Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorPrias Caicedo, Omar
dc.contributor.authorDe la Rosa Ramos, Luis Rafael
dc.date.accessioned2023-11-03T16:29:46Z
dc.date.available2023-11-03T16:29:46Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84884
dc.descriptionilustraciones
dc.description.abstractSe desarrolló una herramienta de modelación para la evaluación de rutas tecnológicas de aprovechamiento energético de biomasas colombianas, a través del planteamiento y solución de un problema de programación lineal y la realización de casos de estudio bajo diferentes condiciones para su análisis. Las biomasas estudiadas incluyen agrícolas como el tamo de arroz, rastrojo de maíz, vástago de plátano, entre otras, y residuos pecuarios como el estiércol bovino y avícola. Su caracterización fisicoquímica, así como los principales criterios a tener en cuenta para su uso energético, fueron obtenidos mediante revisión de literatura especializada. También, se llevó a cabo un estudio de vigilancia tecnológica para conocer las tendencias y principales características de los procesos que pueden utilizarse para las biomasas estudiadas, definiéndose la combustión, pirólisis, gasificación, digestión anaeróbica y fermentación, como los procesos en este modelo. Con esta información se consultaron parámetros técnicos reportados, para la conversión de las biomasas en los productos de interés, los cuales fueron definidos en calor, electricidad, aceite pirolítico (bioaceite) y bioetanol; y económicos como los costos de operación, de capital de inversión y precios de ventas de productos. Finalmente se realizó la programación del modelo matemático, que busca maximizar la utilidad por la venta de los productos generados, a través del mejor arreglo entre las biomasas y tecnologías, obteniéndose bajo el escenario de exceso de materias primas, un máximo de la función objetivo de USD$ 400 millones al año, así como un mejor desempeño de las tecnologías térmicas frente a las bioquímicas en los casos estudiados. (Texto tomado de la fuente)
dc.description.abstractA program was developed for technological routes evaluation in order to use Colombian biomass for energy uses, through the approach and solution of a linear programming problem. The types of biomass studied were rice straw, corn stover, banana stems, etc., and livestock residues such as bovine and manure poultry. Physicochemical characterization of theses residues, as well as the criteria to be used for energetic purposes, was obtained through a review of specialized literature. A technological watch was also carried out to find out the trends and main characteristics of the processes that can be used for the main objective: combustion, pyrolysis, gasification, anaerobic digestion and fermentation were the processes used in this model. With this information, technical parameters were consulted for the conversion of biomasses into the products, which were defined as heat, electricity, pyrolytic oil (bio-oil) and bioethanol; and for economic parameters, such as operating costs, capital investment, and product sales prices. Finally, the programming of the mathematical model was carried out, which seeks to maximize the profit from the sale of the products, through the best arrangement between biomasses and technologies. Under the scenario of excess raw materials, a maximum of the objective function of USD$400 million per year was obtained, as well as a better performance of thermal technologies compared to biochemical ones for the study cases.
dc.format.extentxvi, 122 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleDesarrollo de una herramienta de modelamiento para la evaluación de alternativas de aprovechamiento energético de biomasa en Colombia
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica
dc.contributor.researchgroupGrupo de Investigación en el Sector Energético Colombiano GRISEC
dc.description.degreelevelMaestría
dc.description.researchareaEnergías renovables y eficiencia energética
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references[1] M. A. Destek and A. Aslan, “Renewable and non-renewable energy consumption and economic growth in emerging economies: Evidence from bootstrap panel causality,” Renew. Energy, vol. 111, pp. 757–763, 2017.
dc.relation.references[2] A. Demirbas, “Importance of biomass energy sources for Turkey,” Energy Policy, vol. 36, no. 2, pp. 834–842, 2008.
dc.relation.references[3] REN21, Renewables 2022 Global Status. 2022.
dc.relation.references[4] A. Kumar, N. Kumar, P. Baredar, and A. Shukla, “A review on biomass energy resources, potential, conversion and policy in India,” Renew. Sustain. Energy Rev., vol. 45, pp. 530–539, 2015.
dc.relation.references[5] J. Cai et al., “Review of physicochemical properties and analytical characterization of lignocellulosic biomass,” Renew. Sustain. Energy Rev., vol. 76, no. October 2016, pp. 309–322, 2017.
dc.relation.references[6] M. Hupa, O. Karlström, and E. Vainio, “Biomass combustion technology development - It is all about chemical details,” Proc. Combust. Inst., vol. 36, no. 1, pp. 113–134, 2017.
dc.relation.references[7] S. K. Sansaniwal, M. A. Rosen, and S. K. Tyagi, “Global challenges in the sustainable development of biomass gasification: An overview,” Renew. Sustain. Energy Rev., vol. 80, no. March, pp. 23–43, 2017.
dc.relation.references[8] M. Puig-Arnavat, J. C. Bruno, and A. Coronas, “Review and analysis of biomass gasification models,” Renew. Sustain. Energy Rev., vol. 14, no. 9, pp. 2841–2851, 2010.
dc.relation.references[9] A. Kumar, D. D. Jones, and M. A. Hanna, “Thermochemical biomass gasification: A review of the current status of the technology,” Energies, vol. 2, no. 3, pp. 556–581, 2009.
dc.relation.references[10] A. Sharma, V. Pareek, and D. Zhang, “Biomass pyrolysis - A review of modelling, process parameters and catalytic studies,” Renew. Sustain. Energy Rev., vol. 50, pp. 1081–1096, 2015.
dc.relation.references[11] F. X. Collard and J. Blin, “A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin,” Renew. Sustain. Energy Rev., vol. 38, pp. 594–608, 2014.
dc.relation.references[12] C. Sawatdeenarunat, K. C. Surendra, D. Takara, H. Oechsner, and S. K. Khanal, “Anaerobic digestion of lignocellulosic biomass: Challenges and opportunities,” Bioresour. Technol., vol. 178, pp. 178–186, 2015.
dc.relation.references[13] R. Lal, “World crop residues production and implications of its use as a biofuel,” vol. 31, no. 2005, pp. 575–584, 2012.
dc.relation.references[14] M. C. Heller, G. A. Keoleian, M. K. Mann, and T. A. Volk, “Life cycle energy and environmental benefits of generating electricity from willow biomass,” vol. 29, pp. 1023–1042, 2004.
dc.relation.references[15] Departamento administrativo de Ciencia Tecnolgía e Innovación - COLCIENCIAS, PLAN ESTRATÉGICO DE CIENCIA, TECNOLOGÍA E INNOVACIÓN EN ENERGÍA Y MINERÍA 2013-2022. 2013, p. 168.
dc.relation.references[16] Colombia, “Ley 1715 de 2014 por medio de la cual se regula la integración de las energías renovables no convencionales al sistema energético nacional.” Bogotá D.C., p. 16, 2014.
dc.relation.references[17] R. C. Saxena, D. K. Adhikari, and H. B. Goyal, “Biomass-based energy fuel through biochemical routes: A review,” Renew. Sustain. Energy Rev., vol. 13, no. 1, pp. 167–178, 2009.
dc.relation.references[18] H. B. Goyal, D. Seal, and R. C. Saxena, “Bio-fuels from thermochemical conversion of renewable resources: A review,” Renew. Sustain. Energy Rev., vol. 12, no. 2, pp. 504–517, 2008.
dc.relation.references[19] R. Warnecke, “Gasification of biomass: Comparison of fixed bed and fluidized bed gasifier,” Biomass and Bioenergy, vol. 18, no. 6, pp. 489–497, 2000.
dc.relation.references[20] S. Al Arni, “Comparison of slow and fast pyrolysis for converting biomass into fuel,” Renew. Energy, pp. 1–5, 2017.
dc.relation.references[21] S. Zhang et al., “Liquefaction of biomass and upgrading of bio-oil: A review,” Molecules, vol. 24, no. 12, pp. 1–30, 2019.
dc.relation.references[22] A. R. K. Gollakota, N. Kishore, and S. Gu, “A review on hydrothermal liquefaction of biomass,” Renew. Sustain. Energy Rev., vol. 81, no. August 2016, pp. 1378–1392, 2018.
dc.relation.references[23] K. F. Adekunle and J. A. Okolie, “A Review of Biochemical Process of Anaerobic Digestion,” Adv. Biosci. Biotechnol., vol. 06, no. 03, pp. 205–212, 2015.
dc.relation.references[24] Y. Lin and S. Tanaka, “Ethanol fermentation from biomass resources: Current state and prospects,” Appl. Microbiol. Biotechnol., vol. 69, no. 6, pp. 627–642, 2006.
dc.relation.references[25] M. Lübken, T. Gehring, and M. Wichern, “Microbiological fermentation of lignocellulosic biomass: Current state and prospects of mathematical modeling,” Appl. Microbiol. Biotechnol., vol. 85, no. 6, pp. 1643–1652, 2010.
dc.relation.references[26] L. Kong, S. M. Sen, C. A. Henao, J. A. Dumesic, and C. T. Maravelias, “A superstructure-based framework for simultaneous process synthesis, heat integration, and utility plant design,” Comput. Chem. Eng., vol. 91, pp. 68–84, 2016.
dc.relation.references[28] J. E. White, W. J. Catallo, and B. L. Legendre, “Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies,” J. Anal. Appl. Pyrolysis, vol. 91, no. 1, pp. 1–33, 2011.
dc.relation.references[29] S. Wang, G. Dai, H. Yang, and Z. Luo, “Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review,” Prog. Energy Combust. Sci., vol. 62, pp. 33–86, 2017.
dc.relation.references[30] M. A. Hernández, J. Romero, C. Jaime, and J. León-pulido, “Lignocellulosic Biomass from Fast-Growing Species in Colombia and their Use as Bioresources for Biofuel Production,” vol. 58, pp. 541–546, 2017.
dc.relation.references[31] S. R. Rubio, F. E. Sierra, and A. Guerrero, “Gasificación de materiales orgáni- cos residuales Gasification from waste organic materials,” Ing. e Investig., vol. 31, no. 3, pp. 17–25, 2011.
dc.relation.references[32] G. Marrugo, C. F. Valdés, and F. Chejne, “Biochar Gasification: An Experimental Study on Colombian Agroindustrial Biomass Residues in a Fluidized Bed,” Energy and Fuels, vol. 31, no. 9, pp. 9408–9421, 2017.
dc.relation.references[33] A. Blanco and F. Chejne, “Modeling and simulation of biomass fast pyrolysis in a fluidized bed reactor,” J. Anal. Appl. Pyrolysis, vol. 118, pp. 105–114, 2016.
dc.relation.references[34] UPME Unidad de Planeación Minero Energética, “Balance Energético Colombiano BECO,” upme.gov.co, 2022. [Online]. Available: https://www1.upme.gov.co/DemandayEficiencia/Paginas/BECO.aspx.
dc.relation.references[35] UPME Unidad de Planeación Minero Energética, “Atlas del Potencial Energético de la Biomasa Residual en Colombia.” bo, p. 180, 2008.
dc.relation.references[36] UPME Unidad de Planeación Minero Energética, “Informe de Gestión 2017- 2018,” Bogotá D.C., 2018.
dc.relation.references[37] Patiño Martínez PE, “PE Biomasa Residual Vegetal: Tecnologías de transformación y estado actual. Innovaciencia facultad cienc. exactas fis. naturales.,” Innovaciencia, vol. 2, no. 1, pp. 45–52, 2014.
dc.relation.references[38] P. McKendry, “Energy production from biomass (part 1): Overview of biomass,” Bioresour. Technol., vol. 83, no. 1, pp. 37–46, 2002.
dc.relation.references[39] S. V Vassilev, C. G. Vassileva, and V. S. Vassilev, “Advantages and disadvantages of composition and properties of biomass in comparison with coal : An overview,” FUEL, vol. 158, pp. 330–350, 2015.
dc.relation.references[40] J. Sadhukhan, K. Siew, and E. Martinez, Biorefineries and Chemical Processes. Chichester: John Wiley & Sons, Ltd, 2014.
dc.relation.references[41] A. Valverde G., B. Sarria L., and J. P. Monteagudo Y., “Análisis comparativo de las características fisicoquímicas de la cascarilla de arroz.,” Sci. Tech., no. 37, p. 6, 2007.
dc.relation.references[42] R. J. Macías Naranjo, F. Chejne Janna, J. I. Montoya Arbeláez, and A. Blanco Leal, “Gasificación de bagazo de caña y carbón en planta piloto,” Rev. Mutis, vol. 4, no. 1, pp. 24–32, 2014.
dc.relation.references[43] D. V Vidal, J. Torres, and L. O. González, “Ceniza De Bagazo De Caña Para Elaboración De Materiales De Construcción: Estudio Preliminar,” MOMENTO - Rev. Física, vol. 0, no. 48E, pp. 14–23, 2014.
dc.relation.references[44] P. Lahijani and Z. A. Zainal, “Bioresource Technology Gasification of palm empty fruit bunch in a bubbling fluidized bed : A performance and agglomeration study,” Bioresour. Technol., vol. 102, no. 2, pp. 2068–2076, 2011.
dc.relation.references[45] E. Del, E. Del, D. Andrés, and R. Ramírez, “LAS TÉCNICAS DE CO-FIRING Y REBURN,” pp. 1–58, 2018.
dc.relation.references[46] X. Li, V. Strezov, and T. Kan, “Energy recovery potential analysis of spent coffee grounds pyrolysis products,” J. Anal. Appl. Pyrolysis, vol. 110, pp. 79–87, 2014.
dc.relation.references[47] E. Arenas, Z. Zapata, A. Jos, and D. A. Camargo-trillos, “Biomass and Bioenergy CaCO 3 and air / steam effect on the gasification and biohydrogen performance of corn cob as received : Application in the Colombian Caribbean region,” vol. 153, no. July, 2021.
dc.relation.references[48] N. Abdullah, F. Sulaiman, R. M. Taib, and M. A. Miskam, “Pyrolytic oil of banana (Musa spp.) pseudo-stem via fast process,” AIP Conf. Proc., vol. 1657, 2015.
dc.relation.references[49] Universidad Nacional de Colombia, TECSOL, and UPME Unidad de Planeación Minero Energética, “Estimación del potencial de conversión a biogás de la biomasa en colombia y su aprovechamiento,” Bogotá D.C., 2018.
dc.relation.references[50] G. Su et al., “Valorization of animal manure via pyrolysis for bioenergy: A review,” J. Clean. Prod., vol. 343, no. February, p. 130965, 2022.
dc.relation.references[51] A. Kuila and V. Sharma, Principles and Applications of Fermentation Technology, 1st ed. Beverly, USA: John Wiley & Sons, Ltd, 2018.
dc.relation.references[52] A. P. C. Faaij, “Bio-energy in Europe: Changing technology choices,” Energy Policy, vol. 34, no. 3, pp. 322–342, 2006.
dc.relation.references[53] M. Mandø, “4 - Direct combustion of biomass,” in Biomass combustion science, technology and engineering, Woodhead Publishing Limited, 2013, pp. 61–83.
dc.relation.references[54] M. Won et al., “Recent advances of thermochemical conversion processes for biorefinery,” Bioresour. Technol., vol. 343, no. August 2021, p. 126109, 2022.
dc.relation.references[55] A. M. Elgarahy, A. Hammad, D. M. El-sherif, M. Abouzid, M. S. Gaballah, and K. Z. Elwakeel, “Thermochemical conversion strategies of biomass to biofuels, techno-economic and bibliometric analysis : A conceptual review,” J. Environ. Chem. Eng., vol. 9, no. 6, p. 106503, 2021.
dc.relation.references[56] S. Van Loo and J. Koppeja, The Handbook of Biomass Combustion and Co-firing. London: Earthscan, 2008.
dc.relation.references[57] M. Kaltschmitt, N. J. Themelis, L. Y. Bronicki, S. Lennart, and L. A. Vega, Renewable Energy Systems. Nueva York: Springer, 2013.
dc.relation.references[58] P. Roy and G. Dias, “Prospects for pyrolysis technologies in the bioenergy sector: A review,” Renew. Sustain. Energy Rev., vol. 77, no. May 2016, pp. 59–69, 2017.
dc.relation.references[59] E. Thorin et al., STATE OF THE ART IN THE WASTE TO ENERGY AREA Technology and Systems, no. May. 2011, pp. 1–79.
dc.relation.references[60] P. A. Brownsort, “Biomass Pyrolysis Processes: Review of Scope, Control and Variability,” Biomass, p. 38, 2009.
dc.relation.references[61] A. Nosakhare, P. U. Okoye, B. Gunes, and H. T. L. Al, “Waste biomass valorization for the production of biofuels and value- added products: A comprehensive review of thermochemical, biological and integrated processes,” Process Saf. Environ. Prot., vol. 159, pp. 323–344, 2022.
dc.relation.references[62] A. Krishna, S. Sree, V. Vuppaladadiyam, and A. Awasthi, “Biomass pyrolysis : A review on recent advancements and green hydrogen production,” Bioresour. Technol., vol. 364, no. August, p. 128087, 2022.
dc.relation.references[63] J. A. Garcia-Nunez et al., “Historical Developments of Pyrolysis Reactors: A Review,” Energy and Fuels, vol. 31, no. 6, pp. 5751–5775, 2017.
dc.relation.references[64] J. De Wilde, “Gas-solid fluidized beds in vortex chambers,” Chem. Eng. Process. Process Intensif., vol. 85, pp. 256–290, 2014.
dc.relation.references[65] J. O. Ighalo et al., “Flash pyrolysis of biomass: a review of recent advances,” Clean Technol. Environ. Policy, vol. 24, no. 8, pp. 2349–2363, 2022.
dc.relation.references[66] H. Shahbeik et al., “Synthesis of liquid biofuels from biomass by hydrothermal gasification : A critical review,” Renew. Sustain. Energy Rev., vol. 167, no. June, p. 112833, 2022.
dc.relation.references[67] A. Kushwah, T. R. Reina, and M. Short, “Modelling approaches for biomass gasi fi ers : A comprehensive overview,” Sci. Total Environ., vol. 834, no. March, p. 155243, 2022.
dc.relation.references[68] F. B. C. Mandl, I. Obrenberger, “Updraft- Fixed Bed gasification of Softwood Bellets: Mathematical Modelling and Comparison with experimental data,” Eur. biomass Conf. Exhib., no. July, pp. 1–9, 2009.
dc.relation.references[69] N. S. Barman, S. Ghosh, and S. De, “Gasification of biomass in a fixed bed downdraft gasifier - A realistic model including tar,” Bioresour. Technol., vol. 107, pp. 505–511, 2012.
dc.relation.references[70] K. Qin, P. A. Jensen, W. Lin, and A. D. Jensen, “Biomass gasification behavior in an entrained flow reactor: Gas product distribution and soot formation,” Energy and Fuels, vol. 26, no. 9, pp. 5992–6002, 2012.
dc.relation.references[71] P. Mckendry, “Energy production from biomass ( part 2 ): conversion technologies,” vol. 83, no. July 2001, pp. 47–54, 2002.
dc.relation.references[72] M. M. Uddin and M. M. Wright, “Anaerobic digestion fundamentals, challenges, and technological advances,” Phys. Sci. Rev., 2022.
dc.relation.references[73] C. A. Sevillano, A. A. Pesantes, E. Peña Carpio, E. J. Martínez, and X. Gómez, “Anaerobic digestion for producing renewable energy-the evolution of this technology in a new uncertain scenario,” Entropy, vol. 23, no. 2, pp. 1–23, 2021.
dc.relation.references[74] G. Náthia-Neves, M. Berni, G. Dragone, S. I. Mussatto, and T. Forster-Carneiro, “Anaerobic digestion process: technological aspects and recent developments,” Int. J. Environ. Sci. Technol., vol. 15, no. 9, pp. 2033–2046, 2018.
dc.relation.references[75] A. Tiwary, I. D. Williams, D. C. Pant, and V. V. N. Kishore, “Emerging perspectives on environmental burden minimisation initiatives from anaerobic digestion technologies for community scale biomass valorisation,” Renew. Sustain. Energy Rev., vol. 42, pp. 883–901, 2015.
dc.relation.references[76] Preethi, M. Gunasekaran, G. Kumar, O. P. Karthikeyan, S. Varjani, and J. Rajesh Banu, “Lignocellulosic biomass as an optimistic feedstock for the production of biofuels as valuable energy source: Techno-economic analysis, Environmental Impact Analysis, Breakthrough and Perspectives,” Environ. Technol. Innov., vol. 24, p. 102080, 2021.
dc.relation.references[77] S. Manikandan, S. Vickram, R. Sirohi, and R. Subbaiya, “Critical review of biochemical pathways to transformation of waste and biomass into bioenergy,” Bioresour. Technol., vol. 372, no. December 2022, p. 128679, 2023.
dc.relation.references[78] K. Kucharska, P. Rybarczyk, I. Hołowacz, R. Łukajtis, M. Glinka, and M. Kamiński, “Pretreatment of lignocellulosic materials as substrates for fermentation processes,” Molecules, vol. 23, no. 11, pp. 1–32, 2018.
dc.relation.references[79] B. Volynets, F. Ein-Mozaffari, and Y. Dahman, “Biomass processing into ethanol: Pretreatment, enzymatic hydrolysis, fermentation, rheology, and mixing,” Green Process. Synth., vol. 6, no. 1, pp. 1–22, 2017.
dc.relation.references[80] H. Jørgensen, J. Vibe-Pedersen, J. Larsen, and C. Felby, “Liquefaction of lignocellulose at high-solids concentrations,” Biotechnol. Bioeng., vol. 96, no. 5, pp. 862–870, 2007.
dc.relation.references[81] A. Wiese, “Biomass Combustion for Electricity Generation,” in Encyclopedia of Sustainability Science and Technology, Nueva York: Springer, 2012, pp. 1231–1268.
dc.relation.references[82] M. Tahmid Islam, J. L. Klinger, and M. Toufiq Reza, “Evaluating combustion characteristics and combustion kinetics of corn stover-derived hydrochars by cone calorimeter,” Chem. Eng. J., vol. 452, no. P2, p. 139419, 2023.
dc.relation.references[83] A. M. Shoaib, R. A. El-Adly, M. H. M. Hassanean, A. Youssry, and A. A. Bhran, “Developing a free-fall reactor for rice straw fast pyrolysis to produce bio-products,” Egypt. J. Pet., vol. 27, no. 4, pp. 1305–1311, 2018.
dc.relation.references[84] C. A. Mullen, A. A. Boateng, N. M. Goldberg, I. M. Lima, D. A. Laird, and K. B. Hicks, “Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis,” Biomass and Bioenergy, vol. 34, no. 1, pp. 67–74, 2010.
dc.relation.references[85] E. V. Gonçalves, F. L. Seixas, L. R. de Souza Scandiuzzi Santana, M. H. N. O. Scaliante, and M. L. Gimenes, “Economic trends for temperature of sugarcane bagasse pyrolysis,” Can. J. Chem. Eng., vol. 95, no. 7, pp. 1269–1279, 2017.
dc.relation.references[86] A. E. Atabani et al., “A state-of-the-art review on spent coffee ground (SCG) pyrolysis for future biorefinery,” Chemosphere, vol. 286, no. April 2021, 2022.
dc.relation.references[87] S. Fukuda, “Pyrolysis investigation for bio-oil production from various biomass feedstocks in Thailand,” Int. J. Green Energy, vol. 12, no. 3, pp. 215–224, 2015.
dc.relation.references[88] A. L. Maglinao, S. C. Capareda, and H. Nam, “Fluidized bed gasification of high tonnage sorghum, cotton gin trash and beef cattle manure: Evaluation of synthesis gas production,” Energy Convers. Manag., vol. 105, pp. 578–587, 2015.
dc.relation.references[89] M. Tańczuk, R. Junga, S. Werle, M. Chabiński, and Ziółkowski, “Experimental analysis of the fixed bed gasification process of the mixtures of the chicken manure with biomass,” Renew. Energy, vol. 136, pp. 1055–1063, 2019.
dc.relation.references[90] D. Perondi et al., “Steam gasification of poultry litter biochar for bio-syngas production,” Process Saf. Environ. Prot., vol. 109, pp. 478–488, 2017.
dc.relation.references[91] M. A. Hamad, A. M. Radwan, D. A. Heggo, and T. Moustafa, “Hydrogen rich gas production from catalytic gasi fi cation of biomass,” Renew. Energy, vol. 85, pp. 1290–1300, 2016.
dc.relation.references[92] Y. Pang, S. Shen, and Y. Chen, “High Temperature Steam Gasification of Corn Straw Pellets in Downdraft Gasifier: Preparation of Hydrogen-Rich Gas,” Waste and Biomass Valorization, vol. 10, no. 5, pp. 1333–1341, 2019.
dc.relation.references[93] G. Venkatesh, P. R. Reddy, and S. Kotari, “Generation of producer gas using coconut shells and sugar cane bagasse in updraft gasifier,” Mater. Today Proc., vol. 4, no. 8, pp. 9203–9209, 2017.
dc.relation.references[94] J. George, P. Arun, and C. Muraleedharan, “Experimental investigation on co-gasification of coffee husk and sawdust in a bubbling fluidised bed gasifier,” J. Energy Inst., vol. 92, no. 6, pp. 1977–1986, 2019.
dc.relation.references[95] W. A. Solís, J. A. Vel, S. Cardona, L. M. Orozco, L. G. Claudia, and L. A. Rios, “Valorization of banana residues via gasification coupled with electricity generation,” Sustain. Energy Technol. Assessments, vol. 44, no. January 2020, 2021.
dc.relation.references[96] G. G. Jankes, M. R. Trninić, M. S. Stamenić, T. S. Simonović, N. D. Tanasić, and J. M. Labus, “Biomass gasification with CHP production: A review of the state-of-the-art technology and near future perspectives,” Therm. Sci., vol. 16, no. SUPPL. 1, pp. 115–130, 2012.
dc.relation.references[97] J. Ahrenfeldt, T. P. Thomsen, U. Henriksen, and L. R. Clausen, “Biomass gasification cogeneration - A review of state of the art technology and near future perspectives,” Appl. Therm. Eng., vol. 50, no. 2, pp. 1407–1417, 2013.
dc.relation.references[98] S. Jain, S. Jain, I. T. Wolf, J. Lee, and Y. W. Tong, “A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste,” Renew. Sustain. Energy Rev., vol. 52, pp. 142–154, 2015.
dc.relation.references[99] I. Rocamora, S. T. Wagland, R. Villa, E. W. Simpson, O. Fernández, and Y. Bajón-Fernández, “Dry anaerobic digestion of organic waste: A review of operational parameters and their impact on process performance,” Bioresour. Technol., vol. 299, no. September 2019, 2020.
dc.relation.references[100] P. S. Bandgar, S. Jain, and N. L. Panwar, “Biomass and Bioenergy A comprehensive review on optimization of anaerobic digestion technologies for lignocellulosic biomass available in India,” Biomass and Bioenergy, vol. 161, no. May, p. 106479, 2022.
dc.relation.references[101] I. M. Nasir, T. I. Mohd Ghazi, and R. Omar, “Anaerobic digestion technology in livestock manure treatment for biogas production: A review,” Eng. Life Sci., vol. 12, no. 3, pp. 258–269, 2012.
dc.relation.references[102] R. Boopathy and M. Mariappan, “Anaerobic digestion of coffee pulp,” Asian Environ., vol. 8, no. 4, pp. 21–23, 1986.
dc.relation.references[103] S. Suhartini et al., “Sustainable strategies for anaerobic digestion of oil palm empty fruit bunches in Indonesia: a review,” Int. J. Sustain. Energy, vol. 41, no. 11, pp. 2044–2096, 2022.
dc.relation.references[104] V. C. Kalia, V. Sonakya, and N. Raizada, “Anaerobic digestion of banana stem waste,” Bioresour. Technol., vol. 73, no. 2, pp. 191–193, 2000.
dc.relation.references[105] Q. Yan et al., “Cow manure as a lignocellulosic substrate for fungal cellulase expression and bioethanol production,” AMB Express, vol. 8, no. 1, 2018.
dc.relation.references[106] G. W. Asrat, S. Gizachew, S. C. Bhagwan, and ravanshi, “Bio-ethanol production from poultry manure at Bonga Poultry Farm in Ethiopia,” African J. Environ. Sci. Technol., vol. 7, no. 6, pp. 435–440, 2013.
dc.relation.references[107] X. Jin, J. Ma, J. Song, and G. Q. Liu, “Promoted bioethanol production through fed-batch semisimultaneous saccharification and fermentation at a high biomass load of sodium carbonate-pretreated rice straw,” Energy, vol. 226, p. 120353, 2021.
dc.relation.references[108] D. He et al., “High-solids saccharification and fermentation of ball-milled corn stover enabling high titer bioethanol production,” Renew. Energy, vol. 202, no. November 2022, pp. 336–346, 2023.
dc.relation.references[109] Y. Jugwanth, Y. Sewsynker-Sukai, and E. B. Gueguim Kana, “Valorization of sugarcane bagasse for bioethanol production through simultaneous saccharification and fermentation: Optimization and kinetic studies,” Fuel, vol. 262, no. August 2019, p. 116552, 2020.
dc.relation.references[110] I. S. Choi, S. G. Wi, S. B. Kim, and H. J. Bae, “Conversion of coffee residue waste into bioethanol with using popping pretreatment,” Bioresour. Technol., vol. 125, pp. 132–137, 2012.
dc.relation.references[111] M. Han, Y. Kim, S. W. Kim, and G. W. Choi, “High efficiency bioethanol production from OPEFB using pilot pretreatment reactor,” J. Chem. Technol. Biotechnol., vol. 86, no. 12, pp. 1527–1534, 2011.
dc.relation.references[112] E. L. de Souza, N. Sellin, C. Marangoni, and O. Souza, “The Influence of Different Strategies for the Saccharification of the Banana Plant Pseudostem and the Detoxification of Concentrated Broth on Bioethanol Production,” Appl. Biochem. Biotechnol., vol. 183, no. 3, pp. 943–965, 2017.
dc.relation.references[113] F. Kabir et al., “Techno-economic comparison of process technologies for biochemical ethanol production from corn stover q,” Fuel, vol. 89, pp. S20–S28, 2010.
dc.relation.references[114] S. Satchatippavarn, E. Martinez-Hernandez, M. Y. Leung Pah Hang, M. Leach, and A. Yang, “Urban biorefinery for waste processing,” Chem. Eng. Res. Des., vol. 107, pp. 81–90, 2016.
dc.relation.references[115] R. L. Bain et al., “Biopower Technical Assessment: State of the Industry and Technology,” Renew. Energy, no. March, 2003.
dc.relation.references[116] M. M. Wright, D. E. Daugaard, J. A. Satrio, and R. C. Brown, “Techno-economic analysis of biomass fast pyrolysis to transportation fuels,” Fuel, vol. 89, no. SUPPL. 1, pp. S2–S10, 2010.
dc.relation.references[117] M. A. Najm and G. Ayoub, “An optimisation model for regional integrated solid waste management I . Model formulation,” Waste Manag. Res., vol. 20, no. 1, pp. 37–45, 2002.
dc.relation.references[118] J. D. Murphy and N. M. Power, “A technical, economic and environmental comparison of composting and anaerobic digestion of biodegradable municipal waste,” J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng., vol. 41, no. 5, pp. 865–879, 2006.
dc.relation.references[119] M. Patel, X. Zhang, and A. Kumar, “Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies : A review,” Renew. Sustain. Energy Rev., vol. 53, pp. 1486–1499, 2016.
dc.relation.references[120] J. Aburto, E. Martinez-Hernández, and M. A. Amezcua-Allieri, “Techno-Economic Feasibility of Steam and Electric Power Generation from the Gasification of Several Biomass in a Sugarcane Mill,” Bioenergy Res., vol. 15, no. 4, pp. 1777–1786, 2022.
dc.relation.references[121] U.S. Bureau of Labor Statistics, “Average energy prices for the United States,” Midwest Information Office, 2023. [Online]. Available: https://www.bls.gov/regions/midwest/data/averageenergyprices_selectedareas_table.htm.
dc.relation.references[122] M. Talmadge et al., “Techno-economic analysis for co-processing fast pyrolysis liquid with vacuum gasoil in FCC units for second-generation biofuel production,” Fuel, vol. 293, p. 119960, 2021.
dc.relation.references[123] Global Petrol Prices, “Ethanol prices,” Global Petrol Prices, 2023. [Online]. Available: https://www.globalpetrolprices.com/ethanol_prices/.
dc.relation.references[124] J. Moncada B, V. Aristizábal M, and C. A. Cardona A, “Design strategies for sustainable biorefineries,” Biochem. Eng. J., vol. 116, pp. 122–134, 2016.
dc.relation.references[125] M. A. Najm, M. El-fadel, G. Ayoub, and M. El-taha, “An optimisation model for regional integrated solid waste management II . Model application and sensitivity analyses,” Waste Manag. Res. ISWA., vol. 20, no. May 2014, pp. 46–50, 2002.
dc.relation.references[126] J. P. Eason and S. Cremaschi, “A multi-objective superstructure optimization approach to biofeedstocks-to-biofuels systems design,” Biomass and Bioenergy, vol. 63, pp. 64–75, 2014.
dc.relation.references[127] R. Hakawati, B. M. Smyth, G. McCullough, F. De Rosa, and D. Rooney, “What is the most energy efficient route for biogas utilization: Heat, electricity or transport?,” Appl. Energy, vol. 206, no. May, pp. 1076–1087, 2017.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembTermoquímica
dc.subject.lembThermochemistry
dc.subject.lembEnergía biomásica
dc.subject.lembVital force
dc.subject.lembBiomass energy
dc.subject.proposalBiomasa
dc.subject.proposalProcesos termoquímicos
dc.subject.proposalProcesos bioquímicos
dc.subject.proposalAprovechamiento energético
dc.subject.proposalProgramación lineal
dc.subject.proposalBiomass
dc.subject.proposalThermochemical processes
dc.subject.proposalBiochemical processes
dc.subject.proposalEnergy use
dc.subject.proposalLinear programming
dc.title.translatedDevelopment of a modeling tool for evaluation of energy alternatives uses of biomass in Colombia
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito