.relation.referencesJ. Kim, Y.-M. Kim, V. R. Lebaka, and Y.-J. Wee, “Lactic Acid for Green Chemical Industry: Recent Advances in and Future Prospects for Production Technology, Recovery, and Applications,” Fermentation, vol. 8, no. 11, p. 609, Nov. 2022, doi: 10.3390/fermentation8110609.
dc.relation.referencesL. Matsakas, K. Hrůzová, U. Rova, and P. Christakopoulos, “Biological production of 3-hydroxypropionic acid: An update on the current status,” Fermentation, vol. 4, no. 1. 2018. doi: 10.3390/fermentation4010013.
dc.relation.referencesC. Jers, A. Kalantari, A. Garg, and I. Mijakovic, “Production of 3-hydroxypropanoic acid from glycerol by metabolically engineered bacteria,” Frontiers in Bioengineering and Biotechnology, vol. 7, no. MAY. 2019. doi: 10.3389/fbioe.2019.00124.
dc.relation.referencesM. A. Longo and M. A. Sanromán, “Production of food aroma compounds: Microbial and enzymatic methodologies,” Food Technology and Biotechnology, vol. 44, no. 3. 2006. doi: 10.1201/9780429441837-15.
dc.relation.referencesF. Boccia, D. Covino, and P. Sarnacchiaro, “Genetically modified food versus knowledge and fear: A Noumenic approach for consumer behaviour,” Food Research International, vol. 111, 2018, doi: 10.1016/j.foodres.2018.06.013.
dc.relation.referencesL. de O. Felipe, A. M. de Oliveira, and J. L. Bicas, “Bioaromas – Perspectives for sustainable development,” Trends in Food Science and Technology, vol. 62. 2017. doi: 10.1016/j.tifs.2017.02.005.
dc.relation.referencesA. Sales, B. N. Paulino, G. M. Pastore, and J. L. Bicas, “Biogeneration of aroma compounds,” Current Opinion in Food Science, vol. 19. 2018. doi: 10.1016/j.cofs.2018.03.005.
dc.relation.referencesN. ben Akacha and M. Gargouri, “Microbial and enzymatic technologies used for the production of natural aroma compounds: Synthesis, recovery modeling, and bioprocesses,” Food and Bioproducts Processing, vol. 94. 2015. doi: 10.1016/j.fbp.2014.09.011.
dc.relation.referencesA. L. Carroll, S. H. Desai, and S. Atsumi, “Microbial production of scent and flavor compounds,” Current Opinion in Biotechnology, vol. 37. 2016. doi: 10.1016/j.copbio.2015.09.003.
dc.relation.referencesK. Zelena, U. Krings, and R. G. Berger, “Functional expression of a valencene dioxygenase from Pleurotus sapidus in E. coli,” Bioresour Technol, vol. 108, 2012, doi: 10.1016/j.biortech.2011.12.097.
dc.relation.referencesJ. Hadj Saadoun et al., “Fermentation of agri-food waste: A promising route for the production of aroma compounds,” Foods, vol. 10, no. 4, 2021, doi: 10.3390/foods10040707.
dc.relation.referencesM. Soares, P. Christen, A. Pandey, and C. R. Soccol, “Fruity flavour production by Ceratocystis fimbriata grown on coffee husk in solid-state fermentation,” Process Biochemistry, vol. 35, no. 8, 2000, doi: 10.1016/S0032-9592(99)00144-2.
dc.relation.referencesT. Aggelopoulos, K. Katsieris, A. Bekatorou, A. Pandey, I. M. Banat, and A. A. Koutinas, “Solid state fermentation of food waste mixtures for single cell protein, aroma volatiles and fat production,” Food Chem, vol. 145, 2014, doi: 10.1016/j.foodchem.2013.07.105.
dc.relation.referencesW. A. John et al., “Experimentally modelling cocoa bean fermentation reveals key factors and their influences,” Food Chem, vol. 302, 2020, doi: 10.1016/j.foodchem.2019.125335.
dc.relation.referencesL. Lavefve, D. Marasini, and F. Carbonero, “Microbial Ecology of Fermented Vegetables and Non-Alcoholic Drinks and Current Knowledge on Their Impact on Human Health,” in Advances in Food and Nutrition Research, 2019. doi: 10.1016/bs.afnr.2018.09.001.
dc.relation.referencesP. Glibowski and K. Skrzypczak, “Microbial Production of Food Ingredients and Additives,” Sciencedirect, vol. i, 2017.
dc.relation.referencesZ. P. Wang, Q. Q. Wang, S. Liu, X. F. Liu, X. J. Yu, and Y. L. Jiang, “Efficient Conversion of Cane Molasses Towards High-Purity Isomaltulose and Cellular Lipid Using an Engineered Yarrowia lipolytica Strain in Fed-Batch Fermentation,” Molecules, vol. 24, no. 7, 2019, doi: 10.3390/molecules24071228.
dc.relation.referencesY. C. Park, E. J. Oh, J. H. Jo, Y. S. Jin, and J. H. Seo, “Recent advances in biological production of sugar alcohols,” Current Opinion in Biotechnology, vol. 37. 2016. doi: 10.1016/j.copbio.2015.11.006.
dc.relation.referencesB. A. Acosta-Estrada, J. Villela-Castrejón, E. Perez-Carrillo, C. E. Gómez-Sánchez, and J. A. Gutiérrez-Uribe, “Effects of solid-state fungi fermentation on phenolic content, antioxidant properties and fiber composition of lime cooked maize by-product (nejayote),” J Cereal Sci, vol. 90, 2019, doi: 10.1016/j.jcs.2019.102837.
dc.relation.referencesJ. B. van Beilen and Z. Li, “Enzyme technology: An overview,” Current Opinion in Biotechnology, vol. 13, no. 4. 2002. doi: 10.1016/S0958-1669(02)00334-8.
dc.relation.referencesH. El-Gendi, A. K. Saleh, R. Badierah, E. M. Redwan, Y. A. El-Maradny, and E. M. El-Fakharany, “A Comprehensive Insight into Fungal Enzymes: Structure, Classification, and Their Role in Mankind’s Challenges,” Journal of Fungi, vol. 8, no. 1. 2022. doi: 10.3390/jof8010023.
dc.relation.referencesJ. Arnau, D. Yaver, and C. M. Hjort, “Strategies and Challenges for the Development of Industrial Enzymes Using Fungal Cell Factories,” in Grand Challenges in Biology and Biotechnology, 2020. doi: 10.1007/978-3-030-29541-7_7.
dc.relation.referencesS. Steudler, A. Werner, and T. Walther, “It Is the Mix that Matters: Substrate-Specific Enzyme Production from Filamentous Fungi and Bacteria Through Solid-State Fermentation,” in Advances in Biochemical Engineering/Biotechnology, 2019. doi: 10.1007/10_2019_85.
dc.relation.referencesJ. C. Solarte-Toro, J. M. Romero-García, A. Susmozas, E. Ruiz, E. Castro, and C. A. Cardona-Alzate, “Techno-economic feasibility of bioethanol production via biorefinery of olive tree prunings (OTP): Optimization of the pretreatment stage,” Holzforschung, vol. 73, no. 1, 2019, doi: 10.1515/hf-2018-0096.
dc.relation.referencesM. Z. Grønfeldt, “Process for production of an enzyme product,” US8765442B2, 2009
dc.relation.referencesS. Nagarajan, R. J. Jones, L. Oram, J. Massanet-Nicolau, and A. Guwy, “Intensification of Acidogenic Fermentation for the Production of Biohydrogen and Volatile Fatty Acids—A Perspective,” Fermentation, vol. 8, no. 7, p. 325, Jul. 2022, doi: 10.3390/fermentation8070325.
dc.relation.referencesA. Chalima, L. Oliver, L. F. de Castro, A. Karnaouri, T. Dietrich, and E. Topakas, “Utilization of volatile fatty acids from microalgae for the production of high added value compounds,” Fermentation, vol. 3, no. 4. 2017. doi: 10.3390/fermentation3040054.
dc.relation.references. Vázquez-Fernández, M. E. Suárez-Ojeda, and J. Carrera, “Review about bioproduction of Volatile Fatty Acids from wastes and wastewaters: Influence of operating conditions and organic composition of the substrate,” J Environ Chem Eng, vol. 10, no. 3, p. 107917, Jun. 2022, doi: 10.1016/j.jece.2022.107917.
dc.relation.referencesJ. Jiang, Y. Zhang, K. Li, Q. Wang, C. Gong, and M. Li, “Volatile fatty acids production from food waste: Effects of pH, temperature, and organic loading rate,” Bioresour Technol, vol. 143, 2013, doi: 10.1016/j.biortech.2013.06.025.
dc.relation.referencesS. R. Couto and M. Á. Sanromán, “Application of solid-state fermentation to food industry-A review,” J Food Eng, vol. 76, no. 3, 2006, doi: 10.1016/j.jfoodeng.2005.05.022.
dc.relation.referencesD. L. Abd Razak, N. Y. Abd Rashid, A. Jamaluddin, S. A. Sharifudin, A. Abd Kahar, and K. Long, “Cosmeceutical potentials and bioactive compounds of rice bran fermented with single and mix culture of Aspergillus oryzae and Rhizopus oryzae,” Journal of the Saudi Society of Agricultural Sciences, vol. 16, no. 2, 2017, doi: 10.1016/j.jssas.2015.04.001.
dc.relation.referencesN. Liu, Y. Wang, X. An, and J. Qi, “Study on the Enhancement of Antioxidant Properties of Rice Bran Using Mixed-Bacteria Solid-State Fermentation,” Fermentation, vol. 8, no. 5, p. 212, May 2022, doi: 10.3390/fermentation8050212.
dc.relation.referencesI. M. Banat, Q. Carboué, G. Saucedo-Castañeda, and J. de Jesús Cázares-Marinero, “Biosurfactants: The green generation of speciality chemicals and potential production using Solid-State fermentation (SSF) technology,” Bioresource Technology, vol. 320. 2021. doi: 10.1016/j.biortech.2020.124222.
dc.relation.referencesS. Lang and D. Wullbrandt, “Rhamnose lipids - Biosynthesis, microbial production and application potential,” Applied Microbiology and Biotechnology, vol. 51, no. 1. 1999. doi: 10.1007/s002530051358.
dc.relation.referencesD. K. F. Santos, R. D. Rufino, J. M. Luna, V. A. Santos, and L. A. Sarubbo, “Biosurfactants: Multifunctional biomolecules of the 21st century,” International Journal of Molecular Sciences, vol. 17, no. 3. 2016. doi: 10.3390/ijms17030401.
dc.relation.referencesM. Henkel et al., “Rhamnolipids as biosurfactants from renewable resources: Concepts for next-generation rhamnolipid production,” Process Biochemistry, vol. 47, no. 8. 2012. doi: 10.1016/j.procbio.2012.04.018.
dc.relation.referencesOrganización de las Naciones Unidas para la Alimentación y la Agricultura, Agricultura familiar en América Latina y El Caribe: Recomendaciones de Política. FAO, 2014. Accessed: Apr. 20, 2022. [Online]. Available: www.fao.org/publications
dc.relation.referencesAgencia de Desarrollo Rural, “Frontera agrícola nacional: la cancha del sector agropecuario para el desarrollo rural sostenible,” Ministeria de Agricultura y Desarrollo Rural, 2018. https://www.minagricultura.gov.co/noticias/Paginas/-Frontera-agr%C3%ADcola-nacional-la-cancha-del-sector-agropecuario-para-el-desarrollo-rural-sostenible-.aspx (accessed Apr. 20, 2022).
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalFood losses
dc.subject.proposalFood waste
dc.subject.proposalBiorefinery
dc.subject.proposalSustainability
dc.subject.proposalBiocompounds
dc.title.translatedValorización de pérdida y desperdicios de alimentos a través de biorrefinerías sostenibles
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentDataPaper
dc.type.contentDataset
dc.type.contentImage
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
dc.contributor.orcidManizales
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000107136
dc.contributor.scopushttps://www-scopus-com.ezproxy.unal.edu.co/authid/detail.uri?authorId=57200725101
dc.contributor.researchgatehttps://www.researchgate.net/profile/Mariana-Ortiz-Sanchez


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito