Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorGonzález Álvarez, Nelfi Gertrudis
dc.contributor.authorLópez Avendaño, Brandon
dc.date.accessioned2023-11-08T13:56:55Z
dc.date.available2023-11-08T13:56:55Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84912
dc.descriptionilustraciones, diagramas
dc.description.abstractLa pérdida crediticia esperada (ECL) permite establecer bajo la normatividad IFRS 9 el nivel de provisión y el cálculo de reservas esperadas de una entidad financiera, donde a mayor riesgo percibido, existirá un mayor nivel de provisión en los balances del banco. Se ha encontrado en la literatura que, por medio de indicadores macroeconómicos, información transaccional y sectorial, índices financieros y medidas de riesgo, es posible prever la pérdida crediticia esperada en diferentes periodos de tiempo, por lo tanto, en el presente trabajo se proponen 437 variables que han resultado ser significativas en diferentes estudios, a las cuales, se les realizó una reducción de dimensionalidad y selección de variables, resultando 10 de éstas las que mejor explican la ECL. Adicionalmente, se propusieron modelos paramétricos y no paramétricos como: Regresión Lineal Múltiple, Lasso, Ridge, Bosques Aleatorios, entre otros para pronosticar la pérdida crediticia esperada, siendo el modelo Extremely Randomized Trees (Extra Trees) el que mejor desempeño tuvo en las medidas MSE, MAE y coeficiente de determinación, con valores de 0.0078, 0.0564 y 0.9199, respectivamente. Se encontró que gran parte de los predictores presentaban relaciones no lineales con la variable respuesta que el modelo era capaz de capturar, y por medio de los valores de SHAP (Shapley Additive Explanation) se pudo evidenciar que las relaciones de las variables independientes con la ECL guardaban sentido con la teoría económica. (Texto tomado de la fuente)
dc.description.abstractExpected credit loss (ECL) enables financial institutions to determine the provision level and calculate expected reserves in accordance with IFRS 9 regulations. Higher perceived risk corresponds to higher provision levels recorded in the bank's balance sheets. Extensive research has shown that by utilizing macroeconomic indicators, transactional and sectorial information, financial ratios, and risk measures, it is possible to forecast the expected credit loss across different time periods. In this study, a set of 437 variables, identified as significant in previous research, underwent dimensionality reduction and variable selection procedures, resulting in the identification of 10 key predictors that best explain the ECL. Moreover, a range of parametric and non-parametric models, including Multiple Linear Regression, Lasso, Ridge, Random Forests, among others, were evaluated for their ability to forecast the expected credit loss. Among these models, the Extremely Randomized Trees (Extra Trees) model demonstrated superior performance in terms of MSE, MAE, and coefficient of determination, with values of 0.0078, 0.0564 and 0.9199, respectively. Notably, the analysis revealed that a significant number of predictors exhibited non-linear relationships with the response variable, which the Extra Trees model effectively captured. By employing SHAP values (Shapley Additive Explanation), the relationships between the independent variables and ECL were found to align with the economic theory.
dc.format.extent133 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
dc.subject.ddc330 - Economía::332 - Economía financiera
dc.titlePronóstico de la pérdida crediticia esperada de los clientes con mayor nivel de riesgo de un banco por medio de modelos paramétricos y no paramétricos
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Estadística
dc.coverage.countryColombia
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ciencias-Estadística
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedRedCol
dc.relation.indexedLaReferencia
dc.relation.referencesAkaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723. https://doi.org/10.1109/TAC.1974.1100705
dc.relation.referencesAltman, E. I. (1968). Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. The Journal of Finance, 23(4), 589–609. https://doi.org/10.1111/j.1540-6261.1968.tb00843
dc.relation.referencesAntonsson, H. (2018). Macroeconomic factors in Probability of Default A study applied to a Swedish credit portfolio [KTH Royal Institute of Technology]. https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1264976&dswid=3197
dc.relation.referencesApergis, E., Apergis, I., & Apergis, N. (2019). A new macro stress testing approach for financial realignment in the Eurozone. Journal of International Financial Markets, Institutions and Money, 61(4), 52–80. https://doi.org/10.1016/j.intfin.2019.02.002
dc.relation.referencesBanco de la República de Colombia. (2022). Sectorización Monetaria y Económica. https://www.banrep.gov.co/sites/default/files/paginas/sectormon.pdf
dc.relation.referencesBandyopadhyay, A. (2022). Loan level loss given default (LGD) study of Indian banks. IIMB Management Review, 34(2), 168–177. https://doi.org/10.1016/J.IIMB.2022.06.003
dc.relation.referencesBanerjee, R., & Venkateshwaran, S. (2017, July). Demystifying Expected Credit Loss (ECL). KPMG. https://assets.kpmg/content/dam/kpmg/in/pdf/2017/07/Demystifying-Expected-Credit-Loss.pdf
dc.relation.referencesBastos, J. A. (2010). Forecasting bank loans loss-given-default. Journal of Banking & Finance, 34(10), 2510–2517. https://doi.org/10.1016/J.JBANKFIN.2010.04.011
dc.relation.referencesBCBS. (2000). Principles for the Management of Credit Risk. Basel Committee on Banking Supervision. https://www.bis.org/publ/bcbs75.htm
dc.relation.referencesBemister-Buffington, J., Wolf, A. J., Raschka, S., & Kuhn, L. A. (2020). Machine Learning to Identify Flexibility Signatures of Class A GPCR Inhibition. Biomolecules, 10(3). https://doi.org/10.3390/biom10030454
dc.relation.referencesBreiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
dc.relation.referencesCheng, J., Sun, J., Yao, K., Xu, M., & Cao, Y. (2022). A variable selection method based on mutual information and variance inflation factor. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 268(6), 1–7. https://doi.org/https://doi.org/10.1016/j.saa.2021.120652
dc.relation.referencesChen, J. (2022, September 6). Default: What It Means, What Happens When You Default, Examples. Investopedia. https://www.investopedia.com/terms/d/default2.asp
dc.relation.referencesChen, M. (2011). Bankruptcy prediction in firms with statistical and intelligent techniques and a comparison of evolutionary computation approaches. Computers & Mathematics with Applications, 62(12), 4514–4524. https://doi.org/10.1016/J.CAMWA.2011.10.030
dc.relation.referencesChen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. https://doi.org/10.1145/2939672.2939785
dc.relation.referencesDupré la Tour, T., Eickenberg, M., Nunez-Elizalde, A. O., & Gallant, J. L. (2022). Feature-space selection with banded ridge regression. NeuroImage, 264(19), 1–19. https://doi.org/10.1016/J.NEUROIMAGE.2022.119728
dc.relation.referencesECB. (2023, June 30). What are haircuts? European Central Bank. https://www.ecb.europa.eu/ecb/educational/explainers/tell-me-more/html/haircuts.en.html
dc.relation.referencesFernando, J. (2023a, March 27). Inventory Turnover Ratio: What It Is, How It Works, and Formula. Investopedia. https://www.investopedia.com/terms/i/inventoryturnover.asp
dc.relation.referencesFernando, J. (2023b, May 24). Return on Equity (ROE) Calculation and What It Means. Investopedia. https://www.investopedia.com/terms/r/returnonequity.asp
dc.relation.referencesFilippo, M., Alfonso, N., Theodore, P., Enrico, R., & Gerhard, S. (2017). IFRS 9: A silent revolution in banks’ business models. McKinsey. https://www.mckinsey.com/capabilities/risk-and-resilience/our-insights/ifrs-9-a-silent-revolution-in-banks-business-models
dc.relation.referencesFischler, M. A., & Bolles, R. C. (1981). Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Commun. ACM, 24(6), 381–395. https://doi.org/10.1145/358669.358692
dc.relation.referencesFonti, V., & Belitser, E. (2017). Feature selection using lasso. In VU Amsterdam research paper in business analytics. Vrije Universitetit Amsterdam.
dc.relation.referencesFriedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29(5), 1189 – 1232. https://doi.org/10.1214/aos/1013203451
dc.relation.referencesGenuer, R., Poggi, J. M., & Tuleau-Malot, C. (2010). Variable selection using random forests. Pattern Recognition Letters, 31(14), 2225–2236. https://doi.org/10.1016/J.PATREC.2010.03.014
dc.relation.referencesGeurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine Learning, 63(1), 3–42. https://doi.org/10.1007/s10994-006-6226-1
dc.relation.referencesGiesecke, K., Longstaff, F. A., Schaefer, S., & Strebulaev, I. (2011). Corporate bond default risk: A 150-year perspective. Journal of Financial Economics, 102(2), 233–250. https://doi.org/10.1016/J.JFINECO.2011.01.011
dc.relation.referencesGiraud, C. (2021). Introduction to High-Dimensional Statistics (CRC Press, Ed.; 2nd, illustrated ed.). https://www.imo.universite-paris-saclay.fr/~christophe.giraud/Orsay/Bookv3.pdf
dc.relation.referencesGitman, L. J., & Zutter, C. J. (2012). Principios de Administración financiera (12th ed.). Pearson Educación de México, S.A. de C.V. https://economicas.unsa.edu.ar/afinan/informacion_general/book/pcipios-adm-finan-12edi-gitman.pdf
dc.relation.referencesGranitto, P. M., Furlanello, C., Biasioli, F., & Gasperi, F. (2006). Recursive feature elimination with random forest for PTR-MS analysis of agroindustrial products. Chemometrics and Intelligent Laboratory Systems, 83(2), 83–90. https://doi.org/10.1016/J.CHEMOLAB.2006.01.007
dc.relation.referencesGuyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene Selection for Cancer Classification using Support Vector Machines. Machine Learning, 46(1), 389–422. https://doi.org/10.1023/A:1012487302797
dc.relation.referencesHärdle, W. K., & Prastyo, D. D. (2013). Default Risk Calculation based on Predictor Selection for the Southeast Asian Industry. SSRN Electronic Journal, SFB 649(Discussion Paper 2013-037), 1–24. https://doi.org/10.2139/ssrn.2892650
dc.relation.referencesHastie, T., Tibshirani, R., & Friedman, J. (2001). The Elements of Statistical Learning (2nd ed.). Springer New York Inc
dc.relation.referencesHastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition (Springer Series in Statistics). https://doi.org/10.1007/978-0-387-84858-7
dc.relation.referencesHayes, A. (2022, August 10). EBITDA: Meaning, Formula, and History. Investopedia. https://www.investopedia.com/terms/e/ebitda.asp
dc.relation.referencesHeo, J., & Yang, J. Y. (2014). AdaBoost based bankruptcy forecasting of Korean construction companies. Applied Soft Computing, 24(13), 494–499. https://doi.org/10.1016/J.ASOC.2014.08.009
dc.relation.referencesHoerl, A. E., & Kennard, R. W. (1970). Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics, 12(1), 55–67. https://doi.org/10.1080/00401706.1970.10488634
dc.relation.referencesJiménez, G., & Mencía, J. (2009). Modelling the distribution of credit losses with observable and latent factors. Journal of Empirical Finance, 16(2), 235–253. https://doi.org/10.1016/j.jempfin.2008.10.003
dc.relation.referencesKendall, M. G. (1948). Rank correlation methods. In Rank correlation methods. Griffin & Co. https://doi.org/10.1017/S0020268100013019
dc.relation.referencesKhamis, H. (2008). Measures of Association: How to Choose? Journal of Diagnostic Medical Sonography, 24(3), 155–162. https://doi.org/10.1177/8756479308317006
dc.relation.referencesKhandani, A. E., Kim, A. J., & Lo, A. W. (2010). Consumer credit-risk models via machine-learning algorithms. Journal of Banking & Finance, 34(11), 2767–2787. https://doi.org/10.1016/J.JBANKFIN.2010.06.001
dc.relation.referencesLeow, M., & Mues, C. (2012). Predicting loss given default (LGD) for residential mortgage loans: A two-stage model and empirical evidence for UK bank data. International Journal of Forecasting, 28(1), 183–195. https://doi.org/10.1016/J.IJFORECAST.2011.01.010
dc.relation.referencesLiu, J., & Xu, X. E. (2003). The Predictive Power of Economic Indicators in Consumer Credit Risk Management. The Rma Journal, 86, 40–45. https://acortar.link/7x2mfu
dc.relation.referencesLoh, W.-Y. (2011). Classification and Regression Trees. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(1), 14–23. https://doi.org/10.1002/widm.8
dc.relation.referencesLouppe, G. (2014). Understanding Random Forests: From Theory to Practice [Université de Liège]. https://doi.org/10.48550/arXiv.1407.7502
dc.relation.referencesLundberg, S., Erion, G., & Lee, S.-I. (2018). Consistent Individualized Feature Attribution for Tree Ensembles. Arxiv. https://doi.org/10.48550/arXiv.1802.03888
dc.relation.referencesLundberg, S., & Lee, S.-I. (2017). A Unified Approach to Interpreting Model Predictions. https://www.researchgate.net/publication/317062430
dc.relation.referencesLuong, T. M., & Scheule, H. (2022). Benchmarking forecast approaches for mortgage credit risk for forward periods. European Journal of Operational Research, 299(2), 750–767. https://doi.org/10.1016/j.ejor.2021.09.026
dc.relation.referencesMaulud, D., & Abdulazeez, A. M. (2020). A Review on Linear Regression Comprehensive in Machine Learning. Journal of Applied Science and Technology Trends, 1(4), 140–147. https://doi.org/10.38094/jastt1457
dc.relation.referencesMazibaş, M., & Tuna, Y. (2017). Understanding the Recent Growth in Consumer Loans and Credit Cards in Emerging Markets: Evidence from Turkey. Emerging Markets Finance and Trade, 53(10), 2333–2346. https://doi.org/10.1080/1540496X.2016.1196895
dc.relation.referencesMelkumova, L. E., & Shatskikh, S. Y. (2017). Comparing Ridge and LASSO estimators for data analysis. Procedia Engineering, 201(31), 746–755. https://doi.org/10.1016/J.PROENG.2017.09.615
dc.relation.referencesMeng, Y., Yang, N., Qian, Z., & Zhang, G. (2021). What Makes an Online Review More Helpful: An Interpretation Framework Using XGBoost and SHAP Values. Journal of Theoretical and Applied Electronic Commerce Research, 16(3), 466–490. https://doi.org/10.3390/jtaer16030029
dc.relation.referencesNalluri, M., Pentela, M., & Eluri, N. R. (2020). A Scalable Tree Boosting System: XG Boost. Int. J. Res. Stud. Sci. Eng. Technol, 7(12), 36–51. https://doi.org/10.22259/2349-476X.0712005
dc.relation.referencesPedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825–2830. http://scikit-learn.sourceforge.net.
dc.relation.referencesPereira, J. M., Basto, M., & Silva, A. F. da. (2016). The Logistic Lasso and Ridge Regression in Predicting Corporate Failure. Procedia Economics and Finance, 39(5), 634–641. https://doi.org/10.1016/S2212-5671(16)30310-0
dc.relation.referencesPeterdy, K. (2023, June 14). Credit Risk. CFI. https://corporatefinanceinstitute.com/resources/knowledge/finance/credit-risk
dc.relation.referencesRobles, C. L. (2012). Fundamentos de administración financiera (M. E. Buendía, Ed.; 1st ed.). Red Tercer Milenio S.C. http://biblioteca.udgvirtual.udg.mx/jspui/handle/123456789/3175
dc.relation.referencesRory, M., Andrey, A., Thejaswi, R., & Eibe, F. (2018). XGBoost: Scalable GPU Accelerated Learning. Cornell University. https://doi.org/10.48550/arXiv.1806.11248
dc.relation.referencesRoss, S. A., Westerfiel, R. W., & Jordan, B. D. (2010). Fundamentos de finanzas corporativas (9th ed.). McGraw-Hill/IInteramericana Editores, S.A.de C.V. https://www.mheducation.com.co/fundamentos-de-finanzas-corporativas-9781456291136-col-group
dc.relation.referencesRubaszek, M., & Serwa, D. (2014). Determinants of credit to households: An approach using the life-cycle model. Economic Systems, 38(4), 572–587. https://doi.org/10.1016/J.ECOSYS.2014.05.004
dc.relation.referencesStoppiglia, H., Dreyfus, G., Dubois, R., & Oussar, Y. (2003). Ranking a Random Feature For Variable And Feature Selection. Journal of Machine Learning Research, 3, 1399–1414. https://doi.org/10.1162/153244303322753733
dc.relation.referencesTaghiyeh, S., Lengacher, D. C., & Handfield, R. B. (2021). Loss rate forecasting framework based on macroeconomic changes: Application to US credit card industry. Expert Systems with Applications, 165(3), 113954. https://doi.org/10.1016/J.ESWA.2020.113954
dc.relation.referencesTemim, J. (2016, November). The IFRS 9 Impairment Model and its Interaction with the Basel Framework. Moody’s Analytics. Risk Perspectives. https://acortar.link/3HQHP5
dc.relation.referencesTheil, H. (1949). A Rank-Invariant Method of Linear and Polynomial Regression Analysis. In Advanced Studies in Theoretical and Applied Econometrics (Vol. 23). Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2546-8_20
dc.relation.referencesVipond Tim. (2022, June). Net Working Capital. CFI. https://corporatefinanceinstitute.com/resources/knowledge/finance/what-is-net-working-capital/
dc.relation.referencesWang, X., Wang, X., Ma, B., Li, Q., Wang, C., & Shi, Y. (2023). High-performance reversible data hiding based on ridge regression prediction algorithm. Signal Processing, 204(3), 108818. https://doi.org/10.1016/J.SIGPRO.2022.108818
dc.relation.referencesWang, Y. (2011). Corporate Default Prediction: Models, Drivers and Measurements [Doctoral thesis, University of Exeter]. http://hdl.handle.net/10036/3457
dc.relation.referencesXia, Y., Zhao, J., He, L., Li, Y., & Yang, X. (2021). Forecasting loss given default for peer-to-peer loans via heterogeneous stacking ensemble approach.International Journal of Forecasting, 37(4), 1590–1613. https://doi.org/10.1016/J.IJFORECAST.2021.03.002
dc.relation.referencesYeh, C. C., Chi, D. J., & Lin, Y. R. (2014). Going-concern prediction using hybrid random forests and rough set approach. Information Sciences, 254(1), 98–110. https://doi.org/10.1016/J.INS.2013.07.011
dc.relation.referencesZhang, Y., & Chen, L. (2021). A Study on Forecasting the Default Risk of Bond Based on XGboost Algorithm and Over-Sampling Method. Theoretical Economics Letters, 11(2), 258–267. https://doi.org/10.4236/tel.2021.112019
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembRiesgo (Finanzas)
dc.subject.lembBank Loans
dc.subject.lembPréstamos bancarios
dc.subject.proposalPérdida crediticia esperada
dc.subject.proposalProvisión
dc.subject.proposalEntidades financieras
dc.subject.proposalRiesgo de default
dc.subject.proposalExtremely Randomized Trees
dc.subject.proposalExtra Trees
dc.subject.proposalExpected Credit Loss
dc.subject.proposalECL
dc.subject.proposalProvision
dc.subject.proposalFinancial institutions
dc.subject.proposalDefault risk
dc.subject.proposalDefault
dc.title.translatedForecasting expected credit loss of high-risk bank clients using parametric and non-parametric models
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dc.description.curricularareaÁrea Curricular Estadística
dc.contributor.orcidGonzález Álvarez, Nelfi Gertrudis [0000-0003-0129-1316]
dc.contributor.cvlacGonzález Álvarez, Nelfi Gertrudis [0000063002]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito