Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorCorredor Espinel, Vladimir
dc.contributor.authorLeón Higuera, Erika Paola
dc.date.accessioned2023-11-14T19:52:54Z
dc.date.available2023-11-14T19:52:54Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84944
dc.descriptionilustraciones
dc.description.abstractEl estudio de la dinámica de transmisión del COVID-19 ha develado la importancia de considerar la heterogeneidad y estocasticidad en el número de infecciones producidas a partir de un individuo (R0), la magnitud de las introducciones en una población de susceptibles y el cambio en la movilidad desde o hacia las grandes ciudades como medidas principales para predecir el impacto de las enfermedades infecciosas y la adopción de medidas de aislamiento social en las poblaciones para contener la expansión. Este trabajo pretende analizar: 1) la dinámica de diseminación de la infección por SARS- COV-2 a partir de los grandes centros urbanos donde se detectaron las primeras introducciones en el país hacia los distintos municipios, desde el inicio de la pandemia en Colombia hasta el momento en que se inició la vacunación, en relación a la movilidad y las medidas de control adoptadas; 2) el comportamiento de la infección en los distintos municipios según el tamaño poblacional analizando el número de casos y muertes; 3) el tamaño relativo de los brotes en relación al tamaño y densidad de la población de las cabeceras municipales y 4) el efecto de la introducción del virus en las cabeceras municipales según el índice de vulnerabilidad en dichas poblaciones. En este estudio se muestra la manera como la infección se fue expandiendo a partir grandes ciudades con conexión internacional y semanas más tarde hacia ciudades medianas y pequeñas. Mientras que en las grandes ciudades las curvas de casos tuvieron un comportamiento más parecido al promedio nacional, en los pequeños asentamientos el comportamiento fue más errático y heterogéneo. Las intervenciones no farmacológicas de control adoptadas administrativamente y medidas a través del efecto de las restricciones de movilidad en los Índices de Movilidad (Facebook GeoInsights) y de Astringencia o Severidad (Oxford Coronavirus Government Response Tracker) son similares al inicio de la pandemia, pero posteriormente, aunque el índice de astringencia muestra una rigidez como al inicio, la movilidad es similar al punto temporal de referencia prepandemia. A través del software Tableau se produjeron curvas de expansión de la infección en términos de tasa de casos y muertes a partir de información de la base de datos de casos confirmados COVID-19 en Colombia desde el inicio de la pandemia hasta la semana en que se inició la vacunación. Para el análisis se incluyeron datos demográficos de las regiones del país, así como el Índice de Astringencia del Oxford Coronavirus Government Response Tracker, el Índice de Movilidad creado por Facebook GeoInsights y el Índice de Vulnerabilidad "Progress Out of Poverty Index" que se comparan en la misma línea de tiempo. Y para el ultimo objetivo se toman las tasas de mortalidad por COVID-19 para correlacionar con el índice de vulnerabilidad. Luego, se analizan las curvas en términos de incidencia de casos confirmados y muertes en las tres agrupaciones de municipios por tamaño poblacional encontrando como la tasa de mortalidad es mayor en la agrupación que contiene a los municipios más pequeños, por lo cual se evalúa más adelante la asimetría y las desviaciones estándar midiendo qué tan distantes están los datos con respecto a la media, siendo esta una manera de medir la heterogeneidad encontrando nuevamente una marcada diferencia en la agrupación 1 respecto a las demás agrupaciones. Finalmente, se propone evaluar la tasa de mortalidad y el índice de vulnerabilidad (Progress Out of Poverty Index) que se midió para 24 departamentos y la tasa de mortalidad correspondiente, no obstante, no se encontró ninguna relación. Concluyendo, las curvas epidémicas son más homogéneas a mayor tamaño poblacional. Las INF estrictas no se traducen en la movilidad real necesariamente y si bien funcionaron al inicio no se vuelve a presentar el mismo impacto por tanto la reinstauración de estas medidas no parece ser viables. La asimetría evaluada hallada en el agrupamiento 1 produjo una pendiente negativa que demuestra una distribución contraria a la distribución de Poisson lo que implica una heterogeneidad desde posibles eventos de superpropagación hasta eventos donde la transmisión se corta de tal manera que las medidas de control deben ser diferenciadas de las grandes ciudades a los pequeños municipios, especialmente tomando en cuenta el impacto encontrado en mortalidad. (Texto tomado de la fuente).
dc.description.abstractThe study of the transmission dynamics of COVID-19 has revealed the importance of considering heterogeneity and stochasticity in the number of secondary infections from an infected individual (R0), magnitude of introductions in a susceptible population and mobility change from and to big cities like main measure to predict impact of infectious diseases and adoption of non-pharmacological interventions in populations to contain expansion. This work aims to analyze: 1) The dynamic of dissemination of infection by SARS-COV-2 from the large urban centers where the first introductions in the country were detected to the different municipalities of Colombia since beginning of pandemic in Colombia until the initiation of vaccination related to mobility and control measures adopted; 2) the behavior of infection in the different municipalities according to clusters for population size analyzing number of cases and deaths; 3) the relative size of the outbreaks according to size and incidence density of population of the municipalities and 4) the effect of introduction of the virus in municipalities according to the vulnerability index in those populations. This study shows how the infection spread from large cities with international connections and weeks later to medium and small cities. While in large cities the curves of cases had a behavior like the national average, in the small settlements the behavior was more erratic and heterogeneous. The non-pharmacological control interventions adopted administratively and measures through the effect of mobility restrictions on the Mobility (Facebook GeoInsights) and Astringency or Severity (Oxford Coronavirus Government Response Tracker) indices are similar at the beginning of the pandemic, but later, although the astringency index shows a rigidity as at the beginning, mobility is like the pre-pandemic reference time point. Using Tableau software infection expansion curves were made in terms of case and death rates based on information from the database of confirmed COVID-19 cases in Colombia from the start of the pandemic until the week in which it was started vaccination. For analysis was included demographic data of the regions of the country as astringency index from the Oxford Coronavirus Government Response Tracker, index of mobility created with Facebook GeoInsights and the vulnerability index “Progress Out of Poverty Index,” all compared on the same timeline. And for the last objective, the mortality rates of COVID-19 correlate with the vulnerability index. Then, the curves are analyzed in terms of incidence of confirmed cases and deaths in the three groups of municipalities by population size, finding how the mortality rate is higher in the group that contains the smallest municipalities, therefore is evaluated the asymmetry and standard deviations by measuring how far the data are from the mean, being a way of measuring heterogeneity, once again finding a marked difference in group 1 with respect to the other groupings. Finally, it is proposed to evaluate the mortality rate and the vulnerability index (Progress Out of Poverty Index) that was measured for 24 departments and the corresponding mortality rate; however, no relationship was found. In conclusion, the epidemic curves are more homogeneous in larger population size. The strict INFs do not necessarily translate into real mobility, although they worked at the beginning, the same impact is not present again, hence the reinstatement of these measures does not seem to be viable. The evaluated asymmetry found in cluster 1 produced a negative slope that shows a distribution contrary to the Poisson distribution, which implies a heterogeneity from possible superpropagation events to events where the transmission is cut, in such a way that the control measures must be differentiated from large cities to small municipalities, especially considering the impact found on mortality.
dc.format.extentxxii, 104 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc610 - Medicina y salud::616 - Enfermedades
dc.titlePatrones de expansión y tamaño de los brotes de COVID-19 en Colombia
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Medicina - Maestría en Infecciones y Salud en el Trópico
dc.description.notesIncluye glosario
dc.contributor.projectmemberFeged Rivadeneira, Alejandro
dc.contributor.researchgroupGrupo de Investigacion en Enfermedades Infecciosas
dc.coverage.countryColombia
dc.coverage.tgnhttp://vocab.getty.edu/page/tgn/1000050
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Infecciones y Salud en el Trópico
dc.description.researchareaEcoepidemiología
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Medicina
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.indexedBireme
dc.relation.referencesNewman M. Networks. Second Edition. Oxford University Press; 2018.
dc.relation.referencesHébert-Dufresne L, Althouse BM, Scarpino S v., Allard A. Beyond $R_0$: Heterogeneity in secondary infections and probabilistic epidemic forecasting. 2020;0(1):1–8. Available from: http://arxiv.org/abs/2002.04004
dc.relation.referencesShereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res. 2020; 24:91–8.
dc.relation.referencesStatement on the meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus 2019 (n-CoV) on 23 January 2020 [Internet]. [cited 2020 Oct 27]. Available from: https://www.who.int/news/item/23-01-2020-statement-on-the-meeting-of-the- international-health-regulations-(2005)-emergency-committee-regarding-the- outbreak-of-novel-coronavirus-(2019-ncov
dc.relation.referencesWHO Coronavirus Disease (COVID-19) Dashboard | WHO Coronavirus Disease (COVID-19) Dashboard [Internet]. [cited 2020 Oct 27]. Available from: https://covid19.who.int/
dc.relation.referencesFuk-Woo Chan J, Kok KH, Zhu Z, Chu H, Kai-Wang To K, Yuan S, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. 2020.
dc.relation.referencesWang H, Wang Z, Dong Y, Chang R, Xu C, Yu X, et al. Phase-adjusted estimation of the number of Coronavirus Disease 2019 cases in Wuhan, China. Cell Discov. 2020;6(1):4–11.
dc.relation.referencesV’kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. 2020
dc.relation.referencesPastrian-Soto G. Presencia y Expresión del Receptor ACE2 (Target de SARS- CoV-2) en Tejidos Humanos y Cavidad Oral. Posibles Rutas de Infección en Órganos Orales. International journal of odontostomatology. 2020 Dec;14(4):501– 7.
dc.relation.referencesXia X. Domains and functions of spike protein in sars-cov-2 in the context of vaccine design. Vol. 13, Viruses. MDPI AG; 2021.
dc.relation.referencesHong Zhou, Xing Chen, Tao Hu, Juan Li, Hao Song, Yanran Liu, Peihan Wang, Di Liu, Jing Yang, Edward C. Holmes, Alice C. Hughes, Yuhai Bi WS. A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein. Current Biology. 2020; Volume 30(19, 5 October 2020): Pages 3896.
dc.relation.referencesFuk-Woo Chan, Jasper, Kin-Hang Kok, Zheng Zhu, Hin Chu, Kelvin Kai-Wang to SY and KYY. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan: Emerging Microbes & Infections: Vol 9, No 1. 2020. p. 18.
dc.relation.referencesHoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271-280.e8.
dc.relation.referencesZhang M, Wang H, Foster ER, Nikolov ZL, Fernando SD, King MD. Binding behavior of spike protein and receptor binding domain of the SARS-CoV-2 virus at different environmental conditions. Sci Rep. 2022 Dec 1;12(1).
dc.relation.referencesFernandes Q, Inchakalody VP, Merhi M, Mestiri S, Taib N, Moustafa Abo El-Ella D, et al. Emerging COVID-19 variants and their impact on SARS-CoV-2 diagnosis, therapeutics and vaccines. Vol. 54, Annals of Medicine. Taylor and Francis Ltd.; 2022. p. 524–40.
dc.relation.referencesTracking SARS-CoV-2 variants [Internet]. [cited 2022 Mar 6]. Available from: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
dc.relation.referencesVolz E, Hill V, McCrone JT, Price A, Jorgensen D, O’Toole Á, et al. Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity. Cell. 2020;64–75.
dc.relation.referencesIwasaki M, Saito J, Zhao H, Sakamoto A, Hirota K, Ma D. Inflammation Triggered by SARS-CoV-2 and ACE2 Augment Drives Multiple Organ Failure of Severe COVID-19: Molecular Mechanisms and Implications. Inflammation. 2020;44(1).
dc.relation.referencesZhang J jin, Dong X, Liu G hui, Gao Y dong. Risk and Protective Factors for COVID-19 Morbidity, Severity, and Mortality. Clinical Reviews in Allergy and Immunology. Springer; 2022.
dc.relation.referencesRamanathan K, Antognini D, Combes A, Paden M, Zakhary B, Ogino M, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020;395(January):497–506.
dc.relation.referencesJayaweera M, Perera H, Gunawardana B, Manatunge J. Transmission of COVID- 19 virus by droplets and aerosols: A critical review on the unresolved dichotomy. Vol. 188, Environmental Research. Academic Press Inc.; 2020. p. 109819.
dc.relation.referencesNewman MEJ. Spread of epidemic disease on networks. Phys Rev E Stat Nonlin Soft Matter Phys. 2002;66(016128):539–47.
dc.relation.referencesMohammad S, Aziz R, al Mahri S, Malik SS, Haji E, Khan AH, et al. Obesity and COVID-19: what makes obese host so vulnerable? Vol. 18, Immunity and Ageing. BioMed Central Ltd; 2021
dc.relation.referencesIwasaki M, Saito J, Zhao H, Sakamoto A, Hirota K, Ma D. Inflammation Triggered by SARS-CoV-2 and ACE2 Augment Drives Multiple Organ Failure of Severe COVID-19: Molecular Mechanisms and Implications. Vol. 44, Inflammation. Springer; 2021. p. 13–34.
dc.relation.referencesComparative-evaluation-of-the-origin-evolution-transmission-diagnosis-and- vaccine-development-of-three-highly-pathogenic-human-coronaviruses-Sarscov- merscov-and-sarscov2. Journal-of-Experimental-Biology-and-Agricul.pdf. 2020.
dc.relation.referencesOgimi C, Kim YJ, Martin ET, Huh HJ, Chiu CH, Englund JA. What’s New with the Old Coronaviruses? J Pediatric Infect Dis Soc. 2020;9(2):210–7.
dc.relation.referencesYahav D, Yelin D, Eckerle I, Eberhardt CS, Wang J, Cao B, et al. Definitions for coronavirus disease 2019 reinfection, relapse, and PCR re-positivity. Clinical Microbiology and Infection. 2021 Mar 1;27(3):315–8.
dc.relation.referencesPilz S, Theiler-Schwetz V, Trummer C, Krause R, Ioannidis JPA. SARS-CoV-2 reinfections: Overview of efficacy and duration of natural and hybrid immunity. Environ Res [Internet]. 2022 Jun 1 [cited 2022 Mar 8]; 209:112911. Available from: https://doi.org/10.1016/j.envres.2022.112911
dc.relation.referencesZheng C, Shao W, Chen X, Zhang B, Wang G, Zhang W. Real-world effectiveness of COVID-19 vaccines: a literature review and meta-analysis. International Journal of Infectious Diseases. 2022 Jan 1; 114:252–60.
dc.relation.referencesMao Y, Wang W, Ma J, Wu S, Sun F. Reinfection rates among patients previously infected by SARS-CoV-2: Systematic review and meta-analysis. Chin Med J (Engl)[Internet]. 2022 Jan 20 [cited 2022 Mar 8];135(2):145–52. Available from: https://journals.lww.com/cmj/Fulltext/2022/01200/Reinfection_rates_among_patient s_previously.3.aspx
dc.relation.referencesFerguson NM, Laydon D, Nedjati-gilani G, Imai N, Ainslie K, Baguelin M. Reporte 9 : Impacto de las intervenciones no farmacéuticas ( INF ) para reducir la mortalidad y demanda en los sistemas de salud frente a COVID-19 Resumen. United Kingdom: Imperial College COVID-19 Response Team. 2020; 2020:1–21.
dc.relation.referencesChu DK, Akl EA, Duda S, Solo K, Yaacoub S, Schünemann HJ, et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta- analysis. The Lancet. 2020;395(10242):1973–87.
dc.relation.referencesSanteramo FG, Tappi M, Lamonaca E. On the management of COVID-19 pandemic in Italy. Health Policy (New York). 2021 Aug 1;125(8):995–1001.
dc.relation.referencesEmeruwa UN, Ona S, Shaman JL, Turitz A, Wright JD, Gyamfi-Bannerman C, et al. Associations between Built Environment, Neighborhood Socioeconomic Status, and SARS-CoV-2 Infection among Pregnant Women in New York City. JAMA - Journal of the American Medical Association. 2020;324(4):390–2.
dc.relation.referencesMartins-Filho PR, Quintans-Júnior LJ, de Souza Araújo AA, Sposato KB, Souza Tavares CS, Gurgel RQ, et al. Socio-economic inequalities and COVID-19 incidence and mortality in Brazilian children: a nationwide register-based study. Public Health. 2021 Jan 1; 190:4–6.
dc.relation.referencesBambra C, Riordan R, Ford J, Matthews F. The COVID-19 pandemic and health inequalities. J Epidemiol Community Health (1978). 2020;74(11):964–8.
dc.relation.referencesCoronavirus en Suecia: el debate que despierta la singular estrategia del país europeo de no confinar a su población durante la pandemia - BBC News Mundo [Internet]. [cited 2022 Feb 7]. Available from: https://www.bbc.com/mundo/noticias- internacional-52690735
dc.relation.referencesBonaccorsi G, Pierri F, Cinelli M, Flori A, Galeazzi A, Porcelli F, et al. Economic and social consequences of human mobility restrictions under COVID-19. Proc Natl Acad Sci U S A. 2020;117(27):15530–5.
dc.relation.referencesLiu Y, Wang Z, Rader B, Li B, Wu CH, Whittington JD, et al. Associations between changes in population mobility in response to the COVID-19 pandemic and socioeconomic factors at the city level in China and country level worldwide: a retrospective, observational study [Internet]. Vol. 3, www.thelancet.com/digital- health. 2021.
dc.relation.referencesAndersen LH, Fallesen P, Bruckner TA. Risk of stress/depression and functional impairment in Denmark immediately following a COVID-19 shutdown. BMC Public Health. 2021 Dec 1;21(1).
dc.relation.referencesRodriguez-Villamizar LA, Belalcázar-Ceron LC, Fernández-Niño JA, Marín-Pineda DM, Rojas-Sánchez OA, Acuña-Merchán LA, et al. Air pollution, sociodemographic and health conditions effects on COVID-19 mortality in Colombia: An ecological study. Science of the Total Environment. 2021 Feb 20;756.
dc.relation.referencesHethcote HW. Mathematics of infectious diseases. SIAM Review. 2000;42(4):599– 653
dc.relation.referencesAllard A, Moore C, Scarpino S v., Althouse BM, Hébert-Dufresne L. The role of directionality, heterogeneity and correlations in epidemic risk and spread. ArXiv. 2020;1–13
dc.relation.referencesAlthouse BM, Wenger EA, Miller JC, Scarpino S V., Allard A, Hebert-Dufresne L, et al. Superspreading events in the transmission dynamics of SARS-CoV-2: Opportunities for interventions and control. PLoS Biol. 2020;18(11):1–13.
dc.relation.referencesBenjamin M. Althouse, Edward A. Wenger, Joel C. Miller S V., Scarpino, Antoine Allard, Laurent H´ebert-Dufresne and HH. Stochasticity and heterogeneity in the transmission dynamics of SARS-CoV-2. Institute for Disease Modeling, Bellevue, WA, University of Washington, Seattle, WA. 2020;10.
dc.relation.referencesHellewell J, Abbott S, Gimma A, Bosse NI, Jarvis CI, Russell TW, et al. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. Lancet Glob Health. 2020;8(4): e488–96.
dc.relation.referencesBhatia S, Imai N, Cuomo-Dannenburg G, Baguelin M, Boonyasiri A, Cori A, et al. Estimating the number of undetected COVID-19 cases among travellers from mainland China. Wellcome Open Res. 2020; 5:143.
dc.relation.referencesRader B, Scarpino S v., Nande A, Hill AL, Adlam B, Reiner RC, et al. Crowding and the shape of COVID-19 epidemics. Nat Med. 2020 Dec 1;26(12):1829–34.
dc.relation.referencesAguilar J, Bassolas A, Ghoshal G, Hazarie S, Kirkley A, Mazzoli M, et al. Impact of urban structure on infectious disease spreading. Sci Rep. 2022 Dec 1;12(1).
dc.relation.referencesPolicy Responses to the Coronavirus Pandemic - Our World in Data [Internet]. [cited 2022 Feb 27]. Available from: https://ourworldindata.org/policy-responses- covid
dc.relation.referencesHale T, Angrist N, Goldszmidt R, Kira B, Petherick A, Phillips T, et al. A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker). Nat Hum Behav. 2021 Apr 1;5(4):529–38.
dc.relation.referencesFeged-Rivadeneira A, González-Casabianca F, Corredor V, Salazar Pardo MC, Parra A, Cascante Vega JE, et al. REPORTE DE MOVILIDAD Y COVID-19 EN COLOMBIA [Internet]. BOGOTA; 2020 [cited 2021 Jan 25]. Available from: https://datalama.polyglot.site
dc.relation.referencesBustos BAA, Muñoz MCO. Less poor more vulnerable? An alternative measurement of poverty based on progress out of poverty index. Vol. 2020, Desarrollo y Sociedad. Universidad de los Andes, Facultad de Economia; 2020. p. 13–42.
dc.relation.referencesde la Hoz-Restrepo F, Alvis-Zakzuk NJ, de la Hoz-Gomez JF, de la Hoz A, Gómez Del Corral L, ¿Alvis-Guzmán N. Is Colombia an example of successful containment of the 2020 COVID-19 pandemic? A critical analysis of the epidemiological data, March to July 2020. International Journal of Infectious Diseases. 2020;99:522–9.
dc.relation.referencesDatos Abiertos Colombia | Datos Abiertos Colombia [Internet]. [cited 2021 Jan 25]. Available from: https://www.datos.gov.co/
dc.relation.referencesInstituto Nacional de Salud | Colombia Bienvenido (a) [Internet]. [cited 2022 Feb 27]. Available from: https://www.ins.gov.co/Paginas/Inicio.aspx
dc.relation.referencesProyecciones de población [Internet]. [cited 2022 Feb 27]. Available from: https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y- poblacion/proyecciones-de-poblacion
dc.relation.referencesMena GE, Martinez PP, Mahmud AS, Marquet PA, Buckee CO, Santillana M. Socioeconomic status determines COVID-19 incidence and related mortality in Santiago, Chile. Science (1979). 2021 May 28;372(6545).
dc.relation.referencesBambra C, Riordan R, Ford J, Matthews F. The COVID-19 pandemic and health inequalities [Internet]. Vol. 74, Journal of Epidemiology and Community Health. BMJ Publishing Group; 2020 [cited 2021 Jan 16]. p. 964–8. Available from: http://jech.bmj.com/
dc.relation.referencesPanamericana De La Salud O. Organización Panamericana de la Salud Oficina Sanitaria Panamericana, Oficina Regional de la Organización Mundial de la Salud Módulos de principios de epidemiología para el control de enfermedades (MOPECE) Segunda Edición Revisada Unidad 2: Salud y enfermedad en la población. 2002;
dc.relation.referencesOrganización Mundial de la Salud, Organización Panamericana de la Salud. GLOSARIO SOBRE BROTES Y EPIDEMIAS. 2020.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsCOVID-19/epidemiología
dc.subject.decsCOVID-19/epidemiology
dc.subject.decsBrotes de Enfermedades
dc.subject.decsDisease Outbreaks
dc.subject.decsÍndice de Vulnerabilidad Social
dc.subject.decsSocial Vulnerability Index
dc.subject.proposalCOVID-19
dc.subject.proposalSARS-CoV-2
dc.subject.proposalCoronavirus
dc.subject.proposalPhysical Distancing
dc.subject.proposalDistanciamiento social
dc.subject.proposalSpreading
dc.subject.proposalExpansion
dc.subject.proposalHuman mobility
dc.subject.proposalMovilidad humana
dc.title.translatedExpansion patterns and size of COVID-19 outbreaks in Colombia
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentPúblico general


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito