Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorGodoy Silva, Ruben Dario
dc.contributor.authorFerrucho Calle, Maria Camila
dc.date.accessioned2023-11-09T05:42:54Z
dc.date.available2023-11-09T05:42:54Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84923
dc.descriptionilustraciones, diagramas
dc.description.abstractLos cultivos celulares en la industria farmacéutica y cosmética requieren un estricto control de parámetros, incluyendo la contaminación por Mycoplasma sp., debido a sus efectos negativos en aspectos económicos y biológicos. En este estudio, se evaluó el tratamiento para eliminar Mycoplasma sp. en células L929 contaminadas. Se utilizaron tres métodos de detección (PCR, luminiscencia bioquímica y tinción con DAPI) para identificar eficazmente la presencia de Mycoplasma sp. y se determinó la concentración necesaria del tratamiento. Además, se comparó la velocidad de crecimiento de las células evaluadas y se realizó un ensayo de viabilidad con diferentes concentraciones de SDS para analizar su respuesta posterior al tratamiento. Durante el estudio, se detectó la contaminación de las células L929 con Mycoplasma sp., y se confirmó la efectividad de los tratamientos con Plasmocin® y MRA para eliminar el patógeno. A pesar de ello, la presencia de Mycoplasma sp. causó cambios mínimos en la velocidad de crecimiento de las células evaluadas, especialmente entre las 120 y 144 horas de estudio. En este período, se observó una disminución en la velocidad de crecimiento en las células tratadas con MRA, mientras que las tratadas con Plasmocin® lograron recuperar su velocidad de crecimiento. Además, en el ensayo de viabilidad celular, el tratamiento demostró proporcionar una protección adicional contra el efecto citotóxico, especialmente en concentraciones mínimas de SDS. No obstante, se observaron ligeras modificaciones en la morfología celular, lo que indican cambios irreversibles debido a la contaminación con Mycoplasma sp. a pesar de la eficacia del tratamiento. (Texto tomado de la fuente)
dc.description.abstractCell cultures in the pharmaceutical and cosmetic industry require strict control of parameters, including contamination by Mycoplasma sp., due to its negative effects on economic and biological aspects. In this study, the treatment to eradicate Mycoplasma sp. in contaminated L929 cells was evaluated. Three detection methods (PCR, biochemical luminescence, and DAPI staining) were used to efficiently screen for the presence of Mycoplasma sp., and the necessary concentration of the treatment was determined. In addition, the growth rate of the evaluated cells was compared, and a viability assay was performed with different concentrations of SDS to analyze their response after treatment. During the study, contamination of L929 cells with Mycoplasma sp. was detected, and the effectiveness of the treatments with Plasmocin® and MRA to eradicate the pathogen was confirmed. However, despite the effectiveness of the treatments, the presence of Mycoplasma sp. caused minimal changes in the growth rate of the evaluated cells, particularly between 120 and 144 hours of study. In this period, a decrease in the growth rate was observed in the cells treated with MRA, while those treated with Plasmocin® managed to recover their growth rate. Furthermore, in the cell viability assay, the treatment appeared to provide additional protection against the cytotoxic effect, especially at the lower concentrations of SDS that were evaluated. However, slight changes in cell morphology were observed, indicating irreversible alterations due to contamination with Mycoplasma sp. despite the efficacy of the treatment.
dc.format.extent91 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc660 - Ingeniería química
dc.titleTratamiento de Mycoplasma sp. presente en lineas celulares animales
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química
dc.contributor.researchgroupGrupo de Investigación en Procesos Químicos y Bioquímicos
dc.description.degreelevelMaestría
dc.description.researchareaBioprocesos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Administración
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesMori Y, Notomi T. Loop-mediated isothermal amplification (LAMP): A rapid, accurate, and cost-effective diagnostic method for infectious diseases. J Infect Chemother. 2009;15(2):62–9.
dc.relation.referencesKirchhoff H, Mohan K, Schmidt R, Runge M, Brown DR, Brown MB, et al. Mycoplasma Crocodyli sp. nov., a new species from crocodiles. Int J Syst Bacteriol. 1997;47(3):742– 6.
dc.relation.referencesForsyth MH, Tully JG, Gorton TS, Hinckley L, Frasca S, Van Kruiningen HJ, et al. Mycoplasma sturni sp. nov., from the conjunctiva of a European starling (Sturnus vulgaris). Int J Syst Bacteriol. 1996;46(3):716–9.
dc.relation.referencesMariotti E, Mirabelli P, Di Noto R, Fortunato G, Salvatore F. Rapid detection of mycoplasma in continuous cell lines using a selective biochemical test. Leuk Res. 2008;32(2):323–6.
dc.relation.referencesPitt A. Assay for detecting Mycoplasma by measuring acetate kinase or carbamate kinase activity [Internet]. EP Patent 0879946A2. Great Bretain; 2010. p. 1–48. Available from: http://info.sipcc.net/files/patent/fulltext/EP/200605/EP2099194A1/EP2099194A1. PDF
dc.relation.referencesJang H, Kim H, Kang B, Kim C, Park H. Oligonucleotide, array-based detection and genotyping of mollicutes (Acholeplasma, Mycoplasma, and Ureaplasma). J Microbiol Biotechnol. 2009;19(3):265–70.
dc.relation.referencesUphoff CC, Drexler HG. Eradication of mycoplasma contaminations from cell cultures. Curr Protoc Mol Biol. 2014;(SUPL.106):1–12.
dc.relation.references51. Duffy LB, Crabb D, Searcey K, Kempf MC. Comparative potency of gemifloxacin, new quinolones, macrolides, tetracycline and clindamycin against Mycoplasma spp. J Antimicrob Chemother. 2000;45(4 SUPPL. S1):29–33.
dc.relation.references52. Speer BS, Shoemaker NB, Salyers AA. Bacterial resistance to tetracycline: Mechanisms, transfer, and clinical significance. Clin Microbiol Rev. 1992;5(4):387–99.
dc.relation.references53. Z. Tang Y, H. Liu Y, X. Chen J. Pleuromutilin and its Derivatives-The Lead Compounds for Novel Antibiotics. Mini-Reviews Med Chem. 2011;12(1):53–61.
dc.relation.references54. Sharma PC, Jain A, Jain S. Fluoroquinolone antibacterials: A review on chemistry, microbiology and therapeutic prospects. Acta Pol Pharm - Drug Res. 2009;66(6):587– 604.
dc.relation.references55. Sanchez S, Demain AL. Secondary metabolites [Internet]. Third Edit. Vol. 1, Comprehensive Biotechnology. Elsevier; 2019. 131–143 p. Available from: http://dx.doi.org/10.1016/B978-0-444-64046-8.00012-4
dc.relation.references56. Zuckerman JM, Qamar F, Bono BR. Review of Macrolides (Azithromycin, Clarithromycin), Ketolids (Telithromycin) and Glycylcyclines (Tigecycline). Med Clin North Am [Internet]. 2011;95(4):761–91. Available from: http://dx.doi.org/10.1016/j.mcna.2011.03.012
dc.relation.referencesRomorini L, Riva DA, Blüguermann C, Videla Richardson GA, Scassa ME, Sevlever GE, et al. Effect of Antibiotics against Mycoplasma sp. on Human Embryonic Stem Cells Undifferentiated Status, Pluripotency, Cell Viability and Growth. PLoS One. 2013;8(7):1–15.
dc.relation.references66. Molla Kazemiha V, Azari S, Amanzadeh A, Bonakdar S, Shojaei Moghadam M, Habibi Anbouhi M, et al. Efficiency of PlasmocinTM on various mammalian cell lines infected by mollicutes in comparison with commonly used antibiotics in cell culture: A local experience. Cytotechnology. 2011;63(6):609–20.
dc.relation.references67. Zachari MA, Chondrou PS, Pouliliou SE, Mitrakas AG, Abatzoglou I, Zois CE, et al. Evaluation of the alamarblue assay for adherent cell irradiation experiments. Dose- Response. 2014;12(2):246–58. 68. Kamiloglu S, Sari G, Ozdal T, Capanoglu E. Guidelines for cell viability assays. Food Front. 2020;1(3):332–49.
dc.relation.referencesKamiloglu S, Sari G, Ozdal T, Capanoglu E. Guidelines for cell viability assays. Food Front. 2020;1(3):332–49.
dc.relation.referencesInternational Standard. ISO 10993-5 Biological evaluation of medical devices — Part 5: Tests for in vitro cytotoxicity. 2009. p. 1–42.
dc.relation.references70. Escobar M. L, Rivera A, Aristizábal G. FA. Comparison of resazurin and MTT methods on studies of citotoxicity in human tumor cell lines. Vitae. 2010;17(1):67–74.
dc.relation.references71. Harlin H, Gajewski TF. Diagnosis and treatment of mycoplasma-contaminated cell cultures. Curr Protoc Cytom. 2008;(SUPPL. 43):3–6.
dc.relation.references72. Weiskirchen S, Schröder SK, Buhl EM, Weiskirchen R. A Beginner’s Guide to Cell Culture: Practical Advice for Preventing Needless Problems. Cells. 2023;12(5).
dc.relation.references73. Molla Kazemiha V, Amanzadeh A, Memarnejadian A, Azari S, Shokrgozar MA, Mahdian R, et al. Sensitivity of biochemical test in comparison with other methods for the detection of mycoplasma contamination in human and animal cell lines stored in the National Cell Bank of Iran. Cytotechnology. 2014;66(5):861–73.
dc.relation.references74. Pollack JD, Williams M V., McElhaney RN. The comparative metabolism of the mollicutes (Mycoplasmas): The utility for taxonomic classification and the relationship of putative gene annotation and phylogeny to enzymatic function in the smallest freeliving cells. Crit Rev Microbiol. 1997;23(4):269–354.
dc.relation.references75. Garner C, Hubbold L, Chakraborti P. Mycoplasma detection in cell cultures: a comparison of four methods. Br J Biomed Sci. 2000;57(4):295–301.
dc.relation.references76. Corral-Vázquez C, Aguilar-Quesada R, Catalina P, Lucena-Aguilar G, Ligero G, Miranda B, et al. Cell lines authentication and mycoplasma detection as minimun quality control of cell lines in biobanking. Cell Tissue Bank. 2017;18(2):271–80.
dc.relation.references77. Geraghty RJ, Capes-Davis A, Davis JM, Downward J, Freshney RI, Knezevic I, et al. Guidelines for the use of cell lines in biomedical research. Br J Cancer. 2014;111(6):1021–46.
dc.relation.referencesDegeling MH, Maguire CA, Bovenberg MSS, Tannous BA. Sensitive assay for mycoplasma detection in mammalian cell culture. Anal Chem. 2012;84(9):4227–32.
dc.relation.references80. Russell BJ, Horiuchi K, Velez JO, Goodman CH, Johnson BW. Mycoplasma detection in a historical arbovirus repository: Commercial kit comparison and implications for improved repository management. J Virol Methods [Internet]. 2020;276(October 2019):113769. Available from: https://doi.org/10.1016/j.jviromet.2019.113769
dc.relation.references81. Peterson WJ, Tachiki KH, Yamaguchi DT. Serial passage of MC3T3-E1 cells downregulates proliferation during osteogenesis in vitro. Cell Prolif. 2004;37(5):325–36.
dc.relation.references82. Gerlic M, Horowitz J, Horowtiz S. Mycoplasma fermentans inhibits tumor necrosis factor α-induced apoptosis in the human myelomonocytic U937 cell line. Cell Death Differ. 2004;11(11):1204–12.
dc.relation.references83. Prasertsung I, Kanokpanont S, Mongkolnavin R, Wong CS, Panpranot J, Damrongsakkul S. Comparison of the behavior of fibroblast and bone marrow-derived mesenchymal stem cell on nitrogen plasma-treated gelatin films. Mater Sci Eng C [Internet]. 2013;33(7):4475–9. Available from: http://dx.doi.org/10.1016/j.msec.2013.05.057 84. Gedye C, Cardwell T, Dimopoulos N, Tan BS, Jackson H, Svobodová S, et al. Mycoplasma Infection Alters Cancer Stem Cell Properties in Vitro. Stem Cell Rev Reports. 2016;12(1):156–61. 85. Uphoff CC, Drexler HG. Comparative PCR analysis for detection of mycoplasma infections in continuous cell lines. Vitr Cell Dev Biol - Anim. 2002;38(2):79–85.
dc.relation.references86. Yang C, Chalasani G, Ng YH, Robbins PD. Exosomes released from mycoplasma infected tumor cells activate inhibitory B cells. PLoS One. 2012;7(4).
dc.relation.references87. Uphoff CC, Drexler HG. Comparative antibiotic eradication of mycoplasma infections from continuous cell lines. Vitr Cell Dev Biol - Anim. 2002;38(2):86–9.
dc.relation.referencesSrikanth M, Khan W, Asmatulu R, Misak H, Yang S, Asmatulu E. In vitro Cytotoxicity Studies of Industrially Used Common Nanomaterials on L929 and 3T3 Fibroblast Cells. J Biomed Res Environ Sci. 2020;1(5):192–200.
dc.relation.references92. Babich H, Babich JP. Sodium lauryl sulfate and triclosan: In vitro cytotoxicity studies with gingival cells. Toxicol Lett. 1997;91(3):189–96.
dc.relation.references93. Balbaied T, Moore E. Resazurin-based assay for quantifying living cells during alkaline phosphatase (ALP) release. Appl Sci. 2020;10(11
dc.relation.referencesDreolini L, Cullen M, Yung E, Laird L, Webb JR, Nelson BH, et al. A Rapid and Sensitive Nucleic Acid Amplification Technique for Mycoplasma Screening of Cell Therapy Products. Mol Ther - Methods Clin Dev [Internet]. 2020;17(June):393–9. Available from: https://doi.org/10.1016/j.omtm.2020.01.009
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsBacterias
dc.subject.decsTécnicas de cultivo de célula
dc.subject.decsCell Culture Techniques
dc.subject.lembCosméticos
dc.subject.lembCosmetics
dc.subject.lembIndustria de cosméticos
dc.subject.lembCosmetics industry
dc.subject.proposalMycoplasma sp.
dc.title.translatedTreatment of Mycoplasma present in mammalian cell lines
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dc.contributor.orcidhttps://orcid.org/0000-0003-2953-0817


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito