Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorArmenteras Pascual, Dolors
dc.contributor.authorReyes Palacios, Alejandra Cecilia
dc.date.accessioned2023-10-09T15:02:53Z
dc.date.available2023-10-09T15:02:53Z
dc.date.issued2023-10
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84788
dc.descriptionilustraciones, diagramas, mapas
dc.description.abstractLos bosques degradados en un escenario de condiciones climáticas extremas presentan mayor desecación y carga de combustibles. Estas condiciones aumentan la susceptibilidad a incendios forestales ya que la propagación del fuego depende de la disponibilidad del combustible, su disposición y su inflamabilidad. Este estudio tiene como objetivo analizar los impactos de los incendios forestales sobre las características del combustible vegetal en los bosques de robles del Santuario de Flora y Fauna de Iguaque. Para lograr esto, se establecieron doce parcelas de monitoreo, seis en bosques quemados y seis en bosques no quemados. El monitoreo se llevó a cabo en 2018 y 2019, recolectando información sobre troncos de árboles, vegetación del sotobosque y plántulas, además de emplear transectos de Brown para recolectar desechos y evaluar rasgos funcionales relacionados con hojas y corteza de la especie Quercus humboldtii. En cuanto a los resultados, se observan cambios en la estructura y composición del bosque en términos de diversidad y riqueza en la regeneración natural, así como la perdida de biomasa en los bosques quemados, para el segundo año, comienza a aparecer la presencia de especies herbáceas y helechos, y se registra la supervivencia de los individuos arbóreos en los bosques quemados, no obstante, con el tiempo, su mortalidad aumenta. Con relación a los rasgos funcionales, se encontró que contenido de humedad de las hojas es mayor en los bosques no quemados, mientras que el contenido foliar de materia seca y el espesor presentan mayores valores en los bosques quemados, respecto a la corteza se evidencio que la corteza interna en los bosques quemados es menor, mientras que la corteza externa tiende a tener mayor grosor. Las cargas de combustible en los bosques quemados son mayores en comparación con los bosques no quemados, principalmente debido a la acumulación de combustible que se asocia también a la composición de especies, a causa de la apertura de claros que crean condiciones favorables para el desarrollo de vegetación herbácea y arbustiva, y favorece la perdida de humedad lo cual contribuye a las cargas de combustible de los bosques afectados. (texto tomado de la fuente)
dc.description.abstractDegraded forests in a scenario of extreme climatic conditions experience increased drying and fuel load. These conditions raise the susceptibility to wildfires, as fire propagation depends on fuel availability, arrangement, and flammability. This study aims to analyze the impacts of wildfires on the characteristics of vegetal fuel in the oak forests of the Iguaque Flora and Fauna Sanctuary. To achieve this, twelve monitoring plots were established, six in burned forests and six in unburned forests. Monitoring took place in 2018 and 2019, gathering information on tree trunks, understory vegetation, and saplings, as well as employing Brown transects to collect debris and assess functional traits related to leaves and bark of the Quercus humboldtii species. Regarding the results, changes have been in the structure and composition of the forest in terms of diversity and richness in natural regeneration, as well as the loss of biomass in burned forests. In the second year, the presence of herbaceous species and ferns begins to emerge, and there is survival of tree individuals in burned forests. However, over time, their mortality increases. Regarding the functional traits, it was found that the wet weight of the leaves is higher in the unburned forests, while the foliar dry matter content and the thickness present higher values in the burned forests, with respect to the bark it was evidenced that the inner crust in conserved forests is larger, while the outer crust tends to be ticker in fire affected forests. Burned forests exhibit higher fuel loads compared to unburned forests, primarily due to fuel accumulation and the opening of gaps that create favorable conditions for the development of herbaceous and shrubby vegetation, contributing to the fuel loads of affected forests.
dc.format.extent119 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
dc.subject.ddc570 - Biología::577 - Ecología
dc.subject.ddc580 - Plantas
dc.titleInfluencia de los incendios forestales en la composición y estructura de combustibles vegetales en zonas quemadas del Santuario de Fauna y Flora de Iguaque
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Biología
dc.contributor.researcherMeza Elizalde María Constanza
dc.contributor.researchgroupEcología del Paisaje y Modelación de Ecosistemas
dc.coverage.regionIguaque
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Biología
dc.description.researchareaEcología del fuego
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAckerly, D. D., & Cornwell, W. K. (2007). A trait-based approach to community assembly: Partitioning of species trait values into within- and among-community components. Ecology Letters, 10(2), 135–145. https://doi.org/10.1111/j.1461-0248.2006.01006.x
dc.relation.referencesAger, A. A., A. Day, M., Finney, M. A., Vance-Borland, K., & Vaillant, N. M. (2014). Analyzing the transmission of wildfire exposure on a fire-prone landscape in Oregon, USA. Forest Ecology and Management, 334, 377–390. https://doi.org/10.1016/j.foreco.2014.09.017
dc.relation.referencesAguilar-garavito, M., Cortina-segarra, J., & Matoma, M. (2023). Postfire resprouting and recruitment of Quercus humboldtii in the Iguaque Mountains ( Colombia ) Forest Ecology and Management Postfire resprouting and recruitment of Quercus humboldtii in the Iguaque Mountains ( Colombia ). Forest Ecology and Management, April. https://doi.org/10.1016/j.foreco.2023.120937
dc.relation.referencesAhrends, A., Burgess, N. D., Milledge, S. A. H., Bulling, M. T., Fisher, B., Smart, J. C. R., Clarke, G. P., Mhoro, B. E., & Lewis, S. L. (2010). Predictable waves of sequential forest degradation and biodiversity loss spreading from an African city. Proceedings of the National Academy of Sciences of the United States of America, 107(33), 14556– 14561. https://doi.org/10.1073/pnas.0914471107
dc.relation.referencesAlbini, F. A., & Reinhardt, E. D. (1995). Modeling Ignition And Burning Rate Of Large Woody Natural Fuels. International Journal of Wildland Fire, 5(2), 81–91. https://doi.org/10.1071/WF9950081
dc.relation.referencesAlbornoz, F. E., Gaxiola, A., Seaman, B. J., Pugnaire, F. I., & Armesto, J. J. (2013). Nucleation-driven regeneration promotes post-fire recovery in a Chilean temperate forest. Plant Ecology, 214(5), 765–776. https://doi.org/10.1007/s11258-013-0206-x
dc.relation.referencesAlcázar-Caicedo, C., & Ramíres-Hernandez, W. (2011). El Uso De Rasgos Funcionales En Flora Como Herramienta Para Establecer Prioridades De Conservación. Letras Biologicas, April, 215–222.
dc.relation.referencesAndela, N., Morton, D. C., Giglio, L., Chen, Y., Van Der Werf, G. R., Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S., Kloster, S., Bachelet, D., Forrest, M., Lasslop, G., Li, F., Mangeon, S., Melton, J. R., Yue, C., & Randerson, J. T. (2017). A human-driven decline in global burned area. Science, 356(6345), 1356–1362. https://doi.org/10.1126/science.aal4108
dc.relation.referencesAnderson, H. (1982). Aids to determining fuel models for sstimating fire behavior. In United States Department of Agriculture Forest Service (Vol. 44, Issue 1, pp. 42–53).
dc.relation.referencesAraujo-Murakami, A., Parada, A. G., Terán, J. J., Baker, T. R., Feldpausch, T. R., Phillips, O. L., & Brienen, R. J. W. (2011). Necromasa de los bosques de Madre de Dios, Perú; una comparación entre bosques de tierra firme y de bajíos. Revista Peruana de Biología, 18(1), 113–118. https://doi.org/10.15381/rpb.v18i1.155
dc.relation.referencesArmenteras, D., González, T. M., Ríos, O. V., Elizalde, M. C. M., & Oliveras, I. (2020). Fire in the ecosystems of northern south america: Advances in the ecology of tropical fires in Colombia, Ecuador and Peru. Caldasia, 42(1), 1–16. https://doi.org/10.15446/caldasia.v42n1.77353
dc.relation.referencesArmenteras, D., González, T. M., Vargas Ríos, O., Meza Elizalde, M. C., & Oliveras, I. (2020). Incendios en ecosistemas del norte de Suramérica: avances en la ecología del fuego tropical en Colombia, Ecuador y Perú . In Caldasia (Vol. 42, pp. 1–16). scieloco .
dc.relation.referencesArmenteras, D., Retana-Alumbreros, J., Molowny-Horas, R., Roman-Cuesta, R. M., Gonzalez-Alonso, F., & Morales-Rivas, M. (2011). Characterising fire spatial pattern interactions with climate and vegetation in Colombia. Agricultural and Forest Meteorology, 151(3), 279–289. https://doi.org/10.1016/j.agrformet.2010.11.002
dc.relation.referencesAvella, A., & Cardenas, L. (2010). Conservación y uso sostenible de los bosques de roble en el corredor de conservación guantiva - la Rusia - Iguaque, departamentos de santander y Boyacá, Colombia. Colombia Forestal, 13(1), 5. https://doi.org/10.14483/udistrital.jour.colomb.for.2010.1.a01
dc.relation.referencesBabl, E., Alexander, H. D., Siegert, C. M., & Willis, J. L. (2020). Could canopy, bark, and leaf litter traits of encroaching non-oak species influence future flammability of upland oak forests? Forest Ecology and Management, 458(September), 117731. https://doi.org/10.1016/j.foreco.2019.117731
dc.relation.referencesBaker, T. R., Phillips, O. L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T. J., Laurance, S. G., Laurance, W. F., Lewis, S. L., Lloyd, J., Monteagudo, A., Neill, D. A., Patino, S., Pitman, N. C. A., Silva, J. N. M., & Martínez, R. V. (2004). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology, 10(5), 545–562. https://doi.org/10.1111/j.1365-2486.2004.00751.x
dc.relation.referencesBalch, J. R. K., Nepstad, D. C., Brando, P. M., Curran, L. M., Portela, O., de Carvalho, O., & Lefebvre, P. (2008). Negative fire feedback in a transitional forest of southeastern Amazonia. Global Change Biology, 14(10), 2276–2287. https://doi.org/10.1111/j.1365-2486.2008.01655.x
dc.relation.referencesBarlow, J., Berenguer, E., Carmenta, R., & França, F. (2020). Clarifying Amazonia’s burning crisis. Global Change Biology, 26(2), 319–321. https://doi.org/10.1111/gcb.14872
dc.relation.referencesBarlow, J., Ewers, R. M., Anderson, L., Aragao, L. E. O. C., Baker, T. R., Boyd, E., Feldpausch, T. R., Gloor, E., Hall, A., Malhi, Y., Milliken, W., Mulligan, M., Parry, L., Pennington, T., Peres, C. A., Phillips, O. L., Roman-Cuesta, R. M., Tobias, J. A., & Gardner, T. A. (2011). Using learning networks to understand complex systems: A case study of biological, geophysical and social research in the Amazon. Biological Reviews, 86(2), 457–474. https://doi.org/10.1111/j.1469-185X.2010.00155.x
dc.relation.referencesBarlow, J., & Peres, C. A. (2008). Fire-mediated dieback and compositional cascade in an Amazonian forest. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1498), 1787–1794. https://doi.org/10.1098/rstb.2007.0013
dc.relation.referencesBerget, C., Duran, E., & Bray, D. B. (2015). Participatory Restoration of Degraded Agricultural Areas Invaded by Bracken Participatory Restoration of Degraded Agricultural Areas Invaded by Bracken Fern ( Pteridium aquilinum ) and Conservation in the Chinantla Region , Oaxaca , Mexico. April 2016. https://doi.org/10.1007/s10745-015-9762-0
dc.relation.referencesBianchi, L., Defosse, G., Dentoni, M., & Kunst, C. (2014). Dinámica de la humedad de los combustibles y su relación con la ecología y manejo de fuego, region chaqueña occidental (Argentina) II: Follaje y residuos de árboles y arbustos. Revista de Investigaciones Agropecuarias, 40(2), 165–181.
dc.relation.referencesBiddulph, J., & Kellman, M. (1998). Fuels and fire at savanna-gallery forest boundaries in southeastern Venezuela. Journal of Tropical Ecology, 14(4), 445–461. https://doi.org/10.1017/S0266467498000339
dc.relation.referencesBlackhall, M., Veblen, T. T., & Raffaele, E. (2015). Recent fire and cattle herbivory enhance plant-level fuel flammability in shrublands. Journal of Vegetation Science, 26(1), 123– 133. https://doi.org/10.1111/jvs.12216
dc.relation.referencesBlanquet, B. (1979). Plant Sociology: The study of plant communities.
dc.relation.referencesBond, W. J., & Midgley, J. J. (2012). Fire and the angiosperm revolutions. International Journal of Plant Sciences, 173(6), 569–583. https://doi.org/10.1086/665819
dc.relation.referencesBond, W. J., Woodward, F., & Midgley, G. (2005). The global distribution of ecosystems in a world without fire. New Phytologist, 165(1), 525–537. https://doi.org/10.1016/B978- 0-12-424255-5.50017-1
dc.relation.referencesBradstock, R. A. (2010). A biogeographic model of fire regimes in Australia: Current and future implications. Global Ecology and Biogeography, 19(2), 145–158. https://doi.org/10.1111/j.1466-8238.2009.00512.x
dc.relation.referencesBrown, J. (1970). PHYSICAL FUEL PROPERTIES OF PONDEROSA PINE FOREST FLOORS AND CHEATGRASS. USDA Forest Service - Research Paper RMRS-RP, 84401.
dc.relation.referencesBrown, J. K. (1971). A planar intersect method for sampling fuel volume and surface area.
dc.relation.referencesBrown, J., & See, T. (1981). Downed dead woody fuel and biomass in the Northern Rocky Mountains.
dc.relation.referencesBurrows, N. D. (1994). Experimental development of a fire management model for Jarrah (Eucalyptus marginata Donn ex Sm.) Forest. Australian National University.
dc.relation.referencesByram, G. (1959). Combustion of forest fuels. Forest Fire Control and Use, 42(3), 609–610. https://doi.org/10.2307/1932261
dc.relation.referencesCárdenas, C. (2013). El fuego y el pastoreo en el páramo húmedo de Chingaza (Colombia): efectos de la perturbación y respuestas de la vegetación. In Universitat Autónoma de Barcelona, Tesis Doctoral. http://www.tesisenxarxa.net/handle/10803/120219
dc.relation.referencesCavallero, L., Raffaele, E., & Aizen, M. A. (2013). Birds as mediators of passive restoration during early post-fire recovery. Biological Conservation, 158, 342–350. https://doi.org/10.1016/j.biocon.2012.10.004
dc.relation.referencesCawson, J. G., Duff, T. J., Tolhurst, K. G., Baillie, C. C., & Penman, T. D. (2017). Fuel moisture in Mountain Ash forests with contrasting fire histories. Forest Ecology and Management, 400, 568–577. https://doi.org/10.1016/j.foreco.2017.06.046
dc.relation.referencesChao, A., & Jost, L. (2012). Coverage-based rarefaction and extrapolation: Standardizing samples by completeness rather than size. Ecology, 93(12), 2533–2547. https://doi.org/10.1890/11-1952.1
dc.relation.referencesChao, K J, Phillips, O. L., Baker, T. R., Peacock, J., Monteagudo, A., Resources, N., Hsing, N. C., & Vargas, H. (2009). After trees die : quantities and determinants of necromass across Amazonia. Biogeosciences, 1615–1626.
dc.relation.referencesChao, Kuo Jung, Phillips, O. L., & Baker, T. R. (2008). Wood density and stocks of coarse woody debris in a northwestern Amazonian landscape. Canadian Journal of Forest Research, 38(4), 795–805. https://doi.org/10.1139/X07-163
dc.relation.referencesChave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. C., Duque, A., Eid, T., Fearnside, P. M., Goodman, R. C., Henry, M., Martínez-Yrízar, A., Mugasha, W. A., Muller-Landau, H. C., Mencuccini, M., Nelson, B. W., Ngomanda, A., Nogueira, E. M., Ortiz-Malavassi, E., … Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177–3190. https://doi.org/10.1111/gcb.12629
dc.relation.referencesChazdon, R. L. (2008). Beyond deforestation: Restoring forests and ecosystem services on degraded lands. Science, 320(5882), 1458–1460. https://doi.org/10.1126/science.1155365
dc.relation.referencesCochrane, M. A. (2003). Fire science for rainforests. Nature, 421(6926), 913–919. https://doi.org/10.1038/nature01437
dc.relation.referencesCochrane, M. A., & Laurance, W. F. (2002). Fire as a large-scale edge effect in Amazonian forests. Journal of Tropical Ecology, 18(3), 311–325. https://doi.org/10.1017/S0266467402002237
dc.relation.referencesCornelissen, J. H. C., Amsterdam, V. U., Lavorel, S., & Diaz, S. (2003). Handbook of protocols for standardised and easy measurement of plant functional traits worldwide A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. January. https://doi.org/10.1071/BT02124
dc.relation.referencesCornwell, W. K., Ackerly, D. D., Cornwell, W. K., & Ackerly, D. D. (2016). Community Assembly and Shifts in Plant Trait Distributions across an Environmental Gradient in Coastal California Stable URL : http://www.jstor.org/stable/27646168 Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. 79(1), 109–126.
dc.relation.referencesDale, V., Joyce, L., Mcnulty, S., Neilson, R., Ayres, M., Flannigan, M., Hanson, P., Irland, L., Lugo, A., & Peterson, C. (2001). Climate Change and Forest Disturbances. BioScience, 51(9), 723–734.
dc.relation.referencesDe Ruiz, M. L. V. (2006). Incendios Forestales. Ciencias, 60–66.
dc.relation.referencesDeBano, L., Neary, D., & Ffolliott, P. (1998). Fire’s Effects on Ecosystems (John Wiley).
dc.relation.referencesDi Bella, C. M., Jobbágy, E. G., Paruelo, J. M., & Pinnock, S. (2006). Continental fire density patterns in South America. Global Ecology and Biogeography, 15(2), 192–199. https://doi.org/10.1111/j.1466-822X.2006.00225.x
dc.relation.referencesDíaz, S., Kattge, J., Cornelissen, J. H. C., Wright, I. J., Lavorel, S., Dray, S., Reu, B., Kleyer, M., Wirth, C., Colin Prentice, I., Garnier, E., Bönisch, G., Westoby, M., Poorter, H., Reich, P. B., Moles, A. T., Dickie, J., Gillison, A. N., Zanne, A. E., … Gorné, L. D. (2016). The global spectrum of plant form and function. Nature, 529(7585), 167–171. https://doi.org/10.1038/nature16489
dc.relation.referencesDíaz, S., Purvis, A., Cornelissen, J. H. C., Mace, G. M., Donoghue, M. J., Ewers, R. M., Jordano, P., & Pearse, W. D. (2013). Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecology and Evolution, 3(9), 2958–2975. https://doi.org/10.1002/ece3.601
dc.relation.referencesDouterlungne, D., Thomas, E., Levy-tacher, S. I., Sur, S. N., Box, P. O., & Auxiliadora, M. (2013). Fast-growing pioneer tree stands as a rapid and effective strategy for bracken elimination in the Neotropics. July, 1257–1265. https://doi.org/10.1111/1365- 2664.12077
dc.relation.referencesDufrene, M., & Legendre, P. (1997). Speccies assemblages and indicator species: The need for a flexible asymmetrical approach. Ecological Monographs, 67, 345–366.
dc.relation.referencesEtter, A., & Van Wyngaarden, W. (2000). Patterns of landscape transformation in Colombia, with emphasis in the Andean region. Ambio, 29(7), 432–439. https://doi.org/10.1579/0044-7447-29.7.432
dc.relation.referencesFeeley, K. J., & Silman, M. R. (2010). Land-use and climate change effects on population size and extinction risk of Andean plants. Global Change Biology, 16(12), 3215–3222. https://doi.org/10.1111/j.1365-2486.2010.02197.x
dc.relation.referencesFernández-garcía, V., Marcos, E., Fulé, P. Z., Reyes, O., Santana, V. M., & Calvo, L. (2020). Fire regimes shape diversity and traits of vegetation under different climatic conditions. Science of the Total Environment, 716, 137137. https://doi.org/10.1016/j.scitotenv.2020.137137
dc.relation.referencesFernández-méndez, F., Velasco-salcedo, V. M., Guerrero-contecha, J., Galvis, M., & Neri, A. V. (2016). RECUPERACIÓN ECOLÓGICA DE ÁREAS AFECTADAS POR UN INCENDIO FORESTAL EN LA MICROCUENCA TINTALES ( BOYACÁ , COLOMBIA ). Colombia Forestal, 19(2), 143–160.
dc.relation.referencesFetcher, N., Oberbauer, S. F., & Strain, B. R. (1985). Vegetation effects on microclimate in lowland forest in Costa Rica. January. https://doi.org/10.1007/BF02189035
dc.relation.referencesFinol, H. (1971). Nuevos parametros a considerarse en el análisis estructural de las selvas virgenes tropicales.
dc.relation.referencesFood and Agriculture Organization of the United, & Nations, I. (2009). Hacia una definición de degradación de los bosques: Análisis comparativo de las definiciones existentes. Evaluación de Los Recursos Forestales Mundiales (Documento de Trabajo 154).
dc.relation.referencesFosberg, M. (1971). Moisture content calculations for the 100-hour timelag fuel in fire danger rating. Forest Service, u.s. Department of Agriculture, usda Forest Service.
dc.relation.referencesFosberg, M. (1977). Forecasting the 10-Hour timelag fuel moisture (Vol. 7, Issue 1, pp. 541–559). Rocky Mountain Forest and Range Experiment Station, Forest Service.
dc.relation.referencesGamarra, Y., Restrepo, R., Cerón, A., Villamizar, M., Arenas, R., Vega, C. I., & Ávila, A. A. (2017). Aplicación del protocolo CERA-S para determinar la calidad ecológica de la microcuenca Mamarramos (cuenca Cane-Iguaque), Santuario de Fauna y Flora Iguaque (Boyacá), Colombia . Biota Colombiana, 18(2), 11–30. https://doi.org/10.21068/c2017.v18n02a02
dc.relation.referencesGarnier, E., Laurent, G., Bellmann, A., Debain, S., Berthelier, P., Ducout, B., Roumet, C., & Navas, M. L. (2001). Consistency of species ranking based on functional leaf traits. New Phytologist, 152(1), 69–83. https://doi.org/10.1046/j.0028-646X.2001.00239.x
dc.relation.referencesGarnier, E., Navas, M., & Grigulis, K. (2015). Plant Functional Diversity: Organism traits, community structure, and ecosystem properties. https://doi.org/10.1093/acprof:oso/9780198757368.003.0001
dc.relation.referencesGhermandi, L., Beletzky, N. A., de Torres Curth, M. I., & Oddi, F. J. (2016). From leaves to landscape: A multiscale approach to assess fire hazard in wildland-urban interface areas. Journal of Environmental Management, 183, 925–937. https://doi.org/10.1016/j.jenvman.2016.09.051
dc.relation.referencesGill, A. M., & Zylstra, P. (2005). Flammability of Australian forests. Australian Forestry, 68(2), 87–93. https://doi.org/10.1080/00049158.2005.10674951
dc.relation.referencesGonzález, J. C. W., & De Ruiz, M. L. V. (2007). Evaluación de combustibles y su disponibilidad en incendios forestales: Un estudio en el Parque Nacional la Malinche. Investigaciones Geograficas, 62, 87–103.
dc.relation.referencesGonzalez, S., Alejandro, F., Guncay, T., & Sebastián, W. (2020). Estimación del carbono almacenado en la biomasa aérea, necromasa (hojarasca) y en el suelo en un bosque de pino en la comuna Paquizhapa (provincia de Loja).
dc.relation.referencesGonzález, T. M., Meza, M. C., Armenteras, D., & Vélez, J. (2018). Causas de Degradación Forestal en Colombia: una primera aproximación. In Journal of Materials Processing Technology (Vol. 1, Issue 1). http://dx.doi.org/10.1016/j.cirp.2016.06.001%0Ahttp://dx.doi.org/10.1016/j.powtec.20 16.12.055%0Ahttps://doi.org/10.1016/j.ijfatigue.2019.02.006%0Ahttps://doi.org/10.10 16/j.matlet.2019.04.024%0Ahttps://doi.org/10.1016/j.matlet.2019.127252%0Ahttp://d x.doi.o
dc.relation.referencesGould, J. S., Lachlan McCaw, W., & Phillip Cheney, N. (2011). Quantifying fine fuel dynamics and structure in dry eucalypt forest (Eucalyptus marginata) in Western Australia for fire management. Forest Ecology and Management, 262(3), 531–546. https://doi.org/10.1016/j.foreco.2011.04.022
dc.relation.referencesGovender, N., Trollope, W. S. W., & Van Wilgen, B. W. (2006). The effect of fire season, fire frequency, rainfall and management on fire intensity in savanna vegetation in South Africa. Journal of Applied Ecology, 43(4), 748–758. https://doi.org/10.1111/j.1365-2664.2006.01184.x
dc.relation.referencesGrime, J. P. (1977). Evidence for the Existence of Three Primary Strategies in Plants and Its Relevance to Ecological and Evolutionary Theory. The American Naturalist, 111(982), 1169–1194.
dc.relation.referencesHernández, H. (2019). Lo que usted debe saber sobre incendios de cobertura vegetal.
dc.relation.referencesHofstede, R. G., & Rossenaar, A. J. (1995). Biomass of grazed, burned, and undisturbed Paramo Grasslands, Colombia. II. Root mass and aboveground:belowground ratio. Arctic and Alpine Research, 27(1), 13–18. https://doi.org/10.2307/1552063
dc.relation.referencesHollis, J. J., Matthews, S., Anderson, W. R., Cruz, M. G., & Burrows, N. D. (2011). Behind the flaming zone: Predicting woody fuel consumption in eucalypt forest fires in southern Australia. Forest Ecology and Management, 261(11), 2049–2067. https://doi.org/10.1016/j.foreco.2011.02.031
dc.relation.referencesJaureguiberry, P., Bertone, G., & Díaz, S. (2011). Device for the standard measurement of shoot flammability in the field. Austral Ecology, 36(7), 821–829. https://doi.org/10.1111/j.1442-9993.2010.02222.x
dc.relation.referencesJolly, W. M. (2007). Sensitivity of a surface fire spread model and associated fire behaviour fuel models to changes in live fuel moisture. International Journal of Wildland Fire, 16(4), 503–509. https://doi.org/10.1071/WF06077
dc.relation.referencesKeane, R. E., Burgan, R., & van Wagtendonk, J. (2001). Mapping wildland fuels for fire management across multiple scales: Integrating remote sensing, GIS, and biophysical modeling. International Journal of Wildland Fire, 10(4), 301–319. http://www.publish.csiro.au/paper/WF01028
dc.relation.referencesKitzberger, T., Perry, G. L. W., Paritsis, J., Gowda, J. H., Tepley, A. J., Holz, A., & Veblen, T. T. (2016). Fire–vegetation feedbacks and alternative states: common mechanisms of temperate forest vulnerability to fire in southern South America and New Zealand. New Zealand Journal of Botany, 54(2), 247–272. https://doi.org/10.1080/0028825X.2016.1151903
dc.relation.referencesKitzberger, Thomas, Aráoz, E., Gowda, J. H., Mermoz, M., & Morales, J. M. (2012). Decreases in Fire Spread Probability with Forest Age Promotes Alternative Community States, Reduced Resilience to Climate Variability and Large Fire Regime Shifts. Ecosystems, 15(1), 97–112. https://doi.org/10.1007/s10021-011-9494-y
dc.relation.referencesLaurance, W. F., Sayer, J., & Cassman, K. G. (2014). Agricultural expansion and its impacts on tropical nature. Trends in Ecology and Evolution, 29(2), 107–116. https://doi.org/10.1016/j.tree.2013.12.001
dc.relation.referencesLavorel, S., & Garnier, E. (2002). Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology, 16, 545–556.
dc.relation.referencesLópez Hernández, J. M., , González Rodríguez, H., , Lozano, Ramírez, R. G., , Cantú Silva, I., , Gómez Meza, M. V., , Pando Moreno, M., & , Estrada Castillón, A. E. (2013). Producción De Hojarasca Y Retorno Potencial De Nutrientes En Tres Sitios Del Estado De Nuevo León, México. Polibotánica, 35(December 2009), 41–64.
dc.relation.referencesLund, H. G. (2009). What is a degraded forest?
dc.relation.referencesLutes, D. C. (2006). FIREMON : Fire Effects Monitoring and Inventory System Technical . In United States Departament of Agriculture. Forest Service Research Paper (Issue June 2014).
dc.relation.referencesM. kellman, Tackaberry. R, Brokaw. N, M. J. (1994). Tropical Gallery forests. National Geographic Research & Exploration, 10, 92–103.
dc.relation.referencesMalhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R., & Zelazowski, P. (2014). Tropical forests in the anthropocene. Annual Review of Environment and Resources, 39, 125– 159. https://doi.org/10.1146/annurev-environ-030713-155141
dc.relation.referencesMascaraque, Á. (2003). Índices De Causalidad Y Riesgo De Incendio En Los Espacios Protegidos De La Comunidad De Madrid. L.
dc.relation.referencesMatthews, S. (2014). Dead fuel moisture research: 1991-2012. International Journal of Wildland Fire, 23(1), 78–92. https://doi.org/10.1071/WF13005
dc.relation.referencesMcArthur, A. G., & Cheney, N. P. (2015). The Characterization of Fires in Relation to Ecological Studies. Fire Ecology, 11(1), 3–9. https://doi.org/10.1007/bf03400629
dc.relation.referencesMeyn, A., White, P. S., Buhk, C., & Jentsch, A. (2007). Environmental drivers of large, infrequent wildfires: The emerging conceptual model. Progress in Physical Geography, 31(3), 287–312. https://doi.org/10.1177/0309133307079365
dc.relation.referencesMeza, M., Espelta, J. M., Gonzáles, T., & Armenteras, D. (2023). Fire reduces taxonomic and functional diversity in Neotropical moist seasonally flooded forests. 21, 101–111. https://doi.org/10.1016/j.pecon.2023.04.003
dc.relation.referencesMiller, C., & Urban, D. L. (2000). Connectivity of forest fuels and surface fire regimes. Landscape Ecology, 15(2), 145–154. https://doi.org/10.1023/A:1008181313360
dc.relation.referencesMontenegro, A. L., & Ríos, O. V. (2008). Caracterización de bordes de bosque altoandino e implicaciones para la restauración ecológica en la Reserva Forestal de Cogua (Colombia). Revista de Biologia Tropical, 56(3), 1543–1556. https://doi.org/10.15517/rbt.v56i3.5728
dc.relation.referencesMontorio, R., Pérez-Cabello, F., García-Martín, A., Vlassova, L., & De la Riva, J. (2014). La severidad del fuego: revisión de conceptos, métodos y efectos ambientales. Geoecología, Cambio Ambiental y Paisaje: Homenaje Al Profesor José María García Ruiz, 427–440.
dc.relation.referencesMooney. H, Bonnicksen. T, Christensen. N, Lotan. J, R. W. (1981). Fire Regimes and Ecosystem Properties.
dc.relation.referencesMoraga Peralta, J. (2010). Evaluación del riesgo ante incendios forestales en la cuenca del río Tempisque. Revista Geográfica de América Central, 2(45), 33–64.
dc.relation.referencesMorales, J. M., Mermoz, M., Gowda, J. H., & Kitzberger, T. (2015). A stochastic fire spread model for north Patagonia based on fire occurrence maps. Ecological Modelling, 300, 73–80. https://doi.org/10.1016/j.ecolmodel.2015.01.004
dc.relation.referencesMosquera, H. Q., Rengifo, R., & Ramos, Y. A. (2009). MORTALIDAD Y RECLUTAMIENTO DE ÁRBOLES EN UN BOSQUE PLUVIAL TROPICAL DE CHOCÓ (COLOMBIA). 62(1), 4855–4868.
dc.relation.referencesMutlu, M., Popescu, S. C., Stripling, C., & Spencer, T. (2008). Mapping surface fuel models using lidar and multispectral data fusion for fire behavior. Remote Sensing of Environment, 112(1), 274–285. https://doi.org/10.1016/j.rse.2007.05.005
dc.relation.referencesMyers, N., Mittermeler, R., Mittermeler, C., Fonseca, G., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 468(7326), 895. https://doi.org/10.1038/468895a
dc.relation.referencesMyers, R., O’Brien, J., & Morrison, S. (2006). Fire management overview of the Caribbean Pine (Pinus caribaea) savannas of Mosquitia, Honduras. June.
dc.relation.referencesNajera, J., & Hernández, E. (n.d.). Estimación De La Carga De Combustibles Forestales En Un Bosque Coetáneo De La Región De El Salto, Durango. Produccionbovina.Com, 4–7. http://www.produccionbovina.com/produccion_y_manejo_pasturas/curso_fuego/44- durango.pdf
dc.relation.referencesNaranjo-Esquivel, E. D. (2014). Evaluación De La Carga De Combustibles Forestales En Un Bosque Mixto De La Sierra De Coyuca De Benítez, Estado De Guerrero, México.
dc.relation.referencesOcampo-Zuleta, K., & Bravo, S. (2019). Recruitment of woody species in tropical forests exposed to wildlandfires: An overview. Ecosistemas, 28(1), 106–117. https://doi.org/10.7818/ECOS.1642
dc.relation.referencesOdion, D. C., Moritz, M. A., & Dellasala, D. A. (2010). Alternative community states maintained by fire in the Klamath Mountains, USA. Journal of Ecology, 98(1), 96–105. https://doi.org/10.1111/j.1365-2745.2009.01597.x
dc.relation.referencesOlguín, L. (2017). “ Implicaciones sociales y ecológicas de la restauración de áreas degradadas por helecho invasivo ( Pteridium aquilinum ) en San Pedro Tlatepusco, Oaxaca , México .” Instituto Politécnico Nacional.
dc.relation.referencesOliveras, I., Malhi, Y., Salinas, N., Huaman, V., Urquiaga-Flores, E., Kala-Mamani, J., Quintano-Loaiza, J. A., Cuba-Torres, I., Lizarraga-Morales, N., & Román-Cuesta, R. M. (2013). Changes in forest structure and composition after fire in tropical montane cloud forests near the Andean treeline. Plant Ecology and Diversity, 7(1–2), 329–340. https://doi.org/10.1080/17550874.2013.816800
dc.relation.referencesOliveras, I., Román-Cuesta, R. M., Urquiaga-Flores, E., Quintano Loayza, J. A., Kala, J., Huamán, V., Lizárraga, N., Sans, G., Quispe, K., Lopez, E., Lopez, D., Cuba Torres, I., Enquist, B. J., & Malhi, Y. (2017). Fire effects and ecological recovery pathways of tropical montane cloud forests along a time chronosequence. Global Change Biology, 24(2), 758–772. https://doi.org/10.1111/gcb.13951
dc.relation.referencesParitsis, J., Holz, A., Veblen, T. T., & Kitzberger, T. (2013). Habitat distribution modeling reveals vegetation flammability and land use as drivers of wildfire in SW Patagonia. Ecosphere, 4(5), 1–20. https://doi.org/10.1890/ES12-00378.1
dc.relation.referencesParitsis, J., Veblen, T. T., & Holz, A. (2015). Positive fire feedbacks contribute to shifts from Nothofagus pumilio forests to fire-prone shrublands in Patagonia. Journal of Vegetation Science, 26(1), 89–101. https://doi.org/10.1111/jvs.12225
dc.relation.referencesParra, C., & Bernal, A. (2010). Incendios de cobertura vegetal y biodiversidad: una mirada a los impactos y efectos ecológicos potenciales sobre la diversidad vegetal. El Hombre y La Máquina, 35, 67–81. https://www.redalyc.org/articulo.oa?id=47817140008
dc.relation.referencesPasquis, R. G. (2016). Informe de comisión al Santuario de Flora y Fauna IGUAQUE - SFFI , Boyacá. April 2016.
dc.relation.referencesPeet, G. B. (1971). Litter accumulation in jarrah and karri forests. Australian Forestry, 35(4), 258–262. https://doi.org/10.1080/00049158.1971.10675559
dc.relation.referencesPeláez, B. C., López, B. L., González, J. M., Manuel, J., Camey, R., & Merino, G. (2020). Sample size for estimating fuel loads in oak forest in the Mountain Region of Guerrero State. Revista Mexicana de Ciencias Forestales, 11(57).
dc.relation.referencesPodur, J. J., & Martell, D. L. (2009). The influence of weather and fuel type on the fuel composition of the area burned by forest fires in Ontario, 1996-2006. Ecological Applications, 19(5), 1246–1252. https://doi.org/10.1890/08-0790.1
dc.relation.referencesPorrero, M. (2001). Incendios forestales, investigación de causas (Mundi-Pren).
dc.relation.referencesQuesada, C. A., Lloyd, J., Schwarz, M., Baker, T. R., Phillips, O. L., Patiño, S., Czimczik, C., Hodnett, M. G., Herrera, R., Arneth, A., Lloyd, G., Malhi, Y., Dezzeo, N., Luizão, F. J., Santos, A. J. B., Schmerler, J., Arroyo, L., Silveira, M., Priante Filho, N., … Ramírez, H. (2009). Regional and large-scale patterns in Amazon forest structure and function are mediated by variations in soil physical and chemical properties. Biogeosciences Discussions, 6(2), 3993–4057. https://doi.org/10.5194/bgd-6-3993- 2009
dc.relation.referencesQuintero, S., Jardel, E., Cuevas, R., García, F., & Martínez, A. (2019). Cambio postincendio en la estructura y composición del estrato arbóreo y carga de combustibles en un bosque de Pinus douglasiana de México. Madera y Bosques, 25, 1–14. https://doi.org/10.21829/myb.2019.2531888
dc.relation.referencesRamos, M. P. (2010). Manejo del fuego. February, 240. https://www.researchgate.net/publication/313385091
dc.relation.referencesRangel-Ch, O. (2000). Colombia Diversidad Biótica III La región de vida paramuna. Igarss 2014, 1, 1–5.
dc.relation.referencesReich, R. M., Lundquist, J. E., & Bravo, V. A. (2004). Spatial models for estimating fuel loads in the Black Hills, South Dakota, USA. International Journal of Wildland Fire, 13(1), 119–129. https://doi.org/10.1071/WF02049
dc.relation.referencesRodrigo, A., Retana, J., & Picó, F. X. (2004). Direct regeneration is not the only response of Mediterranean forests to large fires. Ecology, 85(3), 716–729. https://doi.org/10.1890/02-0492
dc.relation.referencesRodríguez-Alarcón, S. J., Pinzón-Pérez, L., Cruz, J. L., & Amaya, D. C. (2020). Functional traits of woody plants at green spaces in Bogotá, Colombia. Biota Colombiana, 21(2), 108–133. https://doi.org/10.21068/C2020.V21N02A08
dc.relation.referencesRodriguez, W., & Vargas, O. (2002). Estrategias de regeneración postquema en áreas de vegetación altoandina tipo matorral. Perez-Arbelaezia, 13(May 2014), 26.
dc.relation.referencesRomero-Mieres, M., González, M. E., & Lara, A. (2014). Recuperación natural del bosque siempreverde afectado por tala rasa y quema en la Reserva Costera Valdiviana, Chile. Bosque, 35(3), 257–267. https://doi.org/10.4067/S0717-92002014000300001
dc.relation.referencesRothmell, R. C. (1972). A Mathematical Model for Predicting Fire Spread. United States Departament of Agriculture. Forest Service Research Paper, 46.
dc.relation.referencesSchwartzman, A. Moreira, D. N. (2000). Rethinking Tropical Forest Conservation: Perils in Parks. Conservation Forum, 12(1), 39–45. https://www.redalyc.org/articulo.oa?id=47817140008
dc.relation.referencesSalazar, N., Meza, M. C., Espelta, J. M., & Armenteras, D. (2020). Post-fire responses of Quercus humboldtii mediated by some functional traits in the forests of the tropical Andes. Global Ecology and Conservation, 22, e01021. https://doi.org/10.1016/j.gecco.2020.e01021
dc.relation.referencesSalvador, R., & Lloret, F. (1995). Germinación en el laboratorio de varias especies arbustivas mediterráneas: efecto de la temperatura. Orsis: Organismes i Sistemes, 10, 25–34.
dc.relation.referencesSantacruz-Garcia. (2020). Impacto del fuego en la defensa de las plantas: Rasgos funcionales y síntesis de metabolitos secundarios en especies leñosas del Chaco semiárido de Argentina. Facultad De Ciencias Agrarias Y Forestales Tesis Doctoral. Universidad Nacional De La Plata, Facultad De Ciencias Agrarias Y Forestales, 218.
dc.relation.referencesSantacruz, A., Bravo, S., & F.Ojeda. (2015). Combustibles En Latifoliadas En El Chaco Semiárido (Vol. 4500950, Issue 0385).
dc.relation.referencesSantamaría, C. T., & Rodríguez, W. A. (2017). Identificación de rasgos funcionales de especies vegetales del bosque alto andino y páramo relacionados con su respuesta regenerativa postfuego. https://repository.udistrital.edu.co/bitstream/handle/11349/7614/RodriguezDuarteWilli amAndres2017.pdf?sequence=1&isAllowed=y
dc.relation.referencesSantana, V. M., & Marrs, R. H. (2014). Flammability properties of British heathland and moorland vegetation: Models for predicting fire ignition. Journal of Environmental Management, 139, 88–96. https://doi.org/10.1016/j.jenvman.2014.02.027
dc.relation.referencesSasaki, N., & Putz, F. E. (2009). Critical need for new definitions of “forest” and “forest degradation” in global climate change agreements. Conservation Letters, 2(5), 226– 232. https://doi.org/10.1111/j.1755-263x.2009.00067.x
dc.relation.referencesSchaffhauser, A., Curt, T., Véla, E., & Tatoni, T. (2012). Forest Ecology and Management Fire recurrence effects on the abundance of plants grouped by traits in Quercus suber L . woodlands and maquis. Forest Ecology and Management, 282, 157–166. https://doi.org/10.1016/j.foreco.2012.06.047
dc.relation.referencesSchoennagel, T., Veblen, T. T., & Romme, W. H. (2004). The interaction of fire, fuels, and climate across Rocky Mountain forests. BioScience, 54(7), 661–676. https://doi.org/10.1641/0006-3568(2004)054[0661:TIOFFA]2.0.CO;2
dc.relation.referencesScott, J. H., & Reinhardt, E. D. (2001). Assessing crown fire potential by linking models of surface and crown fire behavior. USDA Forest Service - Research Paper RMRS-RP, 29 RMRS-RP, 1–62. https://doi.org/10.2737/RMRS-RP-29
dc.relation.referencesSecaira, S. C. (2020). El regimén de incendio y los rasgos funcionales de Quercus en los ecosistemas de montaña de Guatemala. CATIE.
dc.relation.referencesShlisky, A., Waugh, J., Gonzalez, P., Gonzalez, M., Manta, M., Santoso, H., Alvarado, E., Ainuddin, A., Rodríguez-trejo, D. A., Swaty, R., Schmidt, D., Kaufmann, M., Myers, R., Alencar, A., Kearns, F., Johnson, D., Smith, J., & Zollner, D. (2007). Fire, ecosystems and people : threats and strategies for global biodiversity conservation. The Nature Conservancy Global Fire Initiative Technical Report, January, 17. http://mrcc.isws.illinois.edu/living_wx/wildfires/fire_ecosystems_and_people.pdf
dc.relation.referencesSimpson, K. J., Ripley, B. S., Christin, P. A., Belcher, C. M., Lehmann, C. E. R., Thomas, G. H., & Osborne, C. P. (2016). Determinants of flammability in savanna grass species. Journal of Ecology, 104(1), 138–148. https://doi.org/10.1111/1365- 2745.12503
dc.relation.referencesSimula, M., & Mansur, E. (2011). Un desafío mundial que reclama una respuesta local. Unasylva 238, 62(2), 3–7. http://www.fao.org/docrep/015/i2560s/i2560s01.pdf
dc.relation.referencesStevens-Rumann, C. S., Kemp, K. B., Higuera, P. E., Harvey, B. J., Rother, M. T., Donato, D. C., Morgan, P., & Veblen, T. T. (2018). Evidence for declining forest resilience to wildfires under climate change. Ecology Letters, 21(2), 243–252. https://doi.org/10.1111/ele.12889
dc.relation.referencesTaber, E. M., & Mitchell, R. M. (2023). Rapid changes in functional trait expression and decomposition following high severity fire and experimental warming. Forest Ecology and Management, 541(May), 121019. https://doi.org/10.1016/j.foreco.2023.121019
dc.relation.referencesTejero, D., Mehltreter, K., Torres, A., & Kromer, T. (2011). Helechos y licopodios. La Biodiversidad En Veravruz Estudio de Caso, II(January).
dc.relation.referencesThompson, I., Mackey, B., McNulty, S., & Mosseler, A. (2009). Forest Resilience, Biodiversity, and Climate Change. A synthesis of the biodiversity/resilience/stability relationship in forest ecosystems. In Technical Series: Vol. no. 43 (Issue April 2014). http://www.cbd.int/doc/publications/cbd-ts-43-en.pdf
dc.relation.referencesTolhurst, K., & Cheney, N. P. (1999). Synopsis of the Knowledge Used in Prescribed Burning in Victoria. Victoria.
dc.relation.referencesUhl, C., & Buschbacher, R. (1985). A Disturbing Synergism Between Cattle Ranch Burning Practices and Selective Tree Harvesting in the Eastern Amazon. Biotropica, 17(4), 265. https://doi.org/10.2307/2388588
dc.relation.referencesUhl, C., & Kauffman, B. (1990). Deforestation , Fire Susceptibility , and Potential Tree Responses to Fire in the Eastern Amazon. Ecological Society of America, 71(2), 437– 449. http://www.jstor.org/stable/1940299 DEFORESTATI
dc.relation.referencesVan Wagner, C. E. (1977). Conditions for the start and spread of crown fire. Canadian Journal of Forest Research, 283.
dc.relation.referencesVásquez, A., Donoso, P., & Gerding, V. (2018). Degradación de los bosques: Concepto, proceso y estado - Un ejemplo de aplicación en bosques adultos nativos de Chile. In Silvicultura en bosques nativos Experiencias en silvicultura y restauración en Chile, Argentina y el oeste de Estados Unidos (pp. 1–281). https://www.researchgate.net/profile/Marina_Caselli/publication/325848341_Propues tas_silviculturales_para_el_manejo_de_bosques_de_Austrocedrus_chilensis_sanos _y_afectados_por_el_mal_del_cipres_de_Argentina/links/5b28eb610f7e9b1d0034b0 0b/Propuestas-silvicu
dc.relation.referencesVeblen, T. T. (1982). Growth patterns of Chusquea bamboos in the understory of Chilean Nothofagus forests and their influences in forest dynamics ( Andes) . Bulletin - Torrey Botanical Club, 109(4), 474–487. https://doi.org/10.2307/2996488
dc.relation.referencesVega, J. Cuiñas, P. Fontúrbel, M. F. C. (2000). PLANIFICAR LA PRESCRIPCIÓN PARA REDUCIR COMBUSTIBLES Y DISMINUIR EL IMPACTO SOBRE EL SUELO EN LAS QUEMAS PRESCRITAS. Cuadernos de La S.E.C.F., 189–198.
dc.relation.referencesVélez, R. (2000). La defensa contra los incendios forestales (McGraw-Hil).
dc.relation.referencesVillarreal, H., Nuñez, M., Zorro, W., & Pacheco, C. (2017). Plan de Manejo del Santuario de Fauna y Flora Iguaque. Parques Nacionales Naturales de Colombia. Unidad Administrativa Especial Del Sistema de Parques Nacionales Naturales, 263.
dc.relation.referencesViney, N. R. (1991). A review of fine fuel moisture modelling. International Journal of Wildland Fire, 1(4), 215–234. https://doi.org/10.1071/WF9910215
dc.relation.referencesWhelan, R. (1995). The Ecology of Fire.
dc.relation.referencesWhelan, R. J. (2009). The ecology of fire-developments since 1995 and outstanding questions. Proceedings of the Royal Society of Queensland, 115, 59–68.
dc.relation.referencesWilliams, R., Cook, G., Gill, A., & Moore, P. (1999). Fire regime, fire intensity and tree survival in a tropical savanna in northern Australia. Australian Journal of Ecology, 24(9), 50–59. https://doi.org/10.1890/12-0354.1
dc.relation.referencesXelhuantzi, J., Flores, J., & Chávez, Á. (2011). Análisis comparativo de cargas de combustibles en ecosistemas forestales afectados por incendios. Revista Mexicana de Ciencias Forestales, 2(3), 37–52.
dc.relation.referencesYebra, M., & Chuvieco, E. (2007). Generación de un Modelo de Peligro de Incendios Forestales mediante Teledetección y SIG. TELEDETECCIÓN - Hacia Un Mejor Entendimiento de La Dinámica Global y Regional.
dc.relation.referencesBerenguer, E., Ferreira, J., Gardner, T. A., Aragão, L. E. O. C., De Camargo, P. B., Cerri, C. E., Durigan, M., De Oliveira, R. C., Vieira, I. C. G., & Barlow, J. (2014). A large scale field assessment of carbon stocks in human-modified tropical forests. Global Change Biology, 20(12), 3713–3726. https://doi.org/10.1111/gcb.12627
dc.relation.referencesKeeley, J. E., & Pausas, J. G. (2019). Distinguishing disturbance from perturbations in fireprone ecosystems. International Journal of Wildland Fire, 28(4), 282–287. https://doi.org/10.1071/WF18203
dc.relation.referencesNepstad, D. C., Veríssimo, A., Alencar, A., Nobre, C., Lima, E., Lefebvre, P., Schlesinger, P., Potter, C., Moutinho, P., Mendoza, E., Cochrane, M., & Brooks, V. (1999). Large scale impoverishment of amazonian forests by logging and fire. Nature, 398(6727), 505–508. https://doi.org/10.1038/19066
dc.relation.referencesPérez, M., Lagunes-Espinoza, L. del C., López-Upton, J., Ramos-Juárez, J., & Aranda Ibáñez, E. M. (2013). Morfometría, germinación y composición mineral de semillas de Lupinus silvestres. Bioagro, 25(2), 101–108.
dc.relation.referencesRuiz-corzo, R., Aryal, D. R., Venegas-sandoval, A., Jerez-ramírez, D. O., Fernández zúñiga, K. S., López-cruz, S. C., López-hernández, J. C., Peña-alvarez, B., & Velázquez-sanabria, C. A. (2022). Temporal dynamics of forest fuels and effect of fire in cerro Nambiyugua , Chiapas , Mexico. Ecosistemas y Recursos Agropecuarios, 9(2), 1–12. https://doi.org/10.19136/era.a9n2.3253
dc.relation.referencesRussell-Smith, J., Monagle, C., Jacobsohn, M., Beatty, R. L., Bilbao, B., Millán, A., Vessuri, H., & Sánchez-Rose, I. (2017). Can savanna burning projects deliver measurable greenhouse emissions reductions and sustainable livelihood opportunities in fireprone settings? Climatic Change, 140(1), 47–61. https://doi.org/10.1007/s10584-013- 0910-5
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocSanidad de los bosques
dc.subject.agrovocForest health
dc.subject.agrovocIncendios forestales
dc.subject.agrovocForest fires
dc.subject.agrovocCombustibles
dc.subject.agrovocFuels
dc.subject.proposalincendio forestal
dc.subject.proposalcombustible
dc.subject.proposalrasgos funcionales
dc.subject.proposalForest Fire
dc.subject.proposalFuels
dc.subject.proposalFunctional traits
dc.title.translatedInfluence of forest fires on the composition and structure of vegetative fuels in burned areas of the Santuario de Fauna y Flora Iguaque
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleDegradation of tropical forest in Colombia: Impacts of fire
oaire.fundernameUSAID
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dc.contributor.orcid0000-0002-0540-080X
dc.contributor.researchgateAlejandra Reyes Palacios


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito